JPH02288049A - Luminous screen - Google Patents

Luminous screen

Info

Publication number
JPH02288049A
JPH02288049A JP10592389A JP10592389A JPH02288049A JP H02288049 A JPH02288049 A JP H02288049A JP 10592389 A JP10592389 A JP 10592389A JP 10592389 A JP10592389 A JP 10592389A JP H02288049 A JPH02288049 A JP H02288049A
Authority
JP
Japan
Prior art keywords
film
aluminum
phosphor
luminescent screen
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10592389A
Other languages
Japanese (ja)
Inventor
Hideji Matsukiyo
秀次 松清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10592389A priority Critical patent/JPH02288049A/en
Publication of JPH02288049A publication Critical patent/JPH02288049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE:To improve luminance by filling the periphery of a dot or a stripe with metal excellent in heat conductivity and electric conductivity when forming a fluorescent film in dot or stripe shape on a glass substrate to make it into a luminous screen, and then covering the surface of the structure, being made this way, with an aluminum reflection film. CONSTITUTION:On a glass substrate 1 being cleaned enough, a thin aluminum layer 2 by heating deposition in low vacuum and a thick aluminum layer 3 by heating deposition in high vacuum are stacked, and the light absorption factor of the layer 3 is made small beforehand. Next, the space surrounded by this laminate is formed by etching this laminate, and phosphors 4, 5 and 6 are stuffed in these spaces, respectively. Thereafter, the whole face of these phosphors and the laminate where the surfaces are exposed is covered with an aluminum film 7 being a reflective film, and is heat-treated at about 450 deg.C into a fluorescent film. This way, a screen excellent in relative luminous output, luminance maintenance factor, nonelectrification factor, etc., is obtained easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、荷電粒子線照射により発光する螢光膜、並び
にデイスプレィデバイスにおいて、特に高輝度を要求さ
れる発光スクリーンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fluorescent film that emits light by irradiation with a charged particle beam, and a luminescent screen that particularly requires high brightness in display devices.

〔従来の技術〕[Conventional technology]

螢光膜を用いたデイスプレィデバイスのなかで最も良く
知られているカラーブラウン管の場合は、発光している
画素のコン1−ラストを向上させるために、それぞれの
画素間に発光吸収層として黒鉛部分(ブラックマトリッ
クス、以下BMという)を設けていた。上記BMの発明
は当時としては画期的なものであり、格段のコントラス
ト向上を実現させた。しかし一方、大画面で高精細なカ
ラーブラウン管のニーズが高まっている現在は、画面の
輝度不足が慢性的な問題点になっている。そこで、BM
の上に反射率が高いアルミニウム膜を形成したのち、螢
光体をスラリー塗布することにより、輝度向上を図る方
法が提案されている(特許Nα1435540)。
In the case of color cathode ray tubes, which are the most well-known display devices using fluorescent films, graphite is used as a light-emitting absorbing layer between each pixel to improve the contrast of the emitting pixels. (black matrix, hereinafter referred to as BM). The above-mentioned BM invention was groundbreaking at the time, and achieved a significant improvement in contrast. However, as the need for large-screen, high-definition color cathode ray tubes increases, insufficient screen brightness has become a chronic problem. Therefore, B.M.
A method of improving brightness has been proposed by forming an aluminum film with high reflectance on the surface and then applying a slurry of phosphor (Patent Nα1435540).

また、照射する電子線の電流も年々増大しており、螢光
膜の輝度寿命(劣化)に関する対策も強く求められてい
る。
Furthermore, the current of the irradiated electron beam is increasing year by year, and there is a strong demand for countermeasures against the brightness life (deterioration) of the fluorescent film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

