JPH02288368A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH02288368A JPH02288368A JP1109642A JP10964289A JPH02288368A JP H02288368 A JPH02288368 A JP H02288368A JP 1109642 A JP1109642 A JP 1109642A JP 10964289 A JP10964289 A JP 10964289A JP H02288368 A JPH02288368 A JP H02288368A
- Authority
- JP
- Japan
- Prior art keywords
- film
- poly
- ferrodielectric
- ferroelectric film
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000005530 etching Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 239000011229 interlayer Substances 0.000 abstract description 11
- 239000012535 impurity Substances 0.000 abstract description 10
- 239000010410 layer Substances 0.000 abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 239000010703 silicon Substances 0.000 abstract description 7
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 239000011574 phosphorus Substances 0.000 abstract description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract 3
- 230000015654 memory Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910003781 PbTiO3 Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- -1 Ti1W Chemical class 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Non-Volatile Memory (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は強誘電体膜を用いた半導体装置、特に電気的に
書き換え可能な不揮発性メモリの製造方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device using a ferroelectric film, and particularly to a method for manufacturing an electrically rewritable nonvolatile memory.
従来の半導体不揮発性メモリとしては、MIS型トラジ
スタが一般に使用されEFROM (紫外線消去型不揮
発性メモリ) 、EEPROM (電気的書き換え可能
型不揮発性メモリ)などとして実用化されているものの
、これらは書き換え電圧が約20V前後と高いことや書
き換え時間が長いことが問題とされている。従って最近
は、電気的に分極が反転可能な強誘電体膜を用いて、書
き込み時間と読み出し時間が原理的にほぼ同じで、電源
をきっても分極が保持される不揮発性メモリが提案され
ている。この様な強誘電体膜を用いた不揮発性メモリに
ついては、例えば米国特許4149302の様に、シリ
コン基板上に強誘電体膜からなるキャパシタを集積した
構造や、米国特許3832700の様にMIS型トラン
ジスタのゲート部分に強誘電体膜を配置したもの、ある
いはIEDM;87pp、850−851の様に強誘電
体膜をMOS型半導体装置に積層した構造の不揮発性メ
モリが提案されている。従来これらの製造方法は、例え
ば第2図の様に、MOSトランジスタ等の半導体素子が
形成されたシリコン基板11上のフィールド酸化膜12
や第1の層間絶縁膜17を介して、Po1y−3i等の
導電膜を成長させ、これをCF4等のフロロカーボン系
のガスを用いたドライエツチャーでパターニングした下
部電極18を形成しである。ここで、13はゲート絶縁
膜、14はPo1y−3t等を用いたゲート電極で、1
5.16はソース、ドレイン等のN型不純物層である(
第2図(a))。次いで強誘電体膜19としてPbTi
O3やPZT (PbTi03/PbZ r03) 、
PLZT (La/PbT t。MIS type transistors are commonly used as conventional semiconductor non-volatile memories, and have been put into practical use as EFROM (ultraviolet erasable non-volatile memory), EEPROM (electrically rewritable non-volatile memory), etc.; Problems include the high voltage of about 20 V and the long rewriting time. Therefore, recently, non-volatile memories have been proposed that use ferroelectric films whose polarization can be electrically reversed, and whose writing and reading times are essentially the same, and whose polarization is maintained even when the power is turned off. There is. Regarding non-volatile memories using such ferroelectric films, for example, there are structures in which capacitors made of ferroelectric films are integrated on a silicon substrate as in US Pat. No. 4,149,302, and MIS type transistors as in US Pat. No. 3,832,700. A nonvolatile memory has been proposed in which a ferroelectric film is disposed on the gate portion of a MOS type semiconductor device, or a structure in which a ferroelectric film is stacked on a MOS type semiconductor device as in IEDM; 87pp, 850-851. Conventionally, these manufacturing methods include, for example, as shown in FIG. 2, a field oxide film 12 is formed on a silicon substrate 11 on which semiconductor elements such as MOS transistors are formed.
