JPH02286939A - Catapillar belt - Google Patents

Catapillar belt

Info

Publication number
JPH02286939A
JPH02286939A JP1107381A JP10738189A JPH02286939A JP H02286939 A JPH02286939 A JP H02286939A JP 1107381 A JP1107381 A JP 1107381A JP 10738189 A JP10738189 A JP 10738189A JP H02286939 A JPH02286939 A JP H02286939A
Authority
JP
Japan
Prior art keywords
core
sheath
polymer
polyester polymer
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1107381A
Other languages
Japanese (ja)
Inventor
Shuji Takahashi
修二 高橋
Kazuji Takamizawa
高見沢 和次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP1107381A priority Critical patent/JPH02286939A/en
Publication of JPH02286939A publication Critical patent/JPH02286939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a tensile strength core body excellent in durability and to lessen the growth due to travel motion by using polyester polymer as its core ingredient and by arranging a cord consisting of core sheath shape complex fiber with polyamide polymer as its sheath compound in the lengthy direction. CONSTITUTION:A tensile strength core body 1 of a non-edge track belt covered with upper and lower part reinforcing cloths 2, 3 and additionally covered with a cover rubber 4 is constituted by arranging a cord made of core sheath shape complex fiber with polyester polymer as its core compound C and polyamide polymer as its sheath compound S in the lengthy direction. Consequently, it is possible to largely improve adhesive property of fiber, prevent adhesive deterioration of polyester polymer and improve chemical resistance stability by separating polyester polymer of low adhesive property from a rubber layer so that polyamide polymer of good adhesive property always contacts the rubber layer by way of covering polyester polymer with the core compound C with polyamide polymer as the sheath compound S.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、スノーモービル等に装着されるトラックベ
ルト等の無限軌道帯に係わり、更に詳しくは耐久性に優
れ、かつ、使用による成長の小さい優れた性能を備える
無限軌道帯に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to endless track belts such as track belts attached to snowmobiles, etc. The present invention relates to a track belt with excellent performance.

〔従来の技術〕[Conventional technology]

従来、スノーモービル等に装着されるトラックベルト、
即ち無限軌道帯の構造としては、例えば第2図に示すよ
うに、合成繊維マルチフィラメントコード抗張力芯体1
をすだれ織物としてベルト長手方向に配設し、この抗張
力芯体1の上下部に、上下補強布を2.3を挟持する如
く積層し、更にカバーゴム4により被覆して構成されて
おり、またカバーゴム4の一方には、スプロケット駆動
を補助するラグゴム5が設けられている。
Conventionally, track belts are attached to snowmobiles, etc.
That is, as shown in FIG. 2, the structure of the endless track belt is, for example, as shown in FIG.
are arranged in the longitudinal direction of the belt as blind fabrics, upper and lower reinforcing fabrics are laminated on the upper and lower parts of this tensile strength core 1 so as to sandwich 2.3, and are further covered with cover rubber 4. A lug rubber 5 is provided on one side of the cover rubber 4 to assist in driving the sprocket.

そして、この合成繊維マルチフィラメントコード抗張力
芯体としては、ポリエステル繊維やアラミド繊維が好ん
で用いられている。
Polyester fibers and aramid fibers are preferably used as the tensile strength core of this synthetic fiber multifilament cord.

その理由は、無限軌道帯の芯体としては、走行による成
長が小さく、かつ、強度が高い事が必要であり、それ故
に上記繊維が好んで用いられている。
The reason for this is that the core of a track belt needs to have little growth due to running and high strength, and for this reason, the above-mentioned fibers are preferably used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、ポリエステル繊維は、ゴムとの接着性が
低く、またゴム中の水分やアミンにより容易に加水分解
するという欠点があり、その為に、ゴムとの接着性を付
与する為に、通常2回接着剤処理を施すという繁雑な加
工プロセスが必要となるばかりでなく、ゴム組成物中の
アミン発生源(加硫促進剤等)の大幅な制約が必要とな
るという問題があった。
However, polyester fibers have the disadvantage that they have low adhesion to rubber and are easily hydrolyzed by moisture and amines in the rubber. There is a problem in that not only a complicated processing process of applying an adhesive treatment is required, but also significant restrictions are required on the amine generating source (vulcanization accelerator, etc.) in the rubber composition.

この様な改良を試みても、ポリエステルの加水分解性は
本質的なその化学構造に起因するものである為に、ポリ
エステル繊維を芯体゛に用いた無限軌道帯体の耐久性を
大幅に改良する事は出来ない。
Even if such improvements are attempted, the hydrolyzability of polyester is essentially due to its chemical structure, so it has not been possible to significantly improve the durability of track bands using polyester fibers as the core. I can't do that.

一方、ポリエステル繊維に比較し、強度、モジュラスに
優れるアラミド繊維は、その分子の剛直性故に屈曲疲労
性に著しく劣り、またゴムとの接着性も悪く、無限軌道
帯の耐久性が著しく低下するという問題がある。またそ
の価格は、他の合成繊維に比較し大幅に高価であり、製
品価格が大幅に上昇するという問題がある。
On the other hand, aramid fiber, which has superior strength and modulus compared to polyester fiber, has significantly inferior bending fatigue resistance due to the rigidity of its molecules, and also has poor adhesion to rubber, which significantly reduces the durability of the track belt. There's a problem. Moreover, it is much more expensive than other synthetic fibers, and there is a problem in that the product price increases significantly.

この為、アラミド繊維を用いる場合、コードの撚数を大
幅に高くし、耐久性を改良する試みや、ゴムとの接着に
際し、2回接着処理を施したり、ゴム中へ接着剤を添加
する試みがなされているが、これらの試みは強度やモジ
ュラスを低下させるだけでなく、製品コストの上昇を更
に招くという問題がある。
For this reason, when using aramid fibers, attempts have been made to significantly increase the number of twists in the cord to improve durability, apply adhesive treatment twice when adhering to rubber, or add adhesive to the rubber. However, these attempts not only reduce strength and modulus but also increase product cost.

一方、ゴムとの接着性、屈曲疲労性という観点で見れば
、6ナイロン、66ナイロンに代表されるポリアミド繊
維は、上述のポリエステル。
On the other hand, from the viewpoint of adhesion with rubber and bending fatigue resistance, polyamide fibers typified by 6-nylon and 66-nylon are the above-mentioned polyesters.

アラミド繊維に比較し明らかに優れた特性を有し、また
その強度もポリエステル同等以上を有しており、好まし
い材料である。
It has clearly superior properties compared to aramid fibers, and its strength is equal to or higher than that of polyester, making it a preferred material.

しかしながら、ポリアミド繊維は、初期モジュラスが小
さく、無限軌道帯の芯体に用いた場合、走行による成長
が大きくなり、無限軌道帯のクルミが大となり、トラク
ション性能が低下するだけでなく、高速走行によるスタ
ンディングウェーブ現象が発生し、耐久性も充分発現で
きない結果となる。
However, polyamide fibers have a small initial modulus, and when used in the core of a track belt, they grow significantly during running, resulting in large walnuts in the track belt, which not only reduces traction performance but also causes problems during high-speed running. A standing wave phenomenon occurs, resulting in insufficient durability.

この様な問題を解決する為に、ゴムとの接着剤を施す際
に行なわれる熱処理時に高いテンシ・