螢光面の輝度を向上させるために、電子線の照射エネル
ギーを増す方策が取られている。これには、電子の加速
電圧増大と電子ビームの電流密度増大とがある。しかし
ながら、これら2つの方策は、いずれも螢光面に熱を蓄
積し、また、螢光体粒子表面を帯電しやすくする。一般
に螢光体の効率は温度が高くなると低下する傾向にあり
、また、熱によって結晶表面の欠陥生成が加速されるた
めに劣化しやすくなる。一方、螢光体粒子表面の帯電は
、結晶内部に強電界を発生させ、その結果結晶表面に欠
陥を生じる。
In order to improve the brightness of the fluorescent surface, measures have been taken to increase the irradiation energy of the electron beam. This includes an increase in the electron acceleration voltage and an increase in the current density of the electron beam. However, both of these strategies cause heat to accumulate on the phosphor surface and also tend to charge the phosphor particle surface. In general, the efficiency of phosphors tends to decrease as the temperature increases, and heat accelerates the formation of defects on the crystal surface, making them susceptible to deterioration. On the other hand, charging of the surface of the phosphor particles generates a strong electric field inside the crystal, resulting in defects on the crystal surface.

また、螢光体粒子表面の帯電は輝度低下につながる。そ
こで、これらの問題を解決するために、高エネルギーの
電子線照射においても、螢光膜に熱が蓄積されず、かつ
帯電しにくいような構造を有する螢光膜が要求されてい
る。
Furthermore, charging of the surface of the phosphor particles leads to a decrease in brightness. Therefore, in order to solve these problems, there is a need for a phosphor film having a structure in which heat is not accumulated in the phosphor film even when irradiated with high-energy electron beams, and the phosphor film is not easily charged.

従来技術では、螢光体ドツトあるいはストライプの回り
にあるBMは黒鉛粉末である。螢光膜の温度上昇および
帯電を抑制するためには、粉末よりも充填密度が高い積
層膜の方が有効である。ところがBM上に、熱および電
気伝導率が高く、高反射率を有する物質を数μmも充填
密度が高い膜の形で積層すると、上記積層膜は容易に剥
離してしまう。そこで本発明は、BMを使用しない螢光
膜において、上記要求を満足できる構造を実現した。
In the prior art, the BM around the phosphor dots or stripes is graphite powder. A laminated film with a higher packing density is more effective than powder in order to suppress temperature rise and charging of the fluorescent film. However, when a material having high thermal and electrical conductivity and high reflectance is laminated on the BM in the form of a film with a high packing density of several μm, the laminated film easily peels off. Therefore, the present invention has realized a structure that can satisfy the above requirements in a fluorescent film that does not use BM.

本発明は、高エネルギーの電子線照射においても、螢光
膜に熱が蓄積されず、かつ、帯電しにくいような構造を
有する発光スクリーンを得ることを目的とする。
An object of the present invention is to obtain a luminescent screen having a structure in which heat is not accumulated in the fluorescent film even when irradiated with a high-energy electron beam, and the fluorescent film is not easily charged.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、従来のBMの代りに、熱伝導性および電気
伝導性にすぐれた金属を用いることにより達成される。
The above object is achieved by using a metal with excellent thermal conductivity and electrical conductivity in place of the conventional BM.

しかしながら、ガラス基板上に直接反射率が高い金属を
成膜すると、鏡面ができ。
However, when a metal film with high reflectance is directly deposited on a glass substrate, a mirror surface is created.

外光の反射によりデイスプレィの画面は大変見えにくく
なる。これを解決するためには、基板に近い部分に高い
光吸収率を有する層を設けなければならない。
The display screen becomes very difficult to see due to the reflection of external light. In order to solve this problem, a layer with high light absorption must be provided in a portion close to the substrate.

上記金属としては、例えばアルミニウムのように加熱蒸
着法などにより容易に成膜できる物質が好ましい。また
、アルミニウムを蒸着する場合、低真空で蒸着すると光
吸収率が高い黒色アルミニウム膜を形成することができ
るので、上記目的を達成する材料としては最適のもので
ある。上記黒色アルミニウム膜の膜厚は0.5μmもあ
れば十分であり、それ以上厚くすると螢光体層の側面に
出た光を吸収することになるので、螢光膜の輝度が低下
してしまう。上記黒色アルミニウム膜は、低真空度にお
ける加熱蒸着、もしくはスパッタリング法によっても形
成できる。
The metal is preferably a substance that can be easily formed into a film by a heating vapor deposition method, such as aluminum. Furthermore, when aluminum is vapor-deposited, a black aluminum film with high light absorption can be formed by vapor-depositing it in a low vacuum, so it is the most suitable material for achieving the above object. It is sufficient for the black aluminum film to have a thickness of 0.5 μm; if it is thicker than that, it will absorb the light emitted from the sides of the phosphor layer, reducing the brightness of the phosphor layer. . The black aluminum film can also be formed by thermal evaporation or sputtering in a low vacuum.