The lower electrode 18 is formed by growing a conductive film such as Po1y-3i through the first interlayer insulating film 17 and patterning it with a dry etcher using a fluorocarbon gas such as CF4. Here, 13 is a gate insulating film, 14 is a gate electrode using Poly-3t, etc.
5.16 is an N-type impurity layer such as source and drain (
Figure 2(a)). Next, PbTi is used as the ferroelectric film 19.
O3 and PZT (PbTi03/PbZ r03),
PLZT (La/PbT t.
3/PbZr03)等を約5000人スパッタリングし
た後熱処理し結晶性の改善を行なってから、HCI、H
FとNH4Fの混合液で前記強誘電体膜19を所定形状
にエツチングしである。次に、A1合金をスパッタリン
グ、パターニングし、上部電極20とする(第2図(b
))。続いて第2の層間絶縁膜21としてシリコン酸化
膜を気相成長し、コンタクトホール開孔後、A1合金に
よる金属配線22を施しである(第2図(C))。3/PbZr03) etc., heat treatment is performed to improve crystallinity, and then HCI, H
The ferroelectric film 19 is etched into a predetermined shape using a mixed solution of F and NH4F. Next, the A1 alloy is sputtered and patterned to form the upper electrode 20 (Fig. 2(b)
)). Subsequently, a silicon oxide film is grown in a vapor phase as a second interlayer insulating film 21, and after contact holes are formed, metal interconnections 22 made of A1 alloy are formed (FIG. 2(C)).
しかしながら従来技術では、強誘電体膜19や上部、下
部電極18.20は各々別の工程でパタニングされてい
る為、寸法精度、合わせ精度の再現性、工程数に問題が
あった。又、パターニングを繰り返すごとに第1の層間
絶縁膜17が薄くなってしまうことや、コンタクトホー
ルを開孔する時に上部電極上とシリコン基板の不純物層
上の層間絶縁膜の厚みが異なるため、上部電極がエツチ
ングされてしまうことがあり、集積化、生産性の面で問
題となっていた。However, in the conventional technique, the ferroelectric film 19 and the upper and lower electrodes 18 and 20 are patterned in separate steps, which causes problems in dimensional accuracy, reproducibility of alignment accuracy, and number of steps. Furthermore, each time patterning is repeated, the first interlayer insulating film 17 becomes thinner, and when forming a contact hole, the thickness of the interlayer insulating film on the upper electrode is different from that on the impurity layer of the silicon substrate. The electrodes are sometimes etched, which poses problems in terms of integration and productivity.
しかるに本発明は、かかる問題点を解決するもので、低
コストで製造容易な微細半導体装置、特に強誘電体膜を
用いた不揮発性メモリの実用化と安定供給を行なうこと
を目的としたものである。However, the present invention is intended to solve these problems, and is aimed at the practical application and stable supply of low-cost, easy-to-manufacture microscopic semiconductor devices, especially nonvolatile memories using ferroelectric films. be.
本発明の半導体装置の製造方法は、強誘電体膜が能動素
子の形成された同一半導体基板上に集積された半導体装
置に於いて、前記強誘電体膜を挟む電極の少なくともい
ずれかは、該強誘電体膜と同一マスクパターンにより形
成されていることを特徴とする。In the semiconductor device manufacturing method of the present invention, in a semiconductor device in which a ferroelectric film is integrated on the same semiconductor substrate on which active elements are formed, at least one of the electrodes sandwiching the ferroelectric film is It is characterized by being formed using the same mask pattern as the ferroelectric film.
本発明の半導体装置製造方法の一実施例を、第1図に基
づいて詳細に説明する。例えばP型シリコン基板11上
に選択酸化によってフィールド酸化膜12を成長した後
、200人のシリコン酸化膜でなるゲート絶縁膜13と
、例えばリンドープしたPo1y−Siでなるゲート電
極14を形成し、これらと自己整合的にソース、ドレイ
ン等のN型不純物層15.16形成のためリンを8×1
0”Cm−2でイオン注入しである。これに第1の層間
絶縁膜17として気相成長酸化や平坦化のための塗布ガ
ラスをコートし、コンタクトホールを開孔しである(第
1図(a))。次に、約3500AのPo1y−3tを
気相成長しリン等の不純物をドーピング後、強誘電体膜
19としてPbTiO3を約5000人をスパッタして
から、約650℃で熱処理し結晶性改善を行ない、再度
P。An embodiment of the semiconductor device manufacturing method of the present invention will be described in detail with reference to FIG. For example, after growing a field oxide film 12 on a P-type silicon substrate 11 by selective oxidation, a gate insulating film 13 made of a 200-layer silicon oxide film and a gate electrode 14 made of, for example, phosphorus-doped Po1y-Si are formed. In order to form N-type impurity layers 15.16 such as source and drain in a self-aligned manner, 8×1
Ion implantation was performed at 0"Cm-2. This was then coated with vapor phase growth oxidation and coated glass for planarization as the first interlayer insulating film 17, and contact holes were opened (see Fig. 1). (a)) Next, Poly-3t of about 3500A is grown in vapor phase, doped with impurities such as phosphorus, sputtered with about 5000 PbTiO3 as the ferroelectric film 19, and then heat-treated at about 650°C. After improving the crystallinity, P again.
1y−8iを気相成長させ不純物をドーピングする。こ
こで強誘電体膜の熱処理は、上部電極となるPo1y−
5tの成長時に、同一炉で行なっても良い。次に、フォ
トレジスト30をマスクにしてECR(m子すイクロト
ロン共鳴)型ドライエツチャーでC2C12Fa 、S
F6とA「ガス等を用いて、前記強誘電体膜19と上部
、下部電極20.18となるPo1y−3iを所定形状
に、同一チャンバー内で連続してドライエツチングした
(第1図(b))。続いてフォトレジスト30を剥離後
、シリコン酸化膜を気相成長させた第2の層間絶縁膜2
1と第1の層間絶縁膜17等にコンタクトホールを開孔
し、約1.0μmの厚みでスパッタリングしたA1合金
膜をフォトエツチングして金属配線22とした(第1図
(C))。その後、プラズマ成長によるシリコン窒化膜
を積層させ表面保護膜とし、更に外部電極取り出し用の
パッドを開孔した。1y-8i is grown in a vapor phase and doped with impurities. Here, the heat treatment of the ferroelectric film is performed by
The growth of 5t may be performed in the same furnace. Next, using the photoresist 30 as a mask, C2C12Fa, S
F6 and A: Using a gas or the like, the ferroelectric film 19 and the Po1y-3i, which will become the upper and lower electrodes 20.18, were continuously dry-etched in the same chamber into a predetermined shape (see Fig. 1(b)). )) Subsequently, after removing the photoresist 30, a second interlayer insulating film 2 is formed by growing a silicon oxide film in a vapor phase.
A contact hole was formed in the first interlayer insulating film 17 and the like, and the sputtered A1 alloy film with a thickness of about 1.0 μm was photoetched to form a metal wiring 22 (FIG. 1(C)). Thereafter, a silicon nitride film was deposited by plasma growth to serve as a surface protective film, and pads for taking out external electrodes were opened.
このようにしてなる半導体装置は、強誘電体膜と下部あ
るいは上部電極がほぼ自己整合的に形成されるので、寸
法の制御が容易になり従来に比べ集積化が出来た。又フ
ォトエチング回数が減り、工数低減と共に層間絶縁膜の
厚みが確保出来た。In the semiconductor device constructed in this manner, the ferroelectric film and the lower or upper electrode are formed in a nearly self-aligned manner, so that the dimensions can be easily controlled and integrated more easily than in the past. In addition, the number of photo-etching steps was reduced, and the number of man-hours was reduced and the thickness of the interlayer insulating film was ensured.
更にキャパシタと不純物層の接続が下部電極と直接取れ
、ホール開孔時に上部電極がエツチングで除去されるこ
とがなくなった。尚、強誘電体膜19としてPbTiO
31:替エテ、PZT、PLZTを用いたものも実施し
同様な効果が得られた。Furthermore, the connection between the capacitor and the impurity layer can be made directly with the lower electrode, and the upper electrode is no longer removed by etching when holes are opened. Note that PbTiO is used as the ferroelectric film 19.
31: Similar effects were obtained by using alternative esters, PZT, and PLZT.
又、強誘電体膜と上、下部電極の3層を同時エツチング
する他に、強誘電体膜と下部電極、強誘電体膜と上部電
極のそれぞれを同時エツチングしても良い。一方、上部
、下部電極としてPo1y−Siを用いたが、この他に
a−3iあるいはTi1W、Mo5Ta、P tのよう
な高融点金属やシリサイドもしくは窒化物、これらの化
合物の単層、積層構造でも応用可能である。更に本発明
は、強誘電体膜のメモリ構造がMO3ICを含むシリコ
ン基板上に形成された場合について説明したが、CMO
3,バイポーラあるいはこれらの複合素子のICtR造
、又基板はGaAsなどの化合物半導体を用いても良い
。In addition to simultaneously etching the three layers of the ferroelectric film and the upper and lower electrodes, the ferroelectric film and the lower electrode, and the ferroelectric film and the upper electrode may be etched simultaneously. On the other hand, although Po1y-Si was used for the upper and lower electrodes, other materials such as a-3i, high melting point metals such as Ti1W, Mo5Ta, and Pt, silicides, nitrides, and single-layer or multilayer structures of these compounds may also be used. It is applicable. Furthermore, although the present invention has been described with reference to a case where a memory structure of a ferroelectric film is formed on a silicon substrate including an MO3IC, a CMO
3. ICtR structure of bipolar or a composite element thereof, or a compound semiconductor such as GaAs may be used for the substrate.
以上の様に本発明によれば、強誘電体膜と上部あるいは
、下部電極を同時エツチングすることにより、集積化、
生産性に優れた半導体装置、特に不揮発メモリの実用化
と安定供給に寄与出来るものである。As described above, according to the present invention, by simultaneously etching the ferroelectric film and the upper or lower electrode, integration and
This can contribute to the practical application and stable supply of highly productive semiconductor devices, especially nonvolatile memories.
第1図(a)〜(c)は、本発明による半導体装置製造
方法の実施例を示す概略断面図である。
第2図(a)〜(c)は、従来の半導体装置製造方法に
係わる概略断面図である。
11・・・・シリコン基板
12・・・・フィールド酸化膜
13・・・・ゲート絶縁膜
14・・・・ゲート電極
15.16・不純物層
18・・
20・番
21 ・ ・
22 ・ ・
30 ・ ・
第1の層間絶縁膜
下部電極
強誘電体膜
上部電極
第2の層間絶縁膜
金属配線
フォトレジスト
以上
出願人 セイコーエプソン株式会社FIGS. 1(a) to 1(c) are schematic cross-sectional views showing an embodiment of a method for manufacturing a semiconductor device according to the present invention. FIGS. 2(a) to 2(c) are schematic cross-sectional views of a conventional semiconductor device manufacturing method. 11...Silicon substrate 12...Field oxide film 13...Gate insulating film 14...Gate electrode 15.16/Impurity layer 18...20/No. 21...22...30... - First interlayer insulating film lower electrode Ferroelectric film upper electrode Second interlayer insulating film Metal wiring photoresist Applicant: Seiko Epson Corporation
Claims (2)
板上に集積された半導体装置に於いて、前記強誘電体膜
を挟む電極の少なくともいずれかは、該強誘電体膜と同
一マスクパターンにより形成されていることを特徴とす
る半導体装置の製造方法。(1) In a semiconductor device in which a ferroelectric film is integrated on the same semiconductor substrate on which active elements are formed, at least one of the electrodes sandwiching the ferroelectric film has the same mask as the ferroelectric film. A method for manufacturing a semiconductor device, characterized in that it is formed by a pattern.
かのエッチングを、同一の装置内で引き続いて行なうこ
とを特徴とする請求項1記載の半導体装置の製造方法。(2) The method of manufacturing a semiconductor device according to claim 1, wherein etching of at least one of the ferroelectric film and the electrodes sandwiching the ferroelectric film is performed in the same apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1109642A JPH02288368A (en) | 1989-04-28 | 1989-04-28 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1109642A JPH02288368A (en) | 1989-04-28 | 1989-04-28 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02288368A true JPH02288368A (en) | 1990-11-28 |
Family
ID=14515457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1109642A Pending JPH02288368A (en) | 1989-04-28 | 1989-04-28 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02288368A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03218680A (en) * | 1990-01-24 | 1991-09-26 | Toshiba Corp | Semiconductor memory device and manufacture thereof |
US6097051A (en) * | 1995-12-05 | 2000-08-01 | Hitachi, Ltd. | Semiconductor device and method of fabricating |
US6432767B2 (en) | 1995-12-05 | 2002-08-13 | Hitachi, Ltd. | Method of fabricating semiconductor device |
US6822276B1 (en) | 1998-09-10 | 2004-11-23 | Renesas Technology Corp. | Memory structure with a ferroelectric capacitor |
-
1989
- 1989-04-28 JP JP1109642A patent/JPH02288368A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03218680A (en) * | 1990-01-24 | 1991-09-26 | Toshiba Corp | Semiconductor memory device and manufacture thereof |
US6097051A (en) * | 1995-12-05 | 2000-08-01 | Hitachi, Ltd. | Semiconductor device and method of fabricating |
US6338994B1 (en) | 1995-12-05 | 2002-01-15 | Hitachi, Ltd. | Semiconductor device and method of fabricating thereof |
US6432767B2 (en) | 1995-12-05 | 2002-08-13 | Hitachi, Ltd. | Method of fabricating semiconductor device |
US6822276B1 (en) | 1998-09-10 | 2004-11-23 | Renesas Technology Corp. | Memory structure with a ferroelectric capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6376325B1 (en) | Method for fabricating a ferroelectric device | |
JP2573384B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JP2001035841A (en) | Wet etching process of perovskite ferrodielectric material and solution | |
JPH0437170A (en) | Manufacture of semiconductor device | |
JP2002373974A (en) | Ferroelectric memory cell and its manufacturing method | |
US6387762B2 (en) | Method of manufacturing ferroelectric memory device | |
US6503792B2 (en) | Method for fabricating a patterned metal-oxide-containing layer | |
JPH10270667A (en) | Manufacture of capacitor electrode consisting of platinum metal | |
US6146963A (en) | Methods for forming ferroelectric capacitors having a bottom electrode with decreased leakage current | |
JPH02288368A (en) | Manufacture of semiconductor device | |
US20010051381A1 (en) | Method for manufacturing a ferroelectric memory | |
JPH02232973A (en) | Semiconductor device | |
JPH02208978A (en) | Semiconductor device | |
JPH02288367A (en) | Semiconductor device | |
JP4289843B2 (en) | Capacitor manufacturing method for semiconductor device | |
JPH0350728A (en) | Manufacture of semiconductor device | |
JP4115779B2 (en) | Manufacturing method of semiconductor device | |
JP2002373975A (en) | Method for manufacturing ferroelectric memory cell and ferroelectric memory cell | |
US20010023951A1 (en) | Method of manufacturing a ferroelectric capacitor | |
JP3144405B2 (en) | Method for manufacturing semiconductor memory device | |
JPH03259566A (en) | Manufacture of memory device | |
WO1992002048A1 (en) | Method of manufacturing semiconductor device | |
JP4128507B2 (en) | Ashing method and semiconductor device manufacturing method using the same | |
JP2018046261A (en) | Manufacturing method of ferroelectric memory | |
KR0176161B1 (en) | Fabricating method of non-volatile memory |