JPH02288161A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH02288161A
JPH02288161A JP1110337A JP11033789A JPH02288161A JP H02288161 A JPH02288161 A JP H02288161A JP 1110337 A JP1110337 A JP 1110337A JP 11033789 A JP11033789 A JP 11033789A JP H02288161 A JPH02288161 A JP H02288161A
Authority
JP
Japan
Prior art keywords
fuel
solid electrolyte
electrode
oxygen
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1110337A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamanouchi
山之内 宏
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1110337A priority Critical patent/JPH02288161A/en
Publication of JPH02288161A publication Critical patent/JPH02288161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce internal resistance and to increase power generation capacity by filling a gas permeable conductive material in at least one gas passage. CONSTITUTION:Oxygen electrodes 2 are, respectively, formed in the inner circumferences of solid electrolytes 1 and fuel electrodes 3 are respectively, formed in their greater parts of the outer circumferences. Inter-connectors 4 electrically being in connection with the oxygen electrodes 2 are, respectively, projected to the outside to connect two or more fuel cells in series by sequentially being in contact with the fuel electrodes 3 of other fuel cells. Gas permeable conductive material 8 are, respectively, filled in oxidizing gas passages 6 inside the oxygen electrodes 2. Current flows from the fuel electrodes 3 to the inter- connectors 4 through the oxygen electrodes 2 and the conductive materials 8, respectively. Since electric conductivity of the conductive materials 8 are high, electric conductivity of the cells are increased as a whole. The internal resistance in each unit cell is reduced and powder generating capacity is increased.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は固体電解質を挟んで多孔質の燃料電極と酸素
電極とを配置し、固体電解質を挟んだ燃料ガスと酸化ガ
スとの電気化学的な反応によって電力を生じさせる燃料
電池に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention arranges a porous fuel electrode and an oxygen electrode with a solid electrolyte sandwiched between them, and performs an electrochemical reaction between a fuel gas and an oxidizing gas with the solid electrolyte sandwiched therebetween. This invention relates to fuel cells that generate electric power.

従来の技術 固体電解質燃料電池は、周知のように、イツトリア安定
化ジルコニアなどの物質が高温状態でイオン導電性を示
すことを利用し、その固体電解質の両側での酸素濃度の
相違による酸素イオンの移動に伴う電気化学的反応によ
って起電力を得るものである。これを原理的に図示すれ
ば第3図ないし第5図の通りであり、第3図に示すもの
は所謂円筒型の燃料電池である。すなわち円筒状をなす
固体電解質1の内周側に多孔質の酸素電極2が形成され
、かつその固体電解質1の外周側に多孔質の燃料電極3
が形成され、また隣接する単電池同士を直列に接続する
ために、酸素電極2に導通させたインターコネクタ4が
燃料電極3に対して絶縁した状態で外部に突設され、さ
らにそのインターコネクタ4と他の単電池の燃料電極3
とがN1フェルトなど導電材料5を介して導通されてい
る。
As is well known, conventional solid electrolyte fuel cells utilize the fact that materials such as yttria-stabilized zirconia exhibit ionic conductivity at high temperatures. Electromotive force is obtained through electrochemical reactions accompanying movement. This is illustrated in principle as shown in FIGS. 3 to 5, and the one shown in FIG. 3 is a so-called cylindrical fuel cell. That is, a porous oxygen electrode 2 is formed on the inner circumferential side of a cylindrical solid electrolyte 1, and a porous fuel electrode 3 is formed on the outer circumferential side of the solid electrolyte 1.
is formed, and in order to connect adjacent cells in series, an interconnector 4 electrically connected to the oxygen electrode 2 is provided protruding outside while insulated from the fuel electrode 3. and other cell fuel electrodes 3
and are electrically connected through a conductive material 5 such as N1 felt.

モしてM素電極2の内周側が空気や酸素などの酸化ガス
流路6とされ、また燃料Ta #A3の外周側が水素ガ
スや一酸化炭素ガスなどの燃料ガスを流す燃料ガス流路
7とされている。
The inner circumferential side of the M elementary electrode 2 is used as an oxidizing gas flow path 6 for air, oxygen, etc., and the outer circumferential side of the fuel Ta #A3 is used as a fuel gas flow path 7 for flowing fuel gas such as hydrogen gas or carbon monoxide gas. It is said that

また第4図に示すものは所謂平板型の燃料電池であり、
固体電解質11は断面が波形などの凹凸状をなすよう形
成され、その固体電解質11の第4図での下側に酸素電
極12が形成され、かつ上側に燃料電極13が形成され
、またこれらが板状のインターコネクタ14によって挟
み付けられて多段に積層され、したがってインターコネ
クタ14を介して上下の燃料電極13と酸素電極12と
が導通されて直列に接続されている。そしてM素電極1
2によって包囲された部分が酸化ガス流路16とされ、
また燃料電極13によって包囲された部分が燃料ガス流
路17とされている。
Furthermore, the one shown in Fig. 4 is a so-called flat plate type fuel cell.
The solid electrolyte 11 is formed to have an uneven cross section such as a waveform, and an oxygen electrode 12 is formed on the lower side of the solid electrolyte 11 in FIG. 4, and a fuel electrode 13 is formed on the upper side. The fuel electrodes 13 and the oxygen electrodes 12 are sandwiched by plate-shaped interconnectors 14 and stacked in multiple stages, so that the upper and lower fuel electrodes 13 and the oxygen electrodes 12 are electrically connected via the interconnectors 14 and connected in series. And M elementary electrode 1
The portion surrounded by 2 is an oxidizing gas flow path 16,
Further, the portion surrounded by the fuel electrode 13 is defined as a fuel gas flow path 17 .

さらに第5図に示すものは平板型の燃料電池の他の例を
示すもので、固体電解質21およびその両側に配置され
た酸素電極22ならびに燃料電極23はそれぞれ平板状
に形成されており、Fj素電極22と燃料電極23との
固体電解質21とは反対側の部分に矩形状の切欠部が形
成されており、そして上記の構成の一体化された固体電
解質21および酸素電極22ならびに燃料電極23を平
板状のインターコネクタ24を挟んで順次積層すること
により前記切欠部が中空通路され、酸素電極22側の矩
形状の中空通路が酸化ガス流路26とされ、また燃料電
極23側の矩形の中空通路が燃料ガス通路27とされて
いる。
Furthermore, the one shown in FIG. 5 shows another example of a flat plate type fuel cell, in which the solid electrolyte 21 and the oxygen electrodes 22 and fuel electrodes 23 arranged on both sides thereof are each formed in a flat plate shape, and Fj A rectangular notch is formed in the portion of the elementary electrode 22 and the fuel electrode 23 on the opposite side from the solid electrolyte 21, and the solid electrolyte 21, oxygen electrode 22, and fuel electrode 23 having the above-described structure are integrated. are sequentially stacked with a flat plate-like interconnector 24 in between, so that the notch becomes a hollow passage, the rectangular hollow passage on the oxygen electrode 22 side becomes the oxidizing gas flow passage 26, and the rectangular hollow passage on the fuel electrode 23 side becomes a hollow passage. The hollow passage serves as a fuel gas passage 27.

したがって上述した各燃料電池では酸化ガス通路6.1
6.26に例えば空気を流すとともに、燃料ガス通路7
.17.27に例えば水素ガスを流せば、固体電解質1
,11.21を挟んだ両側での酸素濃度の相違により、
空気中の酸素と水素ガスとの間で電気化学的な反応が生
じ、すなわち酸素イオンが固体電解質1,11.21を
通って水素と反応し、それに伴って起電力が生じる。
Therefore, in each of the above-mentioned fuel cells, the oxidizing gas passage 6.1
For example, let air flow through 6.26, and the fuel gas passage 7
.. For example, if hydrogen gas is flowed through 17.27, solid electrolyte 1
,11.Due to the difference in oxygen concentration on both sides of 21,
An electrochemical reaction occurs between oxygen in the air and hydrogen gas, that is, oxygen ions react with hydrogen through the solid electrolyte 1, 11.21, and an electromotive force is generated accordingly.

ところで各単電池で生じる起電力の理論値は1ボルトを
若干上回る程度であり、そのため第3図に示す構成では
、インターコネクタ4および導電材料5を介して複数の
単電池を直列に接続し、また第4図および第5図にそれ
ぞれ示す構成では、平板状のインターコネクタ14.2
4を介して複数の単電池を直列に接続することにより、
所要の電圧を得ている。また第3図では特には図示して
いないが、複数の単電池を並列に接続することにより所
要の電流を得、また第4図および第5図にそれぞれ示す
燃料電池では、複数の単電池が並列に接続された構成と
なっている。
By the way, the theoretical value of the electromotive force generated in each unit cell is slightly more than 1 volt, so in the configuration shown in FIG. 3, a plurality of unit cells are connected in series via an interconnector 4 and a conductive material 5, Furthermore, in the configurations shown in FIGS. 4 and 5, the flat interconnector 14.2
By connecting multiple cells in series through 4,
Obtaining the required voltage. Although not specifically shown in Figure 3, the required current is obtained by connecting multiple single cells in parallel, and in the fuel cells shown in Figures 4 and 5, multiple single cells are connected in parallel. The configuration is connected in parallel.

発明が解決しようとする課題 しかるに得ることのできる電力を可及的に高めるために
はそれぞれの単電池での起電力を高くすればよいのであ
るが、各単電池で得られる起電力には限度があり、また
取出し可能な電力を低減させる大きな要因として内部抵
抗があり、この内部抵抗を少なくすることにより取出し
得る電力を高めることができる。しかしながら前述した
ように各単電池を直並列に接続した場合には、電流は第
3図ないし第5図にそれぞれ矢印で示すように、インタ
ーコネクタ4,14.24から酸素電極2゜12.22
および固体電解質1.11.21ならびに燃料電極3,
13.23を通って流れ、その電流流路は複雑に曲り、
かつ長くなる。また各電極は必ずしも充分広い断面積を
持ったものではないうえ、耐熱性、耐還元性、耐酸化性
などの他の要因によって素材が選定され、その結果、各
電極や固体電解質での抵抗が無視し得ないものとなり発
電電力を増大させるためには更に改良すべき余地があっ
た。
Problems to be Solved by the Invention However, in order to increase the power that can be obtained as much as possible, it is sufficient to increase the electromotive force of each cell, but there is a limit to the electromotive force that can be obtained from each cell. Furthermore, internal resistance is a major factor in reducing the extractable power, and by reducing this internal resistance, the extractable power can be increased. However, when the individual cells are connected in series and parallel as described above, the current flows from the interconnector 4, 14.24 to the oxygen electrode 2.
and solid electrolyte 1.11.21 and fuel electrode 3,
13.23, the current flow path is complicatedly curved,
And longer. Furthermore, each electrode does not necessarily have a sufficiently wide cross-sectional area, and materials are selected based on other factors such as heat resistance, reduction resistance, and oxidation resistance, and as a result, the resistance of each electrode and solid electrolyte increases. This could not be ignored, and there was room for further improvement in order to increase the generated power.

この発明は上述した事情を背景としてなされたもので、
内部抵抗を低減させて発電電力の増大を図ることのでき
る固体電解質燃料電池を提供することを目的とするもの
である。
This invention was made against the background of the above-mentioned circumstances.
The object of the present invention is to provide a solid electrolyte fuel cell that can reduce internal resistance and increase generated power.

課題を解決するための手段 この発明′は、上記の目的を達成するために、固体電解
質を挟んで燃料電極と酸素電極とを設けるとともに、燃
料電極側に燃料ガスを流す燃料ガス流路を形成し、かつ
酸素電極側に酸素を含む酸化ガスを流す酸化ガス流路を
形成した固体電解質燃料電池において、燃料ガス流路と
酸化ガス流路との少なくともいずれか一方に、通気性の
ある4電性材料を充填したことを特徴とするものである
Means for Solving the Problems In order to achieve the above object, the present invention provides a fuel electrode and an oxygen electrode with a solid electrolyte sandwiched between them, and forms a fuel gas flow path for flowing fuel gas to the fuel electrode side. In a solid electrolyte fuel cell in which an oxidizing gas channel is formed to flow an oxidizing gas containing oxygen to the oxygen electrode side, a ventilated four-electrode is provided in at least one of the fuel gas channel and the oxidizing gas channel. It is characterized by being filled with a flexible material.

またこの発明においては、前記導電性材料としてNiも
しくはその合金を含むフェルト材とし、こレヲ燃料ガス
流路に充填した構成とすることができる。
Further, in the present invention, a felt material containing Ni or an alloy thereof may be used as the conductive material, and the fuel gas flow path may be filled with this felt material.

作     用 この発明の燃料電池においても、固体電解質を介して酸
化ガスと燃料ガスとの間で電気化学的な反応が生じ、そ
れに伴って酸素電極が陽極、燃料電極が陰極となるよう
起電力が生じ、そしてその電流は各電極を通って流れる
。またこの燃料電池を直列に接続する場合には、インタ
ーコネクタを介在させて一方の電池の酸素電極を他方の
電池の燃料電極に導通させることになり、その場合、こ
の発明の燃料電池においては、少なくともいずれか一方
のガス流路中に通気性のある導電性を充填しであるため
に電流は電極を構成する材料のみならず、充填された通
気性のある導電性材料をも流路として流れ、その結果、
電流流路が短くかつ広い面積となるので、燃料電池の全
体としての内部抵抗が低減される。
Function: Also in the fuel cell of the present invention, an electrochemical reaction occurs between the oxidizing gas and the fuel gas via the solid electrolyte, and an electromotive force is generated so that the oxygen electrode becomes the anode and the fuel electrode becomes the cathode. and the current flows through each electrode. In addition, when these fuel cells are connected in series, an interconnector is used to connect the oxygen electrode of one cell to the fuel electrode of the other cell. In this case, in the fuel cell of the present invention, Because at least one of the gas flow paths is filled with a conductive material that is breathable, the current flows not only through the material that makes up the electrode, but also through the filled conductive material that has air permeability. ,the result,
Since the current flow path is short and has a large area, the internal resistance of the fuel cell as a whole is reduced.

実  施  例 つぎにこの発明を実施例に基づいて説明する。Example Next, the present invention will be explained based on examples.

第1図はこの発明の一実施例を示す模式図であって、円
筒状の自己支持型燃料電池を示すものである。すなわち
第1図において符号1は固体電解質を示し、その内周側
に酸素電極2が形成されかつ固体電解質1の外周面の大
半に燃料電極3が形成されている。また酸素電極2に導
通したインターコネクタ4が外部に突出して形成され、
このインターコネクタ4を他の燃料電池の燃料電極3に
接触させることにより複数の燃料電池が直列に接続され
ている。そして酸素電極2の内側の中空部分が酸化ガス
流路6となっており、その内部に通気性のある導電性材
料8が充填されている。この導電性材料8としては、l
a Mn 03やlaC。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and shows a cylindrical self-supporting fuel cell. That is, in FIG. 1, reference numeral 1 indicates a solid electrolyte, an oxygen electrode 2 is formed on the inner peripheral side thereof, and a fuel electrode 3 is formed on most of the outer peripheral surface of the solid electrolyte 1. Further, an interconnector 4 electrically connected to the oxygen electrode 2 is formed to protrude to the outside,
A plurality of fuel cells are connected in series by bringing this interconnector 4 into contact with the fuel electrodes 3 of other fuel cells. A hollow portion inside the oxygen electrode 2 serves as an oxidizing gas flow path 6, and the inside thereof is filled with an air-permeable conductive material 8. As this conductive material 8, l
a Mn 03 and laC.

O3等を使用することができる。そして前記燃料電極3
の外周側が水素ガスなどの燃料ガスを流す燃料ガス流路
7とされている。したがって第1図に示す燃料電池にお
いては酸化ガス流路に酸素を含む空気や純酸素ガスなど
の酸化ガスを流し、また燃料ガス流路7に水素ガスや一
酸化炭素ガスあるいはメタンなどの燃料ガスを流すこと
により固体電解質1を介して酸化反応が生じ、それに伴
って起電力が生じる。各燃料電池を上述したように直列
に接続しであることにより、一方の電池の酸素電極2か
ら他の電池の燃料電極3に電流が流れるが、各燃料電池
において燃料電極3からインターコネクタ4への電流の
流れは酸素電極2ならびに酸化ガス流路6内に充填した
導電性材料8を介して行なわれ、その結果、電流が自由
な流路を通って流れるうえに、導電性材料8の導電率が
高いので全体としての導電率が高くなり、yA言すれば
燃料電池の内部抵抗が低減される。
O3 etc. can be used. and the fuel electrode 3
The outer circumferential side of the fuel gas passage 7 is a fuel gas passage 7 through which fuel gas such as hydrogen gas flows. Therefore, in the fuel cell shown in FIG. 1, an oxidizing gas such as air containing oxygen or pure oxygen gas is passed through the oxidizing gas flow path, and a fuel gas such as hydrogen gas, carbon monoxide gas, or methane is flowing through the fuel gas flow path 7. By flowing the solid electrolyte 1, an oxidation reaction occurs, and an electromotive force is generated accordingly. By connecting each fuel cell in series as described above, current flows from the oxygen electrode 2 of one cell to the fuel electrode 3 of the other cell, but in each fuel cell, a current flows from the fuel electrode 3 to the interconnector 4. The current flow takes place through the conductive material 8 filled in the oxygen electrode 2 and the oxidizing gas flow path 6, so that the current flows through the free flow path and the conductivity of the conductive material 8 Since the rate is high, the overall conductivity is high, and in terms of yA, the internal resistance of the fuel cell is reduced.

第2図はこの発明の他の実施例を示すものであって、こ
こに示す燃料電池は前述した第5図に示す平板型の燃料
電池にこの発明を適用したものである。すなわち第2図
において、各参照符号は第5図を参照して説明した部材
と同一の部材を示しており、その構成のうち酸化ガス流
路26と燃料ガス流路27とのそれぞれには通気性のあ
る4電性材料28が充填されている。これらの導電性材
料28のうち特に燃料ガス流路27に充填された4雷性
材料28はN:やその合金を含む通気性のあるフェルト
材であることが好ましい。したがって第2図に示す構成
では、直列に接続されたI11電池を通る電流の流れは
、各電極材料に限定されず、各ガス流路26.27内の
導電性材料28をも流路として電流が流れるため、全体
としての導電率が高く、その結果、燃料電池としての内
部抵抗が低減される。そして特に通気性のある導電性材
料28としてNiもしくはその合金を含むものを燃料ガ
ス流路27内に充填した構成とすれば、その導電性材料
28が、メタンな、どの未改質ガスを一酸化炭素と水素
とに改質する触媒としても作用するために、使用可能な
燃料ガスの種類が多様化し、燃料電池の有用性が向上す
る。
FIG. 2 shows another embodiment of the present invention, and the fuel cell shown here is an application of the present invention to the above-described flat plate type fuel cell shown in FIG. That is, in FIG. 2, each reference numeral indicates the same member as the member explained with reference to FIG. It is filled with a four-electroconductive material 28. Among these conductive materials 28, it is preferable that the conductive material 28 filled in the fuel gas flow path 27 is an air-permeable felt material containing N: or an alloy thereof. Therefore, in the configuration shown in FIG. 2, the flow of current through the I11 cells connected in series is not limited to each electrode material, but also through the conductive material 28 in each gas flow path 26, 27 as a flow path for current flow. flows, the overall electrical conductivity is high, and as a result, the internal resistance of the fuel cell is reduced. If the fuel gas passage 27 is filled with a particularly breathable conductive material 28 containing Ni or its alloy, the conductive material 28 will absorb unreformed gas such as methane. Since it also acts as a catalyst for reforming carbon oxide and hydrogen, the types of usable fuel gas are diversified and the usefulness of fuel cells is improved.

なお、上記の各実施例では、第3図および第5図に示す
従来の燃料電池にこの発明を適用した例について説明し
たが、この発明は第4図に示す構成の平板型燃料電池に
適用することもできる。
In each of the above embodiments, an example in which the present invention is applied to the conventional fuel cell shown in FIG. 3 and FIG. You can also.

発明の効果 以上の説明から明らかなようにこの発明の燃料電池によ
れば、酸化ガス流路あるいは燃料ガス流路の内部も電流
流路となるために、各単電池での内部抵抗が低減され、
その結果、発電容量の増大を図ることができる。また特
に通気性のある導電性材料としてNiもしくはその合金
を含むものを使用してこれを燃料ガス流路に充填すれば
、燃料ガスの改質を行なう触媒として導電性材料が作用
するため、燃料ガスの内部改質を行なうことのできる燃
料電池を得ることができる。
Effects of the Invention As is clear from the above explanation, according to the fuel cell of the present invention, the internal resistance of each unit cell is reduced because the inside of the oxidizing gas flow path or the fuel gas flow path also serves as a current flow path. ,
As a result, it is possible to increase the power generation capacity. In addition, if a gas-permeable conductive material containing Ni or its alloy is used and filled in the fuel gas flow path, the conductive material acts as a catalyst for reforming the fuel gas. A fuel cell capable of internally reforming gas can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を模式的に示す図、第2図
はこの発明の他の実施例を模式的に示す図、第3図は従
来の円筒型の固体電解質燃料電池を模式的に示す図、第
4図および第5図のそれぞれは従来の平板型固体電解質
燃料電池を模式的に示す図である。 1.21・・・固体電解質、 2,22・・・酸素電極
、3.23・・・燃料電極、 6,26・・・酸化ガス
流路、 7.27・・・燃料ガス流路、 8.28・・
・導電性材料。
Fig. 1 is a diagram schematically showing one embodiment of the present invention, Fig. 2 is a diagram schematically showing another embodiment of the invention, and Fig. 3 is a diagram schematically showing a conventional cylindrical solid electrolyte fuel cell. 4 and 5 are diagrams each schematically showing a conventional flat plate solid electrolyte fuel cell. 1.21... Solid electrolyte, 2,22... Oxygen electrode, 3.23... Fuel electrode, 6,26... Oxidizing gas flow path, 7.27... Fuel gas flow path, 8 .28...
・Conductive material.

Claims (2)

【特許請求の範囲】[Claims] (1)固体電解質を挟んで燃料電極と酸素電極とを設け
るとともに、燃料電極側に燃料ガスを流す燃料ガス流路
を形成し、かつ酸素電極側に酸素を含む酸化ガスを流す
酸化ガス流路を形成した固体電解質燃料電池において、 前記燃料ガス流路と酸化ガス流路との少なくともいずれ
か一方に、通気性のある導電性材料を充填したことを特
徴とする固体電解質燃料電池。
(1) A fuel electrode and an oxygen electrode are provided with a solid electrolyte sandwiched between them, and a fuel gas flow path is formed to flow fuel gas to the fuel electrode side, and an oxidizing gas flow path to flow an oxidizing gas containing oxygen to the oxygen electrode side. What is claimed is: 1. A solid electrolyte fuel cell in which at least one of the fuel gas flow path and the oxidizing gas flow path is filled with an air-permeable conductive material.
(2)前記燃料ガス流路に、前記導電性材料としてNi
もしくはその合金を含むフェルト材を充填したことを特
徴とする請求項1に記載の固体電解質燃料電池。
(2) Ni is used as the conductive material in the fuel gas flow path.
2. The solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte fuel cell is filled with a felt material containing the solid electrolyte fuel cell or an alloy thereof.
JP1110337A 1989-04-28 1989-04-28 Solid electrolyte fuel cell Pending JPH02288161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110337A JPH02288161A (en) 1989-04-28 1989-04-28 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110337A JPH02288161A (en) 1989-04-28 1989-04-28 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH02288161A true JPH02288161A (en) 1990-11-28

Family

ID=14533197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110337A Pending JPH02288161A (en) 1989-04-28 1989-04-28 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH02288161A (en)

Similar Documents

Publication Publication Date Title
JP2656943B2 (en) Improved solid oxide fuel cell and assembly
JP4682511B2 (en) Solid oxide fuel cell
US7163759B2 (en) Solid oxide fuel cell stack assembly having tapered diffusion layers
JP2790666B2 (en) Fuel cell generator
JP4897273B2 (en) Fuel cell
JPH04294068A (en) Power generating device
JPH0589890A (en) Cell of solid electrolyte type fuel battery and power generating device using it
JPH03238760A (en) Fuel cell of solid electrolyte type
JPH02288161A (en) Solid electrolyte fuel cell
JP2816473B2 (en) Solid oxide fuel cell module
JP2816477B2 (en) Solid electrolyte fuel cell
JPH04292866A (en) Generating set
JP2013257973A (en) Solid oxide fuel cell stack
JPH0359956A (en) Fuel battery generator
JPH01313856A (en) Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell
JPH03102779A (en) Power generation device with fuel cell
JPH0215564A (en) Electrode member of solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JP2816478B2 (en) Structure of solid oxide fuel cell
JP2843995B2 (en) Structure of solid oxide fuel cell
JP2843994B2 (en) Structure of solid oxide fuel cell
JP2799878B2 (en) Structure of solid oxide fuel cell
JP2799879B2 (en) Structure of solid oxide fuel cell
JP6512749B2 (en) Fuel cell
JP2816475B2 (en) Structure of solid oxide fuel cell