〔作  用〕[For production]

電子線のような荷電粒子線が高密度で螢光膜に照射され
ると、程度の差はあるが螢光体粒子の表面が帯電状態に
なる。そして、−次粒子線の進入を妨害し、螢光体の発
光を損う一因になる。しかしながら、螢光体粒子の表面
に近接した金属層があると、上記帯電状態は緩和されて
発光に障害をきたさない。一方、高密度照射により螢光
膜中に熱が蓄積され、上記熱の作用で螢光体結晶内の欠
陥生成が促進される。そのため、熱伝導性にすぐれた金
属を用い、しかも積層した膜状にして螢光体のドツトあ
るいはストライプを囲むことによって、熱の吸収、放散
を行い、熱の蓄積を防止することができる。
When a phosphor film is irradiated with a charged particle beam such as an electron beam at high density, the surface of the phosphor particles becomes charged to varying degrees. This obstructs the entry of the -order particle beam and becomes a factor in impairing the luminescence of the phosphor. However, if there is a metal layer close to the surface of the phosphor particles, the charged state is relaxed and does not interfere with light emission. On the other hand, heat is accumulated in the phosphor film due to high-density irradiation, and the action of the heat promotes the formation of defects in the phosphor crystal. Therefore, by using a metal with excellent thermal conductivity and surrounding the phosphor dots or stripes in the form of a laminated film, it is possible to absorb and dissipate heat and prevent heat accumulation.

〔実施例〕 つぎに本発明の実施例を図面とともに説明する。〔Example〕 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による発光スクリーンの一実施例を概念
的に示した断面図である。
FIG. 1 is a sectional view conceptually showing an embodiment of a luminescent screen according to the present invention.

第1実施例 第1図において、十分に洗浄を行ったガラスの基板1上
に、アルミニウム層2を加熱蒸着した。
FIRST EXAMPLE In FIG. 1, an aluminum layer 2 was deposited by heating on a glass substrate 1 which had been thoroughly cleaned.

最初は低真空(数mTo r r)で、アルミニウムを
約0.1μmはど積層したが、この条件下では、上記ア
ルミニウムが光吸収率の高い黒色アルミニウムになる。
Initially, aluminum was laminated to a thickness of about 0.1 μm under low vacuum (several mTorr), but under this condition, the aluminum turned into black aluminum with high light absorption.

さらに高真空(IXIO5Torr)にして再度アルミ
ニウムを約25μm程積層し。
Furthermore, a high vacuum (IXIO 5 Torr) was applied and aluminum was again laminated to a thickness of about 25 μm.

熱および電気の伝導膜であるアルミニウム蒸着膜3を形
成し、上記蒸着膜3上に、一般に用いられている紫外線
ホトレジストを塗布し、マスクを介して紫外線照射を行
った。そして、エツチングにより螢光体を塗布するドツ
トパタンを形成した。
An aluminum vapor-deposited film 3, which is a thermally and electrically conductive film, was formed, a commonly used ultraviolet photoresist was applied onto the vapor-deposited film 3, and ultraviolet rays were irradiated through a mask. Then, a dot pattern for applying the phosphor was formed by etching.

螢光体の塗布はスラリー法で行った。すなわち、螢光体
にポリビニルアルコール(PVA)と重クロム酸アンモ
ニウムとを加えて混合し、所定の発光色ドツトに合わせ
たマスクを介して行う紫外線照射により、それぞれの発
光色の螢光体を付着させた。使用した螢光体は、ZnS
 : Ag、CQ(青色)、Zn S : Cu、Au
、Aff (緑色)、Y、02S : E u (赤色
)である。上記螢光体の塗布は青色螢光体4、緑色螢光
体5、赤色螢光体6の順で行い、その後、有機膜を用い
てフィルミングしたのち、反射膜であるアルミニウム膜
7を約0.4μm程積層した。さらに450℃の熱処理
を行って、フィルミングした上記有機膜を熱分解し、第
1図に示すような断面の螢光膜を作成した。
The phosphor was applied using a slurry method. That is, polyvinyl alcohol (PVA) and ammonium dichromate are added to the phosphor, mixed, and phosphors of each luminescent color are attached by UV irradiation through a mask matched to a predetermined luminescent color dot. I let it happen. The phosphor used was ZnS
: Ag, CQ (blue), Zn S: Cu, Au
, Aff (green), Y, 02S: E u (red). The above phosphors are applied in the order of blue phosphor 4, green phosphor 5, and red phosphor 6. After that, an organic film is used for filming, and then an aluminum film 7, which is a reflective film, is applied in the order of The layers were laminated to a thickness of about 0.4 μm. Further, heat treatment at 450° C. was performed to thermally decompose the filmed organic film, and a fluorescent film having a cross section as shown in FIG. 1 was prepared.

上記方法で得られた螢光膜を電子線照射装置にセットし
、加速電圧27kV、電流1μAの電子線を10X10
X10ラスタで照射して、螢光膜の発光出力を調べた。
The fluorescent film obtained by the above method was set in an electron beam irradiation device, and a 10×10 electron beam was applied at an acceleration voltage of 27 kV and a current of 1 μA.
The luminous output of the fluorescent film was examined by irradiating with a X10 raster.

比較のために、従来法であるBMを使用したプロセスの
螢光膜を検討した。また、電流を100/AAにして1
0分間上記螢光膜を強制的に劣化させ、照射の前後にお
ける発光出力比(輝度維持率と呼ぶ)を調べた。上記輝
度維持率の値は、1に近いほど螢光膜が劣化しにくいこ
とを示す尺度である。一方、螢光膜の帯電状態を調べる
ために、高密度照射の前後における反射および二次電子
線による発光出力比(非帯電率と呼ぶ)も求めた。この
非帯電率の値は、1に近い程螢光膜が帯電しにくいこと
を示す尺度である。
For comparison, a fluorescent film produced by a conventional process using BM was examined. Also, set the current to 100/AA and 1
The fluorescent film was forcibly degraded for 0 minutes, and the luminous output ratio (referred to as brightness maintenance rate) before and after irradiation was examined. The value of the luminance maintenance factor is a scale indicating that the closer the value is to 1, the more difficult the fluorescent film is to deteriorate. On the other hand, in order to investigate the charging state of the fluorescent film, the emission output ratio (referred to as uncharged rate) due to reflection and secondary electron beam before and after high-intensity irradiation was also determined. This uncharged rate value is a measure indicating that the closer it is to 1, the less likely the fluorescent film is to be charged.

上記発光スクリーンを構成する螢光膜の上記特性をそれ
ぞれ比較した結果を表1に示す。
Table 1 shows the results of comparing the characteristics of the fluorescent films constituting the luminescent screen.

本発明によれば、BMの代りにアルミニウムを用いた螢
光膜の方が、高い発光出力で輝度劣化しにくく、また、
帯電しにくいことが判る。さらに。
According to the present invention, a fluorescent film using aluminum instead of BM has a higher luminous output and is less likely to deteriorate in brightness, and
It turns out that it is difficult to charge. moreover.

アルミニウム以外の金属として金、銅および銀を検討し
た結果、黒色アルミニウムに関する点以外については、
アルミニウムと同じような効果を有することが確認でき
た。
As a result of considering gold, copper, and silver as metals other than aluminum, except for the points regarding black aluminum,
It was confirmed that it had the same effect as aluminum.

第2実施例 十分に洗浄した陰極線管のフェースプレートガラス1の
内面に、加熱蒸着法によって黒色アルミニウム2を約0
.1μm程積層し、さらに上記膜の上に無電解メツキ法
で約0.5μm、電解メツキ法で約25μmのアルミニ
ウム層3をlA層した。
Second Embodiment Approximately zero black aluminum 2 is applied to the inner surface of a thoroughly cleaned face plate glass 1 of a cathode ray tube by heating vapor deposition.
.. The aluminum layer 3 was laminated to a thickness of about 1 .mu.m, and then an aluminum layer 3 of about 0.5 .mu.m thick was formed by electroless plating and about 25 .mu.m thick by electrolytic plating on the above film.

つぎに第1実施例と同様にしてバタン化および螢光体塗
布を行い、よく知られたカラーブラウン管の製造と同様
のプロセスで、カラー陰極線管を作製した。
Next, battening and phosphor coating were carried out in the same manner as in the first example, and a color cathode ray tube was manufactured using a process similar to that used for manufacturing well-known color cathode ray tubes.

試作陰極線管の発光出力は、加速電圧27kV、カソー
ド電流500μA、20インチラスクで評価した。また
、第1実施例と同様の評価として、輝度維持率の測定を
電流1mA、1インチラスクの強制照射で行い、それら
の比較結果をそれぞれ表2に示す。
The light emitting output of the prototype cathode ray tube was evaluated using an accelerating voltage of 27 kV, a cathode current of 500 μA, and a 20-inch rusk. In addition, as an evaluation similar to the first example, the brightness maintenance rate was measured using forced irradiation with a current of 1 mA and a 1-inch rusk, and the comparison results are shown in Table 2.

本実施例によれば、フェースプレートガラスを用いたカ
ラー陰極線管に、本発明による螢光膜を応用した場合に
も、従来のBM法による螢光膜よりは発光特性にすぐれ
ていることが判る。
According to this example, it can be seen that even when the phosphor film according to the present invention is applied to a color cathode ray tube using a face plate glass, the luminescence characteristics are superior to that of the phosphor film made using the conventional BM method. .

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による発光スクリーンは、ガラス基
板上にドツトあるいはストライプ状に螢光膜を形成した
発光スクリーンにおいて、上記螢光体ドツトあるいはス
トライプの回りを、熱伝導性および電気伝導性にすぐれ
た金属で埋め、上記埋込み層が螢光体ドツトあるいはス
トライプ上に形成したアルミニウム反射膜と接する構造
にしたことにより、上記螢光体ドツトあるいはストライ
プのコントラストを極度に低減させることなく、輝度を
数%から十数%高くでき、さらに、すぐ九た輝度寿命特
性を有するため、大画面で、高精細な表示装置を、さら
に高品質化するのに役立つという効果を有している。
As described above, the luminescent screen according to the present invention has a fluorescent film formed in the form of dots or stripes on a glass substrate, and the area around the fluorescent dots or stripes has excellent thermal conductivity and electrical conductivity. By using a structure in which the buried layer is in contact with the aluminum reflective film formed on the phosphor dots or stripes, the brightness can be increased several times without significantly reducing the contrast of the phosphor dots or stripes. % to more than 10%, and furthermore, it has a brightness life characteristic of almost 90%, which has the effect of helping to further improve the quality of large-screen, high-definition display devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による発光スクリーンの一実施例を概念
的゛に示した断面図である。 1・・・ガラス基板 3・・・熱および電気伝導性がすぐれた金属4.5.6
・・螢光体 7・・アルミニウム反射膜
FIG. 1 is a sectional view conceptually showing an embodiment of the luminescent screen according to the present invention. 1...Glass substrate 3...Metal with excellent thermal and electrical conductivity 4.5.6
...Fluorescent material 7...Aluminum reflective film

Claims (1)

【特許請求の範囲】 1、ガラス基板上にドットあるいはストライプ状に螢光
膜を形成する発光スクリーンにおいて、上記螢光体ドッ
トあるいは螢光体ストライプの回りを、熱伝導性および
電気伝導性にすぐれた金属層で埋め、上記埋込み金属層
が、螢光体ドットあるいは螢光体ストライプの上に形成
したアルミニウム反射膜に接することを特徴とする発光
スクリーン。 2、上記金属層は、アルミニウムで形成され、ガラス基
板直上に、黒色アルミニウム被膜とともに形成したもの
であることを特徴とする特許請求の範囲第1項に記載し
た発光スクリーン。 3、特許請求の範囲第1項または第2項に記載した発光
スクリーンを有することを特徴とするカラー陰極線管。 4、特許請求の範囲第1項または第2項に記載した金属
層を、電解鍍金法もしくは無電解鍍金法のいずれか一方
、またはそれらの組合わせ、あるいは加熱蒸着法との組
合わせによって、ガラス基板直上に形成したのち、これ
ら金属層の間に螢光膜を塗布したことを特徴とする発光
スクリーンの製造方法。
[Claims] 1. In a luminescent screen in which a fluorescent film is formed in the form of dots or stripes on a glass substrate, the area around the fluorescent dots or stripes has excellent thermal conductivity and electrical conductivity. 1. A luminescent screen, characterized in that the embedded metal layer is in contact with an aluminum reflective film formed on the phosphor dots or phosphor stripes. 2. The luminescent screen as set forth in claim 1, wherein the metal layer is made of aluminum and is formed together with a black aluminum coating directly on the glass substrate. 3. A color cathode ray tube comprising a luminescent screen according to claim 1 or 2. 4. The metal layer described in claim 1 or 2 is formed on glass by either electrolytic plating or electroless plating, a combination thereof, or a combination with a heating vapor deposition method. A method for manufacturing a luminescent screen, characterized in that a fluorescent film is applied between these metal layers after forming the luminescent screen directly on a substrate.
JP10592389A 1989-04-27 1989-04-27 Luminous screen Pending JPH02288049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10592389A JPH02288049A (en) 1989-04-27 1989-04-27 Luminous screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10592389A JPH02288049A (en) 1989-04-27 1989-04-27 Luminous screen

Publications (1)

Publication Number Publication Date
JPH02288049A true JPH02288049A (en) 1990-11-28

Family

ID=14420385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10592389A Pending JPH02288049A (en) 1989-04-27 1989-04-27 Luminous screen

Country Status (1)

Country Link
JP (1) JPH02288049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133030A (en) * 1989-10-16 1991-06-06 Miyota Seimitsu Kk Color cathode-ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133030A (en) * 1989-10-16 1991-06-06 Miyota Seimitsu Kk Color cathode-ray tube

Similar Documents

Publication Publication Date Title
US7002289B1 (en) Light-emitting device having light-emissive particles partially coated with intensity-enhancement material
US6630786B2 (en) Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
US2233786A (en) Fluorescent screen assembly and method of manufacture
US3838273A (en) X-ray image intensifier input
US20060170329A1 (en) Image display device
US6833663B2 (en) Fluorescent material layer with metal back, method of forming the fluorescent material layer, and image display device
US3904502A (en) Method of fabricating a color display screen employing a plurality of layers of phosphors
US4484100A (en) Cathode-ray tube for projector having heat conduction and radiating means
JPH02288049A (en) Luminous screen
JPH11339683A (en) Cathode-ray tube and its manufacture
JPH03233891A (en) El(electroluminescence) element and manufacture thereof
JP3898120B2 (en) Light emitting substrate and light emitting element using the light emitting substrate
JPH0325893A (en) Electroluminescent display element and manufacture thereof
JPS58152350A (en) Phosphor screen for crt
JPH05159718A (en) Phosphor screen
JPS60257097A (en) Thin film el display unit and method of producing same
JP3095876B2 (en) Flat color display and method of manufacturing the same
JP2795185B2 (en) Display device
JP2723717B2 (en) Fluorescent display tube
JPS61284049A (en) Phosphor display panel
JPH10251632A (en) Fluorescent substance, fluorescent film and cathode ray tube using the same
JPS62268042A (en) Phosphor display plate
KR100187484B1 (en) Element phosphorescent
JPH01315985A (en) Manufacture of el panel
JPS5887740A (en) Fluorescent display tube