JPH02287409A - Method for connecting optical fiber - Google Patents

Method for connecting optical fiber

Info

Publication number
JPH02287409A
JPH02287409A JP10781789A JP10781789A JPH02287409A JP H02287409 A JPH02287409 A JP H02287409A JP 10781789 A JP10781789 A JP 10781789A JP 10781789 A JP10781789 A JP 10781789A JP H02287409 A JPH02287409 A JP H02287409A
Authority
JP
Japan
Prior art keywords
optical fiber
primary coating
coating layer
thin film
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10781789A
Other languages
Japanese (ja)
Inventor
Sadanori Ishida
禎則 石田
Yukio Komura
幸夫 香村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10781789A priority Critical patent/JPH02287409A/en
Publication of JPH02287409A publication Critical patent/JPH02287409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove primary coating layers without damaging fiber bodies and to allow thermal welding with high reliability by etching away the primary coating layers, then connecting the end faces of the juncture of the two fibers to each other by the thermal welding. CONSTITUTION:The primary coating layers are etched away and the end faces of the juncture of the two fibers are connected by the thermal welding. Namely, the front end part of the optical fiber 1 coated with a functional thin film 1f consisting of, for example, amorphous carbon is disposed between discharge electrodes 3a and 3b and after the inside of a chamber 2 is evacuated, gaseous O2 is introduced into the chamber and a high-frequency voltage is impressed between the discharge electrodes 3a and 3b to form a plasma discharge electrode A. The thin film of the amorphous carbon is then removed and the optical fiber body is exposed. The butted part of both end faces of the obtained optical fixes are thermally welded to connect the fibers. The primary coating layers 1f can be removed in this way without entailing the troubles, such as the thermal influence on the optical fiber bodies or fusion cutting thereof. The stability and reliability of the thermal welding state at the time of the connection are thus enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバの接続方法に関し、更に詳しくは、
光ファイバを相互に接続する際に、互いの接続部表面に
形成されている1次被覆層をファイバ本体に損傷を与え
ることなく除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for connecting optical fibers, and more specifically,
The present invention relates to a method for removing a primary coating layer formed on the surfaces of mutually connected portions without damaging the fiber body when optical fibers are connected to each other.

(従来の技術) 光ファイバは、コアおよびクラッドから成るファイバ本
体、その表面を被覆して形成される1次被覆層、更には
この一次被覆層の上に形成され、ナイロン等の材料から
成る2次被覆層とで一般には構成されている。
(Prior Art) An optical fiber consists of a fiber main body consisting of a core and a cladding, a primary coating layer formed by coating the surface of the fiber body, and a second coating layer formed on the primary coating layer made of a material such as nylon. It is generally composed of a subsequent coating layer.

ここで、1次被覆層は、ファイバ本体における表面欠陥
の発生を防止するための保護膜であると同時に、光ファ
イバの屈曲性等の機械的特性を向上せしめて、その長期
使用時の信転性を付与する働きを有する。従来、この1
次被覆層の材料としては、シリコーン樹脂が多用されて
いる。
Here, the primary coating layer is a protective film to prevent the occurrence of surface defects on the fiber body, and at the same time improves the mechanical properties such as flexibility of the optical fiber and improves reliability during long-term use. It has the function of imparting sex. Conventionally, this 1
Silicone resin is often used as the material for the next coating layer.

ところで、光ファイバを相互に接続する場合には、まず
、前記した2次被覆層を金属導体ケーブル線の被覆除去
に用いられているワイヤストリッパなどで剥離して1次
被覆層を露出せしめ、ついで、この1次被覆層を、アル
コールのような溶剤をしみ込ませたガーゼなどで幾度も
しごいて除去し、その後、光フアイバ本体の相互端面を
軸合わ甘しで突き合わせ、その接続部をアーク放電によ
り熱融着するという方法が採られている。
By the way, when connecting optical fibers to each other, first, the above-mentioned secondary coating layer is peeled off using a wire stripper used for removing the coating of metal conductor cable wires to expose the primary coating layer, and then the primary coating layer is exposed. This primary coating layer is removed by repeatedly squeezing it with gauze soaked in a solvent such as alcohol, and then the mutual end faces of the optical fiber bodies are butted against each other with an axis alignment, and the connection portion is bonded by arc discharge. A method of heat fusion is used.

しかしながら、このような方法は、1次被覆層と光フア
イバ本体との密着性が低い場合には可能であるが、1次
被覆層が光フアイバ本体に強固に密着しているときには
事実上不可能である。しかも、この方法は、光フアイバ
本体の表面を傷つけ、その結果、光ファイバの強度を著
しく低下せしめるという欠点を有している。
However, although such a method is possible when the adhesion between the primary coating layer and the optical fiber body is low, it is virtually impossible when the primary coating layer is tightly adhered to the optical fiber body. It is. Moreover, this method has the disadvantage of damaging the surface of the optical fiber body, resulting in a significant reduction in the strength of the optical fiber.

一方、最近は、光ファイバの長期使用時における信頼性
を高めるために、光フアイバ本体の表面に、W、Moの
ような高融点金属;非晶質カーボン;セラミックス等を
、真空蒸着法、スパッタリング法、気相化学反応法(C
VD法)のような成膜技術により、厚み数千人オーダで
被着せしめて機能性薄膜を形成する試みがなされている
On the other hand, recently, in order to improve the reliability of optical fibers during long-term use, high melting point metals such as W and Mo; amorphous carbon; method, gas phase chemical reaction method (C
Attempts have been made to form functional thin films with a thickness on the order of several thousand layers using film forming techniques such as VD (VD method).

このような機能性薄膜は、緻密で機械的強度が大きく、
また、光フアイバ本体と強固に密着しているので、光フ
ァイバの機械的強度を高めるとともに、性格の異なる各
種雰囲気からも光ファイバを有効に保護してその耐久性
を高め、総じて、光ファイバの使用時における長期信頼
性を高めるという点で非常に優れた機能を発揮する。
Such functional thin films are dense and have high mechanical strength.
In addition, since it is firmly attached to the optical fiber body, it not only increases the mechanical strength of the optical fiber, but also effectively protects the optical fiber from various atmospheres with different characteristics, increasing its durability. It exhibits an extremely superior function in terms of increasing long-term reliability during use.

(発明が解決しようとする課1ll) しかしながら、上記した機能性薄膜は光フアイバ本体の
表面に強固に密着しているため、それを除去することは
非常に困難である。
(Issue to be Solved by the Invention 1ll) However, since the above-mentioned functional thin film is tightly adhered to the surface of the optical fiber body, it is very difficult to remove it.

この機能性薄膜を除去することなく、直接、光フアイバ
相互を熱融着して接続することもできるが、しかし、そ
の場合には、光フアイバ本体(石英ガラス)と前記した
ような機能性薄膜との諸物性の相違(例えば、融点の違
い)などにより、安定しかつ信顛度の高い融着状態が得
られない、とくに、前記した機能性薄膜が高融点または
非溶融材料で構成されているため、これら薄膜を除去す
るためには、光ファイバの接続部に大きな熱エネルギー
を投入することが必要になるが、その際に、投入エネル
ギーを精密に調節しないと、結果として、光ファイバを
溶断したりまたは熱による変質を招くという事態が生ず
る。
It is also possible to connect the optical fibers directly to each other by thermal fusion without removing this functional thin film, but in that case, the optical fiber body (quartz glass) and the functional thin film described above may be connected. A stable and highly reliable fused state cannot be obtained due to differences in physical properties (for example, differences in melting points) between Therefore, in order to remove these thin films, it is necessary to input a large amount of thermal energy into the joint of the optical fiber, but if the input energy is not precisely adjusted, the optical fiber may be damaged as a result. This may lead to melting or deterioration due to heat.

また、熱融着時に、機能性薄膜の一部が不純物として接
続部に偏析することが起り、その結果、接続した光ファ
イバにおける強度の低下や光損失の増加を招くことにも
なる。
Furthermore, during thermal fusion, part of the functional thin film may segregate as impurities at the connection portion, resulting in a decrease in strength and an increase in optical loss in the connected optical fibers.

前記した機能性Tll1l!lIを除去するためには、
例えば光ファイバをアーク放電領域に置き、そこで発生
せしめた高温で除去するという方法で行なわれることも
あるが、しかし、このような方法では、前述したように
、その高温により、光フアイバ本体の溶断等の不都合を
招かざるを得ない。
The above functionality Tll1l! To remove lI,
For example, this method is sometimes carried out by placing an optical fiber in an arc discharge area and removing it at the high temperature generated there. This will inevitably lead to other inconveniences.

このように、機能性薄膜を1次被覆層とする光ファイバ
の場合、その接続に先立って行なう1次被覆層の除去は
非常に困難であり、光ファイバに悪影響を及ぼさずに行
なう有効な方法は、現在までのところ知られていない。
As described above, in the case of optical fibers having a functional thin film as the primary coating layer, it is extremely difficult to remove the primary coating layer prior to splicing, and there is no effective method to remove the primary coating layer without adversely affecting the optical fiber. is unknown to date.

本発明は、上記したような問題を解決し、強固に密着す
る機能性薄膜を、光フアイバ本体への熱影響を与えるこ
となく、極めて円滑に除去し、もって安定しかつ信幀度
の高い熱融着を可能とする光ファイバの接続方法の提供
を目的とする。
The present invention solves the above-mentioned problems, removes the tightly adherent functional thin film extremely smoothly without any thermal effect on the optical fiber body, and generates stable and reliable heat. The purpose of this invention is to provide an optical fiber connection method that enables fusion splicing.

(課題を解決するための手段) 上記した目的を達成するために、本発明においては、接
続すべき光ファイバの接続部表面に形成されている1次
被覆層をエツチング除去し、ついで互いの接続部端面を
熱融着して接続することを特徴とする光ファイバの接続
方法が提供される。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the present invention, the primary coating layer formed on the surface of the connecting portion of optical fibers to be connected is removed by etching, and then the mutually connecting A method for connecting optical fibers is provided, which is characterized in that the end faces of the optical fibers are connected by thermal fusion.

本発明方法は、従来の1次被覆層がシリコーン樹脂であ
るような光ファイバに適用することもできるが、しかし
前記した機能性薄膜を1次被覆層とする光ファイバに適
用してすこぶる有効である。
Although the method of the present invention can be applied to conventional optical fibers whose primary coating layer is silicone resin, it is extremely effective when applied to optical fibers whose primary coating layer is the functional thin film described above. be.

エツチング除去は、光ファイバの接続すべき個所をチャ
ンバ内に収納し、チャンバ内を機能性薄膜の材料に対し
侵蝕性のあるガス雰囲気とし、該機能性薄膜を該ガスで
侵蝕することによって行なわれる。このとき、前記ガス
雰囲気をプラズマ放電状態にすると、エツチング除去効
果が著しく向上するのでを効である。
Etching removal is performed by placing the part where the optical fiber is to be connected in a chamber, creating a gas atmosphere in the chamber that is corrosive to the material of the functional thin film, and corroding the functional thin film with the gas. . At this time, it is effective to bring the gas atmosphere into a plasma discharge state because the etching removal effect is significantly improved.

例えば、機能性薄膜が非晶質カーボンから成る場合は、
ガス雰囲気としてOt雰囲気を設定し、かつプラズマ放
電状態を形成すればよい、また、機能性薄膜が非晶質S
iCから成る場合は、ガス雰囲気としてN F s雰囲
気を設定し、プラズマ放電状態を形成すればよい。
For example, if the functional thin film is made of amorphous carbon,
It is sufficient to set an Ot atmosphere as the gas atmosphere and to form a plasma discharge state.
In the case of using iC, an N F s atmosphere may be set as the gas atmosphere to form a plasma discharge state.

機能性薄膜を除去したのちは、常法に従い、各光フアイ
バ本体の突き合わせ・軸合ねせをし、その部分を熱融着
すればよい。
After removing the functional thin film, the respective optical fiber bodies may be butt-aligned and axially aligned in accordance with a conventional method, and the portions thereof may be heat-sealed.

(発明の実施例) 第1図に示したように、光ファイバ1の接続部の先端か
ら約10閣の長さでシリコーン樹脂の2次被覆層1aを
除去した。光フアイバ本体1bはコアlcとクラッドl
dから成り、その表面は厚みが約1000人の非晶質カ
ーボンの機能性′gt膜leで被覆されている。
(Embodiment of the Invention) As shown in FIG. 1, the secondary coating layer 1a of silicone resin was removed at a length of about 10 cm from the tip of the connecting portion of the optical fiber 1. The optical fiber body 1b has a core lc and a cladding l
The surface is coated with a functional film of amorphous carbon having a thickness of approximately 1000 mm.

この光ファイバ1を2つ割りのチャンバ2の中に、バッ
キング2aを介して気密に収納した。
This optical fiber 1 was airtightly housed in a chamber 2 divided into two via a backing 2a.

チャンバ2には、互いに所定間隔を置いて対向する2枚
の放電電極3a、3bが配置され、各放電電極3a、3
bはそれぞれ高周波電源4.4と接続され、両極間にプ
ラズマ発生ができるようになっている。
In the chamber 2, two discharge electrodes 3a, 3b facing each other with a predetermined interval are arranged, and each discharge electrode 3a, 3
b are each connected to a high frequency power source 4.4, so that plasma can be generated between the two poles.

チャンバ2には、ロータリーポンプ5が接続され、チャ
ンバ2内を所定圧にまで減圧できるようになっている。
A rotary pump 5 is connected to the chamber 2 so that the pressure inside the chamber 2 can be reduced to a predetermined pressure.

また、チャンバ2には0□ガスボンベ6がtlEされ、
ここからマスフローコントローラ7を介して流it!1
1整されたO、ガスがチャンバ2内に流入できるように
なっている。
In addition, a 0□ gas cylinder 6 is installed in the chamber 2,
From here, it flows through the mass flow controller 7! 1
The regulated O gas is allowed to flow into the chamber 2.

光ファイバ1の先端部分は、放電電極3a、  3bの
間に配設されたのち、ロータリーポンプ5を作動せしめ
てチャンバ2内を排気し、かつ、02ガスボンベ6を開
にしてマスフローコントローラ7を調節することにより
、0□ガスをチャンバ2内に導入し、チャンバ2内をQ
、 l Torrに維持した。
After the tip of the optical fiber 1 is disposed between the discharge electrodes 3a and 3b, the rotary pump 5 is activated to exhaust the chamber 2, and the 02 gas cylinder 6 is opened to adjust the mass flow controller 7. By doing so, 0□ gas is introduced into the chamber 2, and the inside of the chamber 2 becomes Q.
, l Torr.

この状態で、放電電極3a、3b間に高周波電力50W
(13,56MH,)を導入してプラズマ放電域Aを形
成し、100秒間保持した。非晶質カーボンの薄膜は約
10人/secの速度で除去され、光フアイバ本体が露
出した。
In this state, a high frequency power of 50 W is applied between the discharge electrodes 3a and 3b.
(13,56 MH,) was introduced to form a plasma discharge region A, which was maintained for 100 seconds. The thin film of amorphous carbon was removed at a rate of about 10 people/sec, exposing the optical fiber body.

得られた光ファイバにおいては、その先端部が前記プラ
ズマに曝された状態にあるので、その部分を再度切断し
た(第3図)、このようにして、先端部の非晶質カーボ
ン薄膜を除去した光ファイバ1.1の両端面を軸合わせ
して突き合わせ、その突き合わせ部を熱融着して接続し
た(第4図)。
Since the tip of the obtained optical fiber was exposed to the plasma, that part was cut again (Figure 3). In this way, the amorphous carbon thin film at the tip was removed. The axes of both end faces of the optical fiber 1.1 were aligned and abutted against each other, and the abutted portions were connected by heat fusion (FIG. 4).

形成された接続部につき、その部分の強度試験を行なっ
たところ、何らの強度低下も認められなかった。また、
光損失もなく、光ファイバとしての機能低下は起らなか
った。
When a strength test was conducted on the formed connection portion, no decrease in strength was observed. Also,
There was no optical loss and no deterioration in functionality as an optical fiber occurred.

実施例2 第5図に示した装置を用いて非晶質SiC薄膜の除去を
行なった。すなわち、チャンバ2の中に光ファイバlの
先端部を気密に挿入し、チャンバ2内には、ボンベ8a
からCl1Fsガスを、ボンベ8bからはN2ガスを、
各マスフローコントローラ9a、9bを調節することに
より、C1F。
Example 2 An amorphous SiC thin film was removed using the apparatus shown in FIG. That is, the tip of the optical fiber l is hermetically inserted into the chamber 2, and the cylinder 8a is inserted into the chamber 2.
Cl1Fs gas from cylinder 8b, N2 gas from cylinder 8b,
C1F by adjusting each mass flow controller 9a, 9b.

ガスを1%に希釈して導入した。導入され、使用後のガ
スは、ブロア10を介してスクラバー11で処理した。
The gas was diluted to 1% and introduced. The gas introduced and used was processed by a scrubber 11 via a blower 10.

この状態で、チャンバ2に設けられたヒータ12を作動
せしめて、チャンバ2内を約100 ”Cに加熱した。
In this state, the heater 12 provided in the chamber 2 was activated to heat the inside of the chamber 2 to about 100''C.

約40秒後には、非晶質SiC薄膜1fは完全に除去さ
れた。
After about 40 seconds, the amorphous SiC thin film 1f was completely removed.

処理後の光ファイバには何の悪影響も認められず、また
、第4図のようにして接続したのちも、その機能低下は
全く認められなかった。
No adverse effects were observed on the optical fibers after treatment, and no deterioration in their functionality was observed even after they were connected as shown in FIG.

(発明の効果) 以上の説明で明らかなように、本発明方法によれば、光
フアイバ本体に強固に密着している機能性薄膜であって
も、従来のアーク放電のような高温処理を施すことなく
、光フアイバ本体への熱影響や溶断という不都合を招く
ことなく、低温下で極めて容易に除去することができる
。そして、光フアイバ本体の変質等は起らないので、接
続時の熱融着状態も安定かつ信鯨度の高いものとなる。
(Effects of the Invention) As is clear from the above explanation, according to the method of the present invention, even a functional thin film that is tightly adhered to the optical fiber body can be subjected to high-temperature treatment like conventional arc discharge. It can be removed extremely easily at low temperatures without causing any inconveniences such as thermal effects on the optical fiber body or melting. Further, since no deterioration or the like of the optical fiber body occurs, the thermal fusion state at the time of connection is stable and highly reliable.

本発明方法は、近年、赤外ファイバとして研究が進めら
れているフッ化物ファイバの接続時に、その光フアイバ
本体の1次被覆層である各種セラミックスや金属の薄膜
を除去する際に適用してとくに存効である。その理由は
、上記赤外ファイバにおいては、どのタイプのものも高
温劣化が激しいからである。
The method of the present invention is particularly applicable to removing thin films of various ceramics and metals that are the primary coating layer of the optical fiber body when connecting fluoride fibers, which have been studied as infrared fibers in recent years. It is valid. The reason for this is that all types of infrared fibers are subject to severe high-temperature deterioration.

4、4,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光ファイバの接続先端部を示す斜視図、第2図
は本発明の実施例を行なう装置の概略図、第3図はエツ
チング除去したのちの先端部を切除した状態を示す斜視
図、第4図は光ファイバを相互に接続した状態を示す斜
視図、第5図は本発明の他の実施例を行なう装置の概略
図である。 1・・・光ファイバ、la・・・2次被覆層、lb・・
・光フアイバ本体、1c・・・コア、ld・・・クラッ
ド、le。 1f・・・機能性情1ll(1次被覆層)、2・・・チ
ャンバ、2a・・・バッキング、3a、3b・・・放電
電極、4・・・高周波電源、5・・・ロータリーポンプ
、6・・・0!ガスボンベ、7・・・マスフローコント
ローラ、8a・・・Cff1FSガスボンベ、8b・・
・N、ガスボンベ、9a+9b・・・マスフローコント
ローラ、lO・・・ブロア、11・・・スクラバー、1
2・・・ヒータ。
FIG. 1 is a perspective view showing the connecting tip of an optical fiber, FIG. 2 is a schematic diagram of an apparatus for carrying out an embodiment of the present invention, and FIG. 3 is a perspective view showing the tip after being etched and removed. , FIG. 4 is a perspective view showing a state in which optical fibers are connected to each other, and FIG. 5 is a schematic diagram of an apparatus for carrying out another embodiment of the present invention. 1... Optical fiber, la... secondary coating layer, lb...
- Optical fiber body, 1c...core, ld...cladding, le. 1f...Functional information 1ll (primary coating layer), 2...Chamber, 2a...Backing, 3a, 3b...Discharge electrode, 4...High frequency power supply, 5...Rotary pump, 6 ...0! Gas cylinder, 7...Mass flow controller, 8a...Cff1FS gas cylinder, 8b...
・N, gas cylinder, 9a+9b...mass flow controller, lO...blower, 11...scrubber, 1
2... Heater.

Claims (3)

【特許請求の範囲】[Claims] (1)接続すべき光ファイバの接続部表面に形成されて
いる1次被覆層をエッチング除去し、ついで互いの接続
部端面を熱融着して接続することを特徴とする光ファイ
バの接続方法。
(1) A method for connecting optical fibers, which comprises etching away the primary coating layer formed on the surfaces of the connecting portions of the optical fibers to be connected, and then thermally fusing the end surfaces of the connecting portions to connect them. .
(2)前記1次被覆層のエッチング除去が、プラズマ放
電域で行なわれる請求項1記載の光ファイバの接続方法
(2) The method for connecting optical fibers according to claim 1, wherein the first coating layer is removed by etching in a plasma discharge region.
(3)前記1次被覆層が、高融点金属、非晶質カーボン
、セラミックスのいずれか1種の薄膜である請求項1ま
たは2に記載の光ファイバの接続方法。
(3) The method for connecting optical fibers according to claim 1 or 2, wherein the primary coating layer is a thin film of any one of high melting point metal, amorphous carbon, and ceramics.
JP10781789A 1989-04-28 1989-04-28 Method for connecting optical fiber Pending JPH02287409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10781789A JPH02287409A (en) 1989-04-28 1989-04-28 Method for connecting optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10781789A JPH02287409A (en) 1989-04-28 1989-04-28 Method for connecting optical fiber

Publications (1)

Publication Number Publication Date
JPH02287409A true JPH02287409A (en) 1990-11-27

Family

ID=14468788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10781789A Pending JPH02287409A (en) 1989-04-28 1989-04-28 Method for connecting optical fiber

Country Status (1)

Country Link
JP (1) JPH02287409A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264527A (en) * 2006-03-30 2007-10-11 Univ Nagoya Method and apparatus for removing coating of wire shaped body by using plasma
EP2115505A1 (en) * 2007-02-07 2009-11-11 Ecosmart Technologies, Inc. Multi-electrode system
US8911161B2 (en) 2011-01-14 2014-12-16 3Sae Technologies, Inc. Thermal mechanical diffusion system and method
US9028158B2 (en) 2007-02-07 2015-05-12 3Sae Technologies, Inc. Multi-stage fiber processing system and method
US9086539B2 (en) 2007-02-07 2015-07-21 3Sae Technologies, Inc. Multi-electrode system with vibrating electrodes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264527A (en) * 2006-03-30 2007-10-11 Univ Nagoya Method and apparatus for removing coating of wire shaped body by using plasma
WO2007114242A1 (en) * 2006-03-30 2007-10-11 The Furukawa Electric Co., Ltd. Method and apparatus for removing film on strip body by using plasma
US8758637B2 (en) 2006-03-30 2014-06-24 The Furukawa Electric Co., Ltd. Apparatus and method of removing coating of line-shaped body using plasma
EP2115505A1 (en) * 2007-02-07 2009-11-11 Ecosmart Technologies, Inc. Multi-electrode system
EP2115505A4 (en) * 2007-02-07 2014-05-21 3Sae Technologies Inc Multi-electrode system
US9028158B2 (en) 2007-02-07 2015-05-12 3Sae Technologies, Inc. Multi-stage fiber processing system and method
US9086539B2 (en) 2007-02-07 2015-07-21 3Sae Technologies, Inc. Multi-electrode system with vibrating electrodes
US9377584B2 (en) 2007-02-07 2016-06-28 3Sae Technologies, Inc. Multi-electrode system with vibrating electrodes
US9632252B2 (en) 2007-02-07 2017-04-25 3Sae Technologies, Inc. Multi-electrode system with vibrating electrodes
US9952386B2 (en) 2007-02-07 2018-04-24 3Sae Technologies, Inc. Multi-electrode system with vibrating electrodes
US8911161B2 (en) 2011-01-14 2014-12-16 3Sae Technologies, Inc. Thermal mechanical diffusion system and method
US9526129B2 (en) 2011-01-14 2016-12-20 3Sae Technologies, Inc. Thermal mechanical diffusion system and method

Similar Documents

Publication Publication Date Title
JPH0287106A (en) Fusion splicing method for hermetically coated optical fiber
US5100507A (en) Finishing techniques for lensed optical fibers
JPH03502839A (en) High strength optical fiber splice
JPH02287409A (en) Method for connecting optical fiber
JPH06230231A (en) Hermetic sealing method for optical fiber introducing part
US20020051617A1 (en) Apparatus and method to metallize, reinforce, and hermetically seal multiple optical fibers
JPH02195304A (en) Fusion splicing method for optical fiber
JPH06331849A (en) Method and device for fusing and joining optical fiber
JPH02287410A (en) Method for connecting optical fiber
JP2001166175A (en) Fusion splicing method for optical fiber
JP2697692B2 (en) Pigtails and how to make them
JP3570486B2 (en) Optical fiber with ferrule and method of manufacturing the same
JP2895654B2 (en) High strength connection method of optical fiber
JP3192771B2 (en) Optical element mounting method
US5623570A (en) Method of fusion-splicing optical fiber
JP3076127B2 (en) Optical fiber terminal for hermetic sealing
JPH0667038A (en) Airtightly sealed structure of optical fiber introducing part
CN102539057A (en) Manufacture method of optical fiber sensor
JPS6191603A (en) Optical fiber end surface mirror and its manufacture
JPS641763B2 (en)
JP3307493B2 (en) Manufacturing method of quartz optical fiber with lens
JPH0659134A (en) Hermetically sealed optical fiber terminal
JPS59222983A (en) Sealing method of optical part for laser tube
JPS58178580A (en) Sealing method for optical part of laser tube
JPH01284806A (en) Erasing method for flaw on surface of optical fiber