JPH02288112A - Manufacture of nb3sn superconducting wire - Google Patents

Manufacture of nb3sn superconducting wire

Info

Publication number
JPH02288112A
JPH02288112A JP1109574A JP10957489A JPH02288112A JP H02288112 A JPH02288112 A JP H02288112A JP 1109574 A JP1109574 A JP 1109574A JP 10957489 A JP10957489 A JP 10957489A JP H02288112 A JPH02288112 A JP H02288112A
Authority
JP
Japan
Prior art keywords
alloy
wire
superconducting
diameter
magnetic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1109574A
Other languages
Japanese (ja)
Other versions
JP2874132B2 (en
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Masayuki Tange
丹下 雅行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1109574A priority Critical patent/JP2874132B2/en
Publication of JPH02288112A publication Critical patent/JPH02288112A/en
Application granted granted Critical
Publication of JP2874132B2 publication Critical patent/JP2874132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Wire Processing (AREA)

Abstract

PURPOSE:To decrease a loss at the time of an AC current flow by forming a Cu alloy layer not containing Sn around a core to reduce the diameter so that a compound layer is not produced at a boundary portion between the core and the Cu alloy layer. CONSTITUTION:The periphery of a rod-like core 10 made up of Nb or Nb alloy is covered with a shell 11 whose outside is further covered with a shell 12 made up of Cu-Sn alloy, etc., to reduce the diameter of the whole of them to make a complex 13. Then, one magnetic element or more is added to Cu of t he shell 11 so that it is made up of Cu alloy not containing Sn. Further, a plurality of the complexes 13 are collected, and thereafter, they are housed in a shell 14 made up of Cu-Sn alloy, etc., and the reduction of their diameters is repeated. Thereby, troubles such as breaking of wire, etc., are prevented, and a Nb-Sn superconducting wire whose loss at the time of AC current flow is small can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、核融合炉用トロイダルマグネット、粒子加速
機用マグネット、超電導発電機用マグネット等に利用さ
れるNb3Sn超電導線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing Nb3Sn superconducting wires used in toroidal magnets for nuclear fusion reactors, magnets for particle accelerators, magnets for superconducting generators, and the like.

「従来の技術」 従来、Cu合金からなる金属基地の内部に無数の極細の
N b3S n超電導フィラメントを配列した構造の超
電導線が知られている。このNb3Sn超電導線を製造
するには、まず、第11図に示すように、Nbロッドか
らなる芯材lに、Cu−Sn合金からなる管体2を被せ
て形成した複合体を複数本集合し、次いでCu−Sn合
金の管体3に挿入して縮径し、第12図に示す1次素線
4を作成する。
"Prior Art" Conventionally, a superconducting wire having a structure in which countless ultrafine N b3S n superconducting filaments are arranged inside a metal base made of a Cu alloy is known. To manufacture this Nb3Sn superconducting wire, first, as shown in Fig. 11, a plurality of composites formed by covering a core material l made of an Nb rod with a tube body 2 made of a Cu-Sn alloy are assembled. Then, it is inserted into a tube 3 made of a Cu-Sn alloy to reduce its diameter, thereby producing a primary strand 4 shown in FIG. 12.

次にこの1次素線4を複数本集合して第13図に示ずよ
うにCu−Sn合金の管体5に挿入して縮径し第14図
に示す索線7を作成し、この素線7に拡散熱処理を施し
てSnを拡散させ、Nb3Sn超電導フィラメントを生
成させて第15図に示ずNb3Sn超電導線8を製造し
ている。
Next, a plurality of these primary wires 4 are collected and inserted into a Cu-Sn alloy tube 5 as shown in FIG. 13 to reduce the diameter to create a cable wire 7 shown in FIG. 14. The strand 7 is subjected to a diffusion heat treatment to diffuse Sn to generate Nb3Sn superconducting filaments, thereby producing an Nb3Sn superconducting wire 8 (not shown in FIG. 15).

「発明が解決しようとする課題」 面述の従来方法では、素線の集合と縮径加工を繰り返し
行うので、Cu−Sn合金からなる管体2゜3.5を用
いた場合、管体2.a、sの加工硬化が著しく、断線の
おそれがある。そこで、加工中の断線を防止するために
、中間焼鈍処理を繰り返し施しつつ加工しているが、工
程が複雑になる問題があった。
``Problems to be Solved by the Invention'' In the conventional method described above, the assembly of the strands and the diameter reduction process are repeated, so when the tube body 2°3.5 made of Cu-Sn alloy is used, the tube body 2 .. Work hardening of a and s is significant and there is a risk of wire breakage. Therefore, in order to prevent wire breakage during processing, intermediate annealing treatment is repeatedly performed during processing, but this has the problem of complicating the process.

また、中間焼鈍処理を繰り返し行う間に、Nbの芯材l
とその周囲のCu−Sn合金の管体2との界面に脆い化
合物層が生成し、この化合物層が原因となって縮径加工
中にNbフィラメントがいびつな変形を起こすことがあ
った。なお、交流用の超電導線を製造する場合などには
、フィラメントの直径を1μm以下になるまで縮径加工
することがあるが、Nbフィラメントに前記のようにい
びっな変形を生じるようであると断線を生じ易く、縮径
加工が困難になる場合がある。
In addition, during the repeated intermediate annealing treatment, the Nb core material l
A brittle compound layer is formed at the interface between the Nb filament and the surrounding Cu-Sn alloy tube 2, and this compound layer may cause the Nb filament to undergo distorted deformation during diameter reduction processing. In addition, when manufacturing superconducting wire for AC, the diameter of the filament is sometimes reduced to 1 μm or less, but if the Nb filament is distorted as described above, it may break. This tends to occur, making diameter reduction processing difficult.

更に、前記の方法で製造された超電導線8において、特
に交流用として製造されたものは、超電導フィラメント
の直径が1μm以下の小さいらのとなり、超電導フィラ
メント間の間隔ら小さくなるので、隣接する極細の超電
導フィラメントが、あたか61本のフィラメントとして
挙動ずろようになる傾向かあり、交流損失が生じ易い問
題があった。また、交流用の超電導線を製造し、フィラ
メント径を1μm以下にまで小さくした場合、高磁界域
における臨界電流密度の低下が著しくなる問題があった
Furthermore, among the superconducting wires 8 manufactured by the above method, especially those manufactured for AC use, the diameter of the superconducting filaments is small, 1 μm or less, and the spacing between the superconducting filaments is small, so that adjacent ultra-fine There was a problem that the superconducting filaments tended to behave erratically as if they were just 61 filaments, and AC loss was likely to occur. Furthermore, when a superconducting wire for alternating current is manufactured and the filament diameter is reduced to 1 μm or less, there is a problem in that the critical current density decreases significantly in a high magnetic field region.

本発明は前記課題を解決するためになされたしので、交
流通電時の損失が少なく、高磁界域における臨界電流密
度か優れるとともに、製造時の縮径加工中に断線を引き
起こすことがなく、交流用として優れたNb5Sn超電
導線を製造することができる方法を提供することを目的
とする。
The present invention has been made to solve the above-mentioned problems. Therefore, the loss when AC current is applied is small, the critical current density is excellent in a high magnetic field region, and there is no disconnection during diameter reduction processing during manufacturing, and AC It is an object of the present invention to provide a method capable of manufacturing Nb5Sn superconducting wire which is excellent in use.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するために、
NbまたはNb合金からなる芯材と、磁性元素を含有し
Snを含まないCu合金からなる被覆層とを具備してな
る複合体を形成し、この複合体を複数本集合して縮径す
る加工を必要回数行って磁性元素を含むCu合金基地の
内部に、NbまたはNb合金からなるフィラメントを多
数埋設した構造の素線を作成し、次にこの素線に熱処理
を施してNb、Sn超電導フィラメントを生成させるも
のである。
"Means for solving the problem" In order to solve the problem, the invention described in claim 1 has the following features:
A process of forming a composite comprising a core material made of Nb or a Nb alloy and a coating layer made of a Cu alloy containing a magnetic element but not containing Sn, and collecting a plurality of this composite to reduce the diameter. is repeated a necessary number of times to create a wire with a structure in which many filaments made of Nb or Nb alloy are embedded inside a Cu alloy base containing a magnetic element, and then this wire is heat-treated to form Nb, Sn superconducting filaments. is generated.

請求項2に記載した発明は前記課題を解決するために、
NbまたはNb合金からなる芯材と、磁性元素とTiを
含有しSnを含まないCu合金からなる被覆層とを具備
してなる複合体を形成し、この複合体を複数本集合して
縮径する加工を必要回数行って磁性元素とTiを含むC
u合金基地の内部にNbまたはNb合金からなるフィラ
メントを多数埋設した構造の素線を作成し、次にこの素
線に熱処理を施してNb3Sn超電導フィラメントを生
成させるものである。
In order to solve the above problem, the invention described in claim 2 has the following features:
A composite comprising a core material made of Nb or a Nb alloy and a coating layer made of a Cu alloy containing a magnetic element and Ti but not Sn is formed, and a plurality of these composites are assembled to reduce the diameter. C containing magnetic elements and Ti
A wire having a structure in which a large number of filaments made of Nb or Nb alloy are embedded inside a u-alloy base is created, and then this wire is heat-treated to produce a Nb3Sn superconducting filament.

「作用」 超電導フィラメントが分散配列されたCu合金基地に磁
性元素が含有されているので、クーパー電子ベアが超電
導フィラメントから常電導金属基地側にしみ出した場合
に、磁性元素のらつ磁気モーメントによってペアがこわ
され、交流通電時に超電導フィラメン)・の間の合金基
地に流れようとする結合電流が抑制され、交流損失が減
少する。
"Effect" Since a magnetic element is contained in the Cu alloy base in which superconducting filaments are dispersed, when Cooper electron bears seep out from the superconducting filament to the normal conductive metal base, the magnetic moment of the magnetic element causes When the pair is broken, the coupling current that attempts to flow into the alloy matrix between the superconducting filaments () when AC current is applied is suppressed, reducing AC loss.

また、芯材の外方に設けるCu合金基地にSnを含ませ
ていないので、加工途中で芯材と合金基地の界面に化合
物層を生成することが抑制される。更に、超電導フィラ
メントの周囲の金属基地にTiが拡散されているので、
高磁界域における臨界電流特性が向上する。
Furthermore, since the Cu alloy base provided outside the core material does not contain Sn, the formation of a compound layer at the interface between the core material and the alloy base during processing is suppressed. Furthermore, since Ti is diffused into the metal base around the superconducting filament,
Critical current characteristics in the high magnetic field region are improved.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

第1図ないし第7図は、本発明方法をNb*Sn超電導
線の製造方法に適用した一実、流側を示すもので、本発
明方法を実施して超電導線を製造するには、まず、第1
図に示すNbまたはNb合金からなるロッド状の芯材1
0の外周に磁性元素を添加したCu合金からなる管体I
Iを被せ、更にその外側にCu−Sn合金などからなる
管体12を被せ、全体を縮径して第2図に示す複合体1
3を作成する。この複合体13においては、芯材lOの
周囲に管体11の構成材料からなる被覆層が形成されて
いる。
Figures 1 to 7 show the actual process of applying the method of the present invention to a method for manufacturing Nb*Sn superconducting wire. , 1st
Rod-shaped core material 1 made of Nb or Nb alloy shown in the figure
Tube I made of Cu alloy with magnetic elements added to the outer periphery of 0
I, and further cover the outside with a tubular body 12 made of Cu-Sn alloy, etc., and reduce the diameter of the whole to form a composite body 1 as shown in FIG.
Create 3. In this composite body 13, a coating layer made of the constituent material of the tubular body 11 is formed around the core material lO.

前記芯材lOは、純NbあるいはTi、Taを添加した
Nb合金、または、Sc、Ti、V、Cr、Mn、Fe
The core material 1O is pure Nb, an Nb alloy added with Ti and Ta, or Sc, Ti, V, Cr, Mn, Fe.
.

Co、N i、S r、Y 、Cb、Zr、Rh、Pd
、Ce、P r、NdSm、Eu、Gd、Tb、Dy、
Ho、Er、Tmなどの磁性元素を1種以上含むNb合
金、あるいは、磁性元素とTi、Taを含む合金から形
成されている。芯材IOにTiを含有させる場合、その
含有mは0.5〜2重量%が好ましく、Taを含有させ
る場合、その含有量は0.5〜4重量%が好ましい。
Co, Ni, Sr, Y, Cb, Zr, Rh, Pd
, Ce, Pr, NdSm, Eu, Gd, Tb, Dy,
It is formed from an Nb alloy containing one or more magnetic elements such as Ho, Er, and Tm, or an alloy containing a magnetic element and Ti and Ta. When the core material IO contains Ti, the content m is preferably 0.5 to 2% by weight, and when it contains Ta, the content is preferably 0.5 to 4% by weight.

前記管体11は前記磁性元素の1種以上をCuに添加し
、Snを含んでいないCu合金からなるものである。ま
た、管体11を前記磁性元素とTiを含み、Snを含ま
ない合金から形成しても良い。
The tubular body 11 is made of a Cu alloy in which one or more of the magnetic elements mentioned above is added to Cu and does not contain Sn. Further, the tube body 11 may be formed from an alloy containing the magnetic element and Ti but not Sn.

前記管体11における磁性元素の含有量は、超電導フィ
ラメントを囲む金属基地を構成する金属元素に対して磁
性元素が全率固溶するものである場合は、0.5〜5重
量%が好ましく、金属間化合物を生じるおそれがある磁
性元素の場合は0.1〜0.5重量%以下が好ましい。
The content of the magnetic element in the tube body 11 is preferably 0.5 to 5% by weight when the magnetic element is completely dissolved in solid solution with respect to the metal element constituting the metal base surrounding the superconducting filament. In the case of magnetic elements that may cause intermetallic compounds, the amount is preferably 0.1 to 0.5% by weight or less.

なおまた、この例のようにCu合金の金属基地を用いる
場合は、MnとNiなどがCuに対して全率固溶するの
でMnまたはNiを添加する場合に0.5〜5重虫%添
加するものとする。またCu−Sn合金にT iを添加
する場合、その含有Inは0.1〜I 0重量%が好ま
しい。
Furthermore, when using a metal base of Cu alloy as in this example, Mn and Ni etc. are completely dissolved in Cu, so when adding Mn or Ni, it is necessary to add 0.5 to 5%. It shall be. Further, when adding Ti to the Cu-Sn alloy, the content of In is preferably 0.1 to 0% by weight.

前記管体12は、Cu−Sn合金からなるが、前記磁性
元素を含むCu−8n合金、磁性元素とTiを含むCu
−Sn合金、あるいは、Tiを含むCu−Sn合金から
形成しても良い。そして、管体12におけるSnの含有
量は6〜13重量%が好ましい。
The tube body 12 is made of a Cu-Sn alloy, such as a Cu-8n alloy containing the magnetic element, or a Cu-8n alloy containing the magnetic element and Ti.
-Sn alloy or a Cu-Sn alloy containing Ti. The content of Sn in the tube body 12 is preferably 6 to 13% by weight.

次に前記複合体13を複数本第3図に示すように集合し
た後にCu−Sn合金などからなる管体14に収納して
縮径し、第4図に示す1次素線15を作成する。ここで
用いる管体14には前記磁性元素とTiを添加しても良
い。
Next, after a plurality of the composite bodies 13 are assembled as shown in FIG. 3, they are housed in a tube 14 made of a Cu-Sn alloy or the like, and the diameter is reduced to create a primary strand 15 as shown in FIG. 4. . The above magnetic element and Ti may be added to the tube body 14 used here.

次いで前記1次素線15を複数本集合して第5図に示す
ように管体16に挿入し、更に縮径して第6図に示す2
次素線17を作成する。ここで用いろ管体16は、Cu
−Sn合金あるいは、前記磁性元素とTiを添加したC
u−Sn合金を用いても良い。以上の如く縮径加工を繰
り返す場合、芯材lOの外方に設ける管体IfにはSn
が含まれていないので、縮径加工中に中間焼鈍処理を施
してら芯材10と管体11の界面部分に化合物層が生成
しない。従って縮径加工により生成されるフィラメント
がいびつな形状に変形することがない。
Next, a plurality of the primary wires 15 are assembled and inserted into the tube body 16 as shown in FIG.
The next strand 17 is created. The tube body 16 used here is Cu
-Sn alloy or C added with the above magnetic element and Ti
A u-Sn alloy may also be used. When the diameter reduction process is repeated as described above, the tubular body If provided outside the core material IO is made of Sn.
is not included, so no compound layer is generated at the interface between the core material 10 and the tube body 11 when intermediate annealing is performed during the diameter reduction process. Therefore, the filament produced by the diameter reduction process will not be deformed into an irregular shape.

続いて2次素線17を500〜800℃で数十時間〜数
百時間加熱する拡散熱処理を行う。この拡散熱処理を行
うことにより2次素線17の内部のNbの極細フィラメ
ントとSnを反応させてNb3Sn超電導フィラメント
を生成させ、第7図に示すNb3Sn超電導線20を得
ることができる。
Subsequently, a diffusion heat treatment is performed in which the secondary wire 17 is heated at 500 to 800° C. for several tens of hours to several hundreds of hours. By performing this diffusion heat treatment, the Nb ultrafine filaments inside the secondary wire 17 are reacted with Sn to generate Nb3Sn superconducting filaments, and the Nb3Sn superconducting wire 20 shown in FIG. 7 can be obtained.

この超電導線20は、磁性元素を含有するCuSn合金
からなる基地の内部に、極細のNb3Sn超電導フィラ
メントが多数配列された構造になっている。また、芯材
lO1管体12.14.16のいずれかにT iを含有
させた場合はTiを含む合金基地の内部にNb3Sn超
電導フィラメントが多数配列された構造になっている。
This superconducting wire 20 has a structure in which a large number of extremely thin Nb3Sn superconducting filaments are arranged inside a base made of a CuSn alloy containing a magnetic element. Further, when any of the core lO1 tubes 12, 14, and 16 contains Ti, a structure is obtained in which a large number of Nb3Sn superconducting filaments are arranged inside the alloy base containing Ti.

前記超電導線20は液体ヘリウムなどの冷媒によって極
低温に冷却して使用する。そして、交流通電を行った場
合、金属基地に磁性元素が含有されているので、超電導
フィラメント間に生じる結合損失を低減させることがで
きる。ここで超電導線において交流通電時に超電導複フ
ィラメントの間に結合損失が生じるのは、交流用の超電
導線にあっては、超電導フィラメントが直径0.1μm
程度まで極細化されており、このような極細径の超電導
フィラメントからは、その周囲のCu−Sn合金基地側
に超電導電子の電子ペアがしみ出し、隣接する超電導フ
ィラメントの間で電子ペアの結合がなされるためである
。従って超電導フィラメントの周囲のCu−Sn合金基
地内に磁性を有する元素が含有されているとクーパー電
子のペアが磁性元素の磁性モーメントによりくずされて
結合が生じにくくなり、交流損失が減少する。また、N
b。
The superconducting wire 20 is cooled to an extremely low temperature using a coolant such as liquid helium. When AC current is applied, since the metal base contains a magnetic element, coupling loss occurring between the superconducting filaments can be reduced. Here, in a superconducting wire, coupling loss occurs between superconducting double filaments when AC current is applied.
From superconducting filaments with such a small diameter, electron pairs of superconducting electrons seep into the surrounding Cu-Sn alloy base side, and the bonding of electron pairs between adjacent superconducting filaments occurs. that it might be done. Therefore, if a magnetic element is contained in the Cu--Sn alloy base around the superconducting filament, pairs of Cooper electrons are broken by the magnetic moment of the magnetic element, making it difficult for coupling to occur, and AC loss is reduced. Also, N
b.

Sn超電導フィラメントの周囲の金属基地にTiか拡散
された構造の場合、TiはNb5Snの高磁界域の臨界
電流密度を向上させる効果を発揮するので、得られた超
電導線の高磁界域での臨界電流密度が向上する。なお、
Tiの添加量の大小により臨界電流密度の向上効果を調
整できるか、Tiの添加量を調整するには芯材10、管
体12、管体14、管体16に含有させるTi量を調節
することで容易に調節することかできる。
In the case of a structure in which Ti is diffused into the metal base around the Sn superconducting filament, Ti has the effect of improving the critical current density in the high magnetic field region of Nb5Sn, so the critical current density in the high magnetic field region of the obtained superconducting wire is reduced. Improves current density. In addition,
Is it possible to adjust the effect of improving the critical current density by changing the amount of Ti added? To adjust the amount of Ti added, adjust the amount of Ti contained in the core material 10, tube body 12, tube body 14, and tube body 16. This can be easily adjusted.

なお、前記実施例において行った索線の集合工程と縮径
加工は2回に限るものではなく、3回以上の複数回行っ
ても差し支えない。
Note that the cable assembly process and the diameter reduction process performed in the above embodiments are not limited to two times, but may be performed three or more times.

第8図はこの発明の製造方法を安定化材付きの超電導線
の製造方法に適用した例を説明するためのもので、この
例を実施して超電導線を製造するには、無酸素銅などの
純銅からなる安定化材22の外周に、Ta、Nbなどの
金属材料からなる拡散防止層23を形成し、更にその外
周にCu−Sn合金などからなる被覆層24を形成して
安定化導体25を作成する。なお、前記被覆層24はi
’ iあるいは磁性元素を含むCu−Sn合金から構成
しても良い。
FIG. 8 is for explaining an example in which the manufacturing method of the present invention is applied to the manufacturing method of a superconducting wire with a stabilizing material. A diffusion prevention layer 23 made of a metal material such as Ta or Nb is formed on the outer periphery of the stabilizing material 22 made of pure copper, and a coating layer 24 made of a Cu-Sn alloy or the like is further formed on the outer periphery to form a stabilized conductor. Create 25. Note that the coating layer 24 has i
'i or a Cu-Sn alloy containing a magnetic element.

ここで前記拡散防止層23は、後工程で行う拡散熱処理
時に、安定化材22側に元素が拡散することを防止して
安定化材22の汚染を防止するために設けるしのであり
、その構成材料としては融点が800℃以上の金属材料
であって、銅に対する反応性の低いTaやNbなどが好
適に用いられろ。
Here, the diffusion prevention layer 23 is provided in order to prevent elements from diffusing to the stabilizing material 22 side and contaminating the stabilizing material 22 during the diffusion heat treatment performed in a later process. As the material, a metal material having a melting point of 800° C. or higher and having low reactivity to copper, such as Ta or Nb, is preferably used.

次にこの安定化導体25を複数本集合し、その外方に、
前記の例で用いた1次素線15あるいは2次素線I7を
更に複数本集合して束ね、それらをCu、−Sn合金な
どからなる管体27に挿入し、これを縮径して素線を得
る。前記管体27は磁性元素あるいはTiを含むCu−
Sn合金から形成しても良い。前記素線に熱処理を施す
と安定化材付きのNb3Sn超電導線を製造することが
できる。
Next, a plurality of these stabilizing conductors 25 are assembled, and outwardly,
A plurality of primary strands 15 or secondary strands I7 used in the above example are further collected and bundled, inserted into a tube body 27 made of Cu, -Sn alloy, etc., and the diameter of this is reduced to form a strand. get the line. The tube body 27 is made of a magnetic element or Cu-containing Ti.
It may be formed from a Sn alloy. By subjecting the wire to heat treatment, a Nb3Sn superconducting wire with a stabilizing material can be produced.

この超電導線においては中心部に設けた安定化材22に
対するSnの汚染が防止されているので、安定化材22
の極低温における電気抵抗は十分に低い値になり、超電
導線の安定性が十分に高いものとなる。更に、超電導線
の中心部に安定化材22を複合した構造になっているの
で超電導線の外方に新たに安定化材を添設する場合に比
較してよりコンパクトな構造にすることができる。
In this superconducting wire, since the stabilizing material 22 provided in the center is prevented from being contaminated with Sn, the stabilizing material 22 is
The electrical resistance at extremely low temperatures becomes a sufficiently low value, and the stability of the superconducting wire becomes sufficiently high. Furthermore, since the structure combines the stabilizing material 22 at the center of the superconducting wire, it is possible to create a more compact structure compared to the case where a new stabilizing material is added to the outside of the superconducting wire. .

第9図はこの発明の製造方法を安定化材付きの超電導線
の製造方法に適用した第2の例を説明するためのもので
、この例を実施して超電導線を製造するには、前記の例
で用いた安定化導体25と同等の安定化導体25を用意
する。
FIG. 9 is for explaining a second example in which the manufacturing method of the present invention is applied to the manufacturing method of a superconducting wire with a stabilizing material. A stabilizing conductor 25 equivalent to the stabilizing conductor 25 used in the above example is prepared.

次にこの安定化導体25を複数本集合して第9図に示す
ように逆Y字上に配列し、安定化導体25・・・の間に
、前記の例で用いた1次素線15あるいは2次素線I7
を更に痕数本集合し、それらをCu−Sn合金などから
なる管体28に挿入し、全体を縮径して素線を作成した
後に熱処理を施すと安定化材付きの超電導線を製造する
ことができる。
Next, a plurality of these stabilizing conductors 25 are assembled and arranged in an inverted Y shape as shown in FIG. Or secondary strand I7
Collect a few more traces, insert them into a tube body 28 made of Cu-Sn alloy, etc., reduce the diameter of the whole to create a wire, and then heat treat it to produce a superconducting wire with a stabilizing material. be able to.

なお、前記管体28を磁性元素あるいはTiを含むCu
−Sn合金から形成してら良い。
Note that the tube body 28 is made of a magnetic element or Cu containing Ti.
- It is preferable to form it from a Sn alloy.

第10図はこの発明の製造方法を安定化材付きの超電導
線の製造方法に適用した第3の例を説明するためのもの
で、無酸素銅などの純銅からなる安定化材30の外周に
、Ta、Nbなどの金属材料からなる拡散防止層31を
形成して安定化導体を作成する。
FIG. 10 is for explaining a third example in which the manufacturing method of the present invention is applied to the manufacturing method of a superconducting wire with a stabilizing material. A stabilizing conductor is created by forming a diffusion prevention layer 31 made of a metal material such as , Ta, or Nb.

前記拡散防止層31を形成したならば、その全周にわた
り、前述の1次素線15あるいは2次素線17を配列し
て添設する。素線を添設したならば、その外方にCu−
Sn合金などからなる管体33を第9図に示すように被
せ、この後に縮径加工を施して得るべき超電導線と同等
の線径まで縮径して素線を得る。なお、前記管体33は
磁性元素あるいはTiを含むCu−Sn合金から形成し
てもよい。
Once the diffusion prevention layer 31 is formed, the above-described primary strands 15 or secondary strands 17 are arranged and attached over its entire circumference. Once the strands are attached, Cu-
A tube body 33 made of Sn alloy or the like is placed over the tube as shown in FIG. 9, and then diameter-reduced to obtain a wire having a diameter equivalent to that of the superconducting wire to be obtained. Note that the tubular body 33 may be formed from a magnetic element or a Cu-Sn alloy containing Ti.

次にこの素線に熱処理を前述と同等の条件で施すならば
、Nb3Sn超電導線を得ることができる。
Next, if this wire is heat treated under the same conditions as described above, an Nb3Sn superconducting wire can be obtained.

「実施例」 直径9mmのNbOッドにCu−1,Ovt%Mn合金
からなる外径12mm、内径l0IIlfflのチュー
ブを披せ、その後に直径9mmまで縮径して複合材を作
成する。次にこの複合材をCu−8wt%S n−0,
5wt%Ti合金からなる外径15mm、内径10mm
の管体に挿入し、450℃×2時間の中間焼鈍処理を施
しながら0.58mmまで縮径加工して複合体を得る。
"Example" A tube made of a Cu-1, Ovt%Mn alloy with an outer diameter of 12 mm and an inner diameter of 10IIlffl is attached to a NbO rod with a diameter of 9 mm, and then the tube is reduced to a diameter of 9 mm to create a composite material. Next, this composite material was mixed with Cu-8wt%S n-0,
Made of 5wt% Ti alloy, outer diameter 15mm, inner diameter 10mm
A composite body is obtained by inserting the composite body into a tube body and reducing the diameter to 0.58 mm while performing an intermediate annealing treatment at 450° C. for 2 hours.

次にこの複合体を547本集合して束ね、Cu−8wt
%5n−0,5wt%Ti合金からなる外径18 ml
11.内径16mmの管体に挿入し、中間焼鈍処理を施
しなから縮径加工を行って直径1.0+++mの1次複
合体を得る。次に1次複合体を91本集合して束ね、C
u−8,0wt%5n−0,5wt%Ti合金からなる
外径12mm、内径11mmの合金管に挿入して縮径加
工を行い直径0.2mmの素線を得た。この素線におい
て、内部に埋設されているNbフィラメントの直径は約
0.4μmとなっていた。
Next, 547 pieces of this composite were collected and bundled, and Cu-8wt
%5n-0,5wt%Ti alloy with outer diameter 18 ml
11. It is inserted into a tube with an inner diameter of 16 mm, subjected to intermediate annealing treatment, and then subjected to diameter reduction processing to obtain a primary composite body with a diameter of 1.0+++ m. Next, collect 91 primary complexes and bundle them, C
The wire was inserted into an alloy tube made of a u-8.0 wt% 5n-0.5 wt% Ti alloy and had an outer diameter of 12 mm and an inner diameter of 11 mm, and was subjected to diameter reduction processing to obtain a wire with a diameter of 0.2 mm. In this wire, the diameter of the Nb filament buried inside was approximately 0.4 μm.

次いで600℃に150時間加熱する熱処理を施してN
bのフィラメントとSnを反応させてNb3Sn超電導
フィラメントを生成させて超電導線を製造した。
Next, heat treatment was performed at 600°C for 150 hours to remove N.
A superconducting wire was manufactured by reacting the filament of b with Sn to generate an Nb3Sn superconducting filament.

以上説明したように製造されたNb5Sn超電導線の臨
界電流密度(Jc)を 10Tの磁場中において1111定したところ、J c
= 600 A/mm’、(線材の全体値)15Tの磁
場中で測定したところ、 Jc= 200 A/mm”、(線材の全体値)の優秀
な値が得られた。
When the critical current density (Jc) of the Nb5Sn superconducting wire manufactured as explained above was constant at 1111 in a 10T magnetic field, Jc
= 600 A/mm' (total value of the wire rod) When measured in a magnetic field of 15 T, an excellent value of Jc = 200 A/mm'' (total value of the wire rod) was obtained.

「発明の効果」 以上説明したように本発明によれば、芯材の周囲にSn
を含まないCu合金層を形成して縮径加工を行い、芯材
とCu合金層の境界部分に化合物層を生成しないように
したので、縮径加工を操り返し施して芯材を極細のフィ
ラメントに加工した場合であってもフィラメントがいび
つな形状に変形することがない。従って1μm以下の極
細のフィラメントになるまで縮径加工を行って製造され
る交流用超電導線を製造した場合であっても、均一な形
状のフィラメントを有するNb3Sn超電導線を断線な
どのトラブルを引き起こすことなく製造することができ
る。
"Effects of the Invention" As explained above, according to the present invention, Sn is formed around the core material.
We formed a Cu alloy layer that does not contain carbon dioxide and performed diameter reduction processing to prevent the formation of a compound layer at the boundary between the core material and the Cu alloy layer. Even when processed, the filament does not deform into an irregular shape. Therefore, even if an AC superconducting wire is manufactured by reducing the diameter to an ultra-fine filament of 1 μm or less, problems such as disconnection may occur in the Nb3Sn superconducting wire, which has uniformly shaped filaments. It can be manufactured without any

また、超電導フィラメントを囲むCu合金基地に磁性元
素を含有させるので、交流通電時に超電導フィラメント
の周囲の金属基地に超電導電子のベアのしみ出しが生じ
た場合であっても、磁性元素の磁性によって電子のペア
がこわれ、交流通電時の結合電流を抑制することができ
る。従って交流通電時の損失が少ないNb、Sn超電導
線を得ることができる。
In addition, since the Cu alloy base surrounding the superconducting filament contains a magnetic element, even if bare superconducting electrons seep into the metal base around the superconducting filament when AC current is applied, the magnetism of the magnetic element will cause the electrons to The pair is broken, and the combined current can be suppressed when AC current is applied. Therefore, it is possible to obtain a Nb, Sn superconducting wire with low loss when AC current is applied.

更に、超電導フィラメントの周囲のCu合金基地にTi
を含有させたものにあっては、Cu合金基地に拡散した
Tiにより高磁界域の臨界電流密度を向上できる効果が
ある。
Furthermore, Ti is added to the Cu alloy base around the superconducting filament.
In the case where Ti is contained, the Ti diffused into the Cu alloy base has the effect of improving the critical current density in the high magnetic field region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明方法の一例を説明するため
のもので、第1図は芯材と管体の複合状態を示す断面図
、第2図は複合体の断面図、第3図は複合体の集合状態
を示す断面図、第4図は1次索線の断面図、第5図は1
次素線の集合状態を示す断面図、第6図は2次素線の断
面図、第7図は超電導線の断面図、第8図ないし第1O
図はこの発明を安定化材付きの超電導線の製造方法に応
用した例を示すもので、第8図は第1の例を説明するた
めの断面図、第9図は第2の例を説明するための断面図
、第1O図は第3の例を説明するための断面図、第11
図ないし第15図は従来の超電導線の製造方法の一例を
示すもので、第1t図は複合体の集合状態を示す断面図
、第12図は1次素線の断面図、第13図は1次素線の
集合状態を示す断面図、第14図は2次素線の断面図、
第15図は超電導線の断面図である。 IO・・・芯材、11・・・管体(被覆層)、12・・
管体、13・・・複合体、15・・1次素線、17・・
・2次素線、19・・・素線、20・・・超電導線。
Figures 1 to 7 are for explaining an example of the method of the present invention, in which Figure 1 is a sectional view showing a composite state of the core material and tube body, Figure 2 is a sectional view of the composite body, and Figure 3 is a sectional view of the composite body. The figure is a cross-sectional view showing the assembled state of the complex, Figure 4 is a cross-sectional view of the primary cable line, and Figure 5 is a cross-sectional view of the primary cable line.
6 is a sectional view of the secondary strands, FIG. 7 is a sectional view of the superconducting wire, and FIGS. 8 to 1O
The figures show an example in which the present invention is applied to a method for manufacturing a superconducting wire with a stabilizing material. Fig. 8 is a cross-sectional view for explaining the first example, and Fig. 9 is a cross-sectional view for explaining the second example. Figure 10 is a cross-sectional view for explaining the third example, and Figure 11 is a cross-sectional view for explaining the third example.
Figures 1 to 15 show an example of a conventional method for manufacturing superconducting wires. Figure 1t is a cross-sectional view showing the assembled state of a composite, Figure 12 is a cross-sectional view of a primary strand, and Figure 13 is a cross-sectional view of a primary strand. A sectional view showing the assembled state of the primary strands, FIG. 14 is a sectional view of the secondary strands,
FIG. 15 is a cross-sectional view of the superconducting wire. IO...core material, 11...pipe body (coating layer), 12...
Pipe body, 13...Composite, 15...Primary strand, 17...
・Secondary strand, 19... strand, 20... superconducting wire.

Claims (2)

【特許請求の範囲】[Claims] (1)NbまたはNb合金からなる芯材と、磁性元素を
含有しSnを含まないCu合金からなる被覆層とを具備
してなる複合体を形成し、この複合体を複数本集合して
縮径する加工を必要回数行って磁性元素を含むCu合金
基地の内部にNbまたはNb合金からなるフィラメント
を多数埋設した構造の素線を作成し、次にこの素線に熱
処理を施してNb_3Sn超電導フィラメントを生成さ
せることを特徴とするNb_3Sn超電導線の製造方法
(1) Form a composite comprising a core material made of Nb or a Nb alloy and a coating layer made of a Cu alloy containing a magnetic element but not Sn, and aggregate a plurality of these composites and shrink them. A wire with a structure in which many filaments made of Nb or Nb alloy are buried inside a Cu alloy base containing a magnetic element is created by performing the necessary number of rounds of diameter processing, and then this wire is heat-treated to form a Nb_3Sn superconducting filament. A method for producing a Nb_3Sn superconducting wire, the method comprising: producing Nb_3Sn superconducting wire.
(2)NbまたはNb合金からなる芯材と、磁性元素と
Tiを含有しSnを含まないCu合金からなる被覆層と
を具備してなる複合体を形成し、この複合体を複数本集
合して縮径する加工を必要回数行って磁性元素とTiを
含むCu合金基地の内部にNbまたはNb合金からなる
フィラメントを多数埋設した構造の素線を作成し、次に
この素線に熱処理を施してNb_3Sn超電導フィラメ
ントを生成させることを特徴とするNb_3Sn超電導
線の製造方法。
(2) Form a composite comprising a core material made of Nb or a Nb alloy and a coating layer made of a Cu alloy containing a magnetic element and Ti but not Sn, and collect a plurality of these composites. A wire having a structure in which many filaments made of Nb or Nb alloy are embedded inside a Cu alloy base containing a magnetic element and Ti is created by performing diameter reduction processing a necessary number of times, and then heat-treating this wire. A method for producing a Nb_3Sn superconducting wire, the method comprising: producing a Nb_3Sn superconducting filament.
JP1109574A 1989-04-28 1989-04-28 Method for manufacturing Nb (3) Sn superconducting wire for AC Expired - Fee Related JP2874132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1109574A JP2874132B2 (en) 1989-04-28 1989-04-28 Method for manufacturing Nb (3) Sn superconducting wire for AC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1109574A JP2874132B2 (en) 1989-04-28 1989-04-28 Method for manufacturing Nb (3) Sn superconducting wire for AC

Publications (2)

Publication Number Publication Date
JPH02288112A true JPH02288112A (en) 1990-11-28
JP2874132B2 JP2874132B2 (en) 1999-03-24

Family

ID=14513705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1109574A Expired - Fee Related JP2874132B2 (en) 1989-04-28 1989-04-28 Method for manufacturing Nb (3) Sn superconducting wire for AC

Country Status (1)

Country Link
JP (1) JP2874132B2 (en)

Also Published As

Publication number Publication date
JP2874132B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
JP2897776B2 (en) Electrical conductor in wire or cable form
US4055887A (en) Method for producing a stabilized electrical superconductor
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US4094059A (en) Method for producing composite superconductors
KR102427970B1 (en) Sub-elements based on nb-containing rod elements with powder-filled core tube for nbs-containing superconducting wire, and related manufacturing methods
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
JPH02288112A (en) Manufacture of nb3sn superconducting wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JPH02152119A (en) Manufacture of nb3al superconducting wire
JPH024931A (en) Manufacture of nb3x super conducting material
JPH02109213A (en) Manufacture of compound superconductive cable
JPH0290415A (en) Manufacture of compound superconducting wire
JPH02152118A (en) Manufacture of compound superconducting wire
JP2845905B2 (en) Compound conducting wire for alternating current
JP2644854B2 (en) Method of manufacturing compound superconducting wire
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof
JPH02109214A (en) Manufacture of compound superconductive cable
JPH02119014A (en) Manufacture of compound superconducting wire
JPH0211732A (en) Manufacture of nb3sn multicore superconducting wire
JPS6267156A (en) Production of multicore superconductor for alternating current
JPS59108202A (en) Nb3sn compound superconductive wire and method of producing same
JPS63245826A (en) Manufacture of compound superconductive wire
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPS62211358A (en) Manufacture of nb3sn superconductor wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees