JPH02289407A - Production of alpha-silicon nitride - Google Patents

Production of alpha-silicon nitride

Info

Publication number
JPH02289407A
JPH02289407A JP10849289A JP10849289A JPH02289407A JP H02289407 A JPH02289407 A JP H02289407A JP 10849289 A JP10849289 A JP 10849289A JP 10849289 A JP10849289 A JP 10849289A JP H02289407 A JPH02289407 A JP H02289407A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
component
silicon
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10849289A
Other languages
Japanese (ja)
Other versions
JP2670849B2 (en
Inventor
Hajime Kato
肇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP1108492A priority Critical patent/JP2670849B2/en
Publication of JPH02289407A publication Critical patent/JPH02289407A/en
Application granted granted Critical
Publication of JP2670849B2 publication Critical patent/JP2670849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain low carbon high alpha-silicon nitride by granulating at least one of metallic silicon powder and a mixture of silica powder with carbon powder and carrying out surface coating with silicon nitride, mixing and nitrifying under heating. CONSTITUTION:At least one of metallic silicon powder (a) and a mixture (b) of silica powder with carbon powder is granulated and the surfaces of the resulting granules are coated with silicon nitride. The granules are then mixed with the ungranulated component (a) or (b) and this mixture is nitrified under heating in a nitrifying atmosphere to obtain desired alpha silicon nitride. The pref. particle size of the metallic silicon powder used is <=10mum. When the powder contains a large amt. of particles of >10mum particle size, it is unfit to produce high purity silicon nitride because reaction time is prolonged and unreacted silicon remains. The pref. primary particle size of the silica powder and carbon powder is <=1mum from the view-point of reactivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα型窒化珪素、すなわちα型に富んだ窒化珪素
粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing α-type silicon nitride, that is, α-type-rich silicon nitride powder.

〔従来の技術〕[Conventional technology]

窒化珪素焼結体は機械的強度が高(、かつ耐熱性にも優
れた高温材料として、多様な用途が考えられている。し
かし、優れた焼結体を造るには優れた原料粉末が要求さ
れる。特に、高耐熱でしかも高強度の焼結体を造るには
、原料粉末となる窒化珪素粉末は純度が高いのみならず
、結晶相的に高いα型窒化珪素を含有していることが望
ましい。このような窒化珪素を得る方法としては、種々
の方法が提案されているが、これらには一長一短があり
、十分に満足し得る方法は見出されていない。
Silicon nitride sintered bodies are considered to have a variety of uses as a high-temperature material with high mechanical strength (and excellent heat resistance).However, in order to make excellent sintered bodies, excellent raw material powder is required. In particular, in order to produce a sintered body with high heat resistance and high strength, the silicon nitride powder used as the raw material powder must not only have high purity but also contain α-type silicon nitride with a high crystal phase. Various methods have been proposed to obtain such silicon nitride, but these have advantages and disadvantages, and no fully satisfactory method has been found.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来法の中でも、特開昭62−260704号に開示さ
れている、金属窒化法と酸化物還元窒化法を組み合わせ
てα型に富んだ窒化珪素粉末を製造する方法は、品質の
よい粉末が得られる工業的に優れた方法である。
Among the conventional methods, the method of manufacturing α-rich silicon nitride powder by combining metal nitriding method and oxide reduction nitriding method, which is disclosed in JP-A No. 62-260704, yields high-quality powder. This is an industrially excellent method.

しかしながら、この方法も得られる窒化珪素粉末中に炭
素が比較的多く含まれると言う欠点があった。これは酸
化物還元法の持つ本来的な欠点でもあり、後処理により
除去する方法も提案されているが、必ずしも十分に除去
されるわけでもなく、酸化の問題を生ずる。
However, this method also has the disadvantage that the resulting silicon nitride powder contains a relatively large amount of carbon. This is an inherent drawback of the oxide reduction method, and although methods have been proposed to remove it by post-treatment, it is not always removed sufficiently and causes oxidation problems.

すなわち、X線回折では検出されない無定型の炭化珪素
が存在し、窒化珪素の純度を低下させる原因となってい
た。
That is, there is amorphous silicon carbide that is not detected by X-ray diffraction, which causes a decrease in the purity of silicon nitride.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、斯かる問題点を改善せんと種々検討を重ね
た結果、(a)金属珪素粉末及び(b)シリカ粉末と炭
素粉末の混合物のうちの、少なくとも一方を造粒し、更
に少なくとも一方の造粒物の表面を窒化珪素で被覆し、
次いで成分(a)と成分(b)とを混合して窒化雰囲気
で加熱窒化することにより、上記の欠点を大幅に改善で
きることを見出した。さらに本発明者は、(b)成分に
窒化珪素を混合した成分(c)を用いれば、さらに−層
の改善がなされることを見出した。
As a result of various studies aimed at improving these problems, the inventors of the present invention granulated at least one of (a) metal silicon powder and (b) a mixture of silica powder and carbon powder, and further, at least The surface of one of the granules is coated with silicon nitride,
It has been found that the above-mentioned drawbacks can be significantly improved by subsequently mixing component (a) and component (b) and heating and nitriding the mixture in a nitriding atmosphere. Furthermore, the present inventors have found that by using component (c), which is a mixture of component (b) and silicon nitride, the - layer can be further improved.

本発明は斯かる新知見に基いて完成されたもので、本願
は、(a)金属珪素粉末及びυシリカ粉末と炭素粉末の
混合物の少なくとも一方を造粒し、更にこの造粒物の少
なくとも一方を窒化珪素で表面被覆し、次いで成分(a
)と成分(b)を混合して、窒化雰囲気で加熱窒化する
ことを特徴とするα型窒化珪素の製造方法に係る第1の
発明を提供するものである。
The present invention has been completed based on such new knowledge, and the present application involves (a) granulating at least one of a metal silicon powder and a mixture of υ silica powder and carbon powder, and further granulating at least one of the granulated product. was surface coated with silicon nitride, and then the component (a
) and component (b) are mixed and heated and nitrided in a nitriding atmosphere.

更に、本願は、第1の発明における成分b)の代りに、
成分(b)に更に窒化珪素粉末を混合した成分(c)を
使用することを特徴とする第2の発明を提供するもので
ある。
Furthermore, the present application provides that instead of component b) in the first invention,
A second invention is provided, characterized in that component (c) is used, which is a mixture of component (b) and silicon nitride powder.

本発明に用いられる成分(a)、すなわち金属珪素粉末
は通常の金属直接窒化の場合に使用されているものを使
用することができ、特にこの金属珪素粉末は10μm以
下の粒度をもつものが好ましい。10μのより粗な粒子
を多量に含むときは反応時間が長時間となると共に、未
反応珪素が残留するため、高純度窒化珪素の製造には適
さない。また従来法では1μm以下の粒径のものは使用
できないとされていたが、本発明においては1μm以下
の微粉末でも急激な反応による温度上昇が大幅に緩和さ
れるため使用可能である。
As the component (a) used in the present invention, that is, the metal silicon powder, those used in the case of ordinary metal direct nitriding can be used, and it is particularly preferable that the metal silicon powder has a particle size of 10 μm or less. . When a large amount of coarser particles of 10 μm are included, the reaction time becomes long and unreacted silicon remains, making it unsuitable for producing high-purity silicon nitride. In addition, in the conventional method, it was said that particles with a particle size of 1 μm or less cannot be used, but in the present invention, even fine powders with a particle size of 1 μm or less can be used because the temperature rise due to rapid reaction is significantly alleviated.

成分(b)はシリカ粉末と炭素粉末の混合物であり、こ
れらは通常の還元窒化法に使用されているものが使用で
きる。例えば、シリカとしては湿式法シリカ粉末、シリ
カヒユーム、もみ殻シリカ、微粉末石英などがあげられ
、炭素粉末としてはカーボンブラック、石油コークス粉
末などを挙げることができる。また、炭素は加熱により
炭化して炭素を与える有機物を用いてもよい。これらの
混合は乾式、湿式のどちらでもよく、溶液中でシリカの
生成と同時に行う方法でもよい。
Component (b) is a mixture of silica powder and carbon powder, and those used in ordinary reductive nitriding methods can be used. For example, examples of silica include wet process silica powder, silica hume, rice husk silica, and finely powdered quartz, and examples of carbon powder include carbon black and petroleum coke powder. Further, as the carbon, an organic substance that carbonizes and gives carbon by heating may be used. These may be mixed either dry or wet, or may be mixed in a solution simultaneously with the production of silica.

シリカ粉末、炭素粉末は反応性の観点より1次粒子径、
1μm以下のものが好ましい。
From the viewpoint of reactivity, the primary particle size of silica powder and carbon powder is
Preferably, the thickness is 1 μm or less.

それより粗い粒子の場合には、未反応物が残り易く、高
純度の窒化珪素の製造には適さない。また、両原料とも
、高α型率の窒化珪素を製造するためには純度は高い程
好ましく、特に99%以上の純度のものが好ましい。
If the particles are coarser than that, unreacted substances tend to remain and are not suitable for producing high-purity silicon nitride. Further, in order to produce silicon nitride with a high α type ratio, the purity of both raw materials is preferably as high as possible, and those with a purity of 99% or more are particularly preferred.

成分(b)中のシリカ粉末/炭素粉末の配合割合は重量
比で110.4〜1/1が好ましい。
The weight ratio of silica powder/carbon powder in component (b) is preferably 110.4 to 1/1.

その配合割合が110.4未満であるとシリコンオキシ
ナイトライド(StiONz)の生成が見られるために
好ましくなく、また1/1を超えると過剰の炭素が残留
し、除去の問題、経済性、その他好ましくない問題を生
ずる。
If the blending ratio is less than 110.4, silicon oxynitride (StiONz) will be formed, which is undesirable, and if it exceeds 1/1, excess carbon will remain, causing problems in removal, economic efficiency, etc. This causes undesirable problems.

成分(c)における窒化珪素の混合割合はシリカ1に対
して061〜1重量部が好ましい。
The mixing ratio of silicon nitride in component (c) is preferably 0.61 to 1 part by weight based on 1 part by weight of silica.

0.1未満では改善効果が顕著でなく、1を超えると窒
化珪素の生成効率が落ち、経済性を損なう。
When it is less than 0.1, the improvement effect is not significant, and when it exceeds 1, the silicon nitride production efficiency decreases, impairing economic efficiency.

窒化珪素としては、最終製品の純度、α型率を考慮する
と、純度、α型率共高いものが好ましい。また、粒度は
混合用、被覆用共細かいものほど製品粒度は細かいもの
が得られる。
Considering the purity and α-type content of the final product, silicon nitride having high purity and high α-type content is preferable. Furthermore, the finer the particle size for both mixing and coating, the finer the product particle size can be obtained.

成分(a)、(b)及びまたは(c)の造粒は水または
有機溶媒を添加して造粒することができる。
Components (a), (b) and/or (c) can be granulated by adding water or an organic solvent.

造粒方法としては、転勤造粒、押し出し成型、加圧成型
物、スラリー乾燥物の破砕物など通常使用される造粒方
法のいずれを使用してもよい。また、粉末の粒度を適度
に選べば、液体成分を加えることなく加圧成型も可能で
ある。後に、被覆操作が加わる場合には、転勤造粒など
によって被覆が容易な形にするのが好ましい。
As the granulation method, any commonly used granulation method may be used, such as transfer granulation, extrusion molding, pressure molding, and crushing of dried slurry. Moreover, if the particle size of the powder is appropriately selected, pressure molding is also possible without adding a liquid component. If a coating operation is to be added later, it is preferable to use transfer granulation or the like to form a shape that is easy to coat.

造粒物の大きさは0,5〜20am程度が好ましい。0
.5關よりも細かいと被覆の割合が大きくなって効率的
でなく、20鰭を超えると2つの反応の反応熱相殺が均
一に行われがたく、不均一となり、α相の低下をもたら
す。
The size of the granules is preferably about 0.5 to 20 am. 0
.. If it is finer than 5 fins, the coverage ratio becomes large and it is not efficient, and if it exceeds 20 fins, it is difficult to evenly cancel out the reaction heat of the two reactions, resulting in non-uniformity, resulting in a decrease in the α phase.

造粒は成分(a)、(b)、(c)の少なくとも一つに
施す。
Granulation is performed on at least one of components (a), (b), and (c).

次に、造粒物の少なくとも一つに被覆操作を施した後、
成分(a)と(b)または(c)を混合する。
Next, after performing a coating operation on at least one of the granules,
Mix components (a) and (b) or (c).

この場合の成分(a)/成分(社)、または、成分(a
)/成分(c)の混合割合は、成分(b)または成分(
c)中のシリカを1とし、窒化珪素被覆を除外した重量
比で0.1〜3が好ましい。0.1未満では酸化物還元
窒化とほとんど変わらず、3を超えると熱の相殺効果が
十分でない。
In this case, component (a)/component (company) or component (a)
)/component (c) is the mixing ratio of component (b) or component (
When the silica in c) is 1, the weight ratio excluding the silicon nitride coating is preferably 0.1 to 3. If it is less than 0.1, it is almost the same as oxide reduction nitriding, and if it exceeds 3, the heat offset effect is not sufficient.

得られた混合物を窒素またはアンモニアを含む窒化雰囲
気で加熱することにより高品質のα型窒化珪素を得るこ
とができる。加熱温度は1400〜1600℃の範囲が
好ましい。
High quality α-type silicon nitride can be obtained by heating the obtained mixture in a nitriding atmosphere containing nitrogen or ammonia. The heating temperature is preferably in the range of 1400 to 1600°C.

〔発明の効果〕〔Effect of the invention〕

本発明は、特開昭62−260704号における造粒に
よる反応の分離、熱の相殺に加え、更に造粒物を窒化珪
素で被覆することによって金属珪素と炭素との直接接触
を避けることができ、また窒化珪素の添加により生成し
た一酸化炭素を速やかに除去することによって、さらに
低炭素、高α型窒化珪素の製造を可能にしたものである
In addition to separating reactions and offsetting heat by granulation as described in JP-A-62-260704, the present invention can avoid direct contact between metal silicon and carbon by coating the granules with silicon nitride. Furthermore, by quickly removing carbon monoxide generated by the addition of silicon nitride, it is possible to produce even lower carbon and higher α-type silicon nitride.

〔実施例〕〔Example〕

次に実施例を挙げて説明する。 Next, an example will be given and explained.

実施例1〜6 比表面積180m”/gの湿式法シリカ粉末(純度99
.5%以上)と比表面積24rn″/gのカーボンブラ
ック粉末(純度99.5%)、比表面積7.6m”/g
の窒化珪素(純度99.8%)を表1に示す割合でボー
ルミル混合し、成分(b)または、(c)の混合物とし
た。さらに、金属珪素粉末(平均粒径1μm1純度99
.0%)を用意した。表1に示す造粒物は直径1.2m
のパンペレタイザーで約31I11の粒に造粒した。さ
らに、窒化珪素被覆も同じパンペレタイザ゛−を用いて
行った。造粒物と粉末又は造粒物と造粒物は同じ表1に
示す割合に混合した。これら混合物は1400〜155
0℃の温度で窒素による窒化雰囲気で加熱、焼成して、
窒化珪素を得た。得られた窒化珪素のX線分析結果及び
N分析結果を併せて表1に示す。尚造粒物を窒化珪素被
覆しない場合を比較例1として示した。
Examples 1 to 6 Wet process silica powder with a specific surface area of 180 m”/g (purity 99
.. 5% or more) and carbon black powder (purity 99.5%) with a specific surface area of 24 rn''/g, and a specific surface area of 7.6 m''/g.
Silicon nitride (purity 99.8%) was mixed in a ball mill in the proportions shown in Table 1 to obtain a mixture of component (b) or (c). Furthermore, metallic silicon powder (average particle size 1 μm 1 purity 99
.. 0%) was prepared. The granules shown in Table 1 have a diameter of 1.2 m.
It was granulated into particles of about 31I11 using a pan pelletizer. Furthermore, silicon nitride coating was also performed using the same pan pelletizer. The granules and the powder or the granules and the granules were mixed in the same proportions shown in Table 1. These mixtures are 1400-155
Heating and firing in a nitriding atmosphere with nitrogen at a temperature of 0°C,
Silicon nitride was obtained. The results of X-ray analysis and N analysis of the obtained silicon nitride are shown in Table 1. Comparative Example 1 is a case in which the granules are not coated with silicon nitride.

実施例7〜8 アエロジル(日本アエロジル社製)をシリカ原料とし、
炭素原料としてアセチレンブラック(電気化学社製)、
平均粒径1μmの半導体シリコン(信越化学社製)粉末
、実施例1の窒化珪素を用い、実施例1と同様の方法で
粒径的6gに造粒後、被覆し、1500℃にて、N、 
10%、N113気流中で2時間加熱窒化した。得られ
た窒化珪素の分析値を表1に示す。尚造粒物を窒化珪素
被覆しない場合を比較例2として示した。
Examples 7 to 8 Aerosil (manufactured by Nippon Aerosil Co., Ltd.) was used as a silica raw material,
Acetylene black (manufactured by Denki Kagaku Co., Ltd.) as a carbon raw material,
Using semiconductor silicon (manufactured by Shin-Etsu Chemical Co., Ltd.) powder with an average particle size of 1 μm and the silicon nitride of Example 1, the particles were granulated to 6 g in the same manner as in Example 1, coated, and heated with N at 1500°C. ,
The sample was heated and nitrided for 2 hours in a 10% N113 gas stream. Table 1 shows the analytical values of the obtained silicon nitride. A case where the granules were not coated with silicon nitride was shown as Comparative Example 2.

以下余白Margin below

Claims (1)

【特許請求の範囲】 1、(a)金属珪素粉末及び(b)シリカ粉末と炭素粉
末の混合物の少なくとも一方を造粒し、更にこの造粒物
の少なくとも一方を窒化珪素で表面被覆し、次いで成分
(a)と成分(b)を混合して、窒化雰囲気で加熱窒化
することを特徴とするα型窒化珪素の製造方法。 2、成分(b)の代りに、成分(b)に更に窒化珪素粉
末を混合した成分(c)を使用することを特徴とする請
求項1記載の製造方法。 3、表面被覆する造粒物が成分(a)である請求項1又
は2記載の製造方法。 4、表面被覆する造粒物が成分(b)又は成分(c)で
ある請求項1〜3の何れか1項記載の製造方法。
[Claims] 1. At least one of (a) metal silicon powder and (b) a mixture of silica powder and carbon powder is granulated, at least one of the granules is surface-coated with silicon nitride, and then A method for producing α-type silicon nitride, which comprises mixing component (a) and component (b) and heating and nitriding the mixture in a nitriding atmosphere. 2. The manufacturing method according to claim 1, characterized in that component (c), which is a mixture of component (b) and silicon nitride powder, is used in place of component (b). 3. The manufacturing method according to claim 1 or 2, wherein the granules to be surface coated are component (a). 4. The manufacturing method according to any one of claims 1 to 3, wherein the granules to be surface coated are component (b) or component (c).
JP1108492A 1989-04-27 1989-04-27 Method for manufacturing α-type silicon nitride Expired - Lifetime JP2670849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108492A JP2670849B2 (en) 1989-04-27 1989-04-27 Method for manufacturing α-type silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108492A JP2670849B2 (en) 1989-04-27 1989-04-27 Method for manufacturing α-type silicon nitride

Publications (2)

Publication Number Publication Date
JPH02289407A true JPH02289407A (en) 1990-11-29
JP2670849B2 JP2670849B2 (en) 1997-10-29

Family

ID=14486147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108492A Expired - Lifetime JP2670849B2 (en) 1989-04-27 1989-04-27 Method for manufacturing α-type silicon nitride

Country Status (1)

Country Link
JP (1) JP2670849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678602A1 (en) * 1991-07-02 1993-01-08 Atochem PROCESS FOR THE PREPARATION OF SILICON NITRIDE BY SILICA CARBONITRURATION AND SILICON NITRIDE AS PARTICLES EXEMPT FROM WHISKEY.
JP2008081340A (en) * 2006-09-26 2008-04-10 Toda Kogyo Corp Method for manufacturing silicon nitride powder
CN108623308A (en) * 2018-05-23 2018-10-09 淄博恒世科技发展有限公司 Silicon nitride ball parent nucleus and its production technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678602A1 (en) * 1991-07-02 1993-01-08 Atochem PROCESS FOR THE PREPARATION OF SILICON NITRIDE BY SILICA CARBONITRURATION AND SILICON NITRIDE AS PARTICLES EXEMPT FROM WHISKEY.
JP2008081340A (en) * 2006-09-26 2008-04-10 Toda Kogyo Corp Method for manufacturing silicon nitride powder
CN108623308A (en) * 2018-05-23 2018-10-09 淄博恒世科技发展有限公司 Silicon nitride ball parent nucleus and its production technology
CN108623308B (en) * 2018-05-23 2021-02-02 淄博恒世科技发展有限公司 Mother core for silicon nitride ball and production process thereof

Also Published As

Publication number Publication date
JP2670849B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
EP3502052A1 (en) Method for preparing spherical aluminum nitride powder
US5246683A (en) Process for producing small particles of aluminum nitride and particles so-produced
JPS6112844B2 (en)
JPS61151006A (en) Production of aluminum nitride powder
JPS60176910A (en) Production of aluminum nitride powder
JPH02289407A (en) Production of alpha-silicon nitride
US5075091A (en) Process for the preparation of silicon nitride
JPH0647447B2 (en) Method for producing aluminum nitride powder
JPH08333107A (en) Production of powder of titanium carbide nitride
JPS58213617A (en) Production of titanium carbonitride powder
US5441694A (en) Preparation of high α-type silicon nitride powder
JPH0416502A (en) Production of boron nitride
AU648108B2 (en) A proces for the preparation of alpha-silicon nitride powder
JPS62260704A (en) Production of alpha-type silicon nitride powder
JPH02120214A (en) Production of aluminum nitride powder
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPH0925111A (en) Low-oxygen silicon granule, its production and production of silicon nitride
JPS6227003B2 (en)
JPS6227004B2 (en)
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP2002316812A (en) Method for producing silicon carbide fine powder
JPH02192408A (en) Production of aluminum nitride powder
JPS6340709A (en) Production of easy-to-sinter high-purity silicon nitride fine powder
JPS623007A (en) Production of aluminum nitride powder
JPH0360409A (en) Production of silicon nitride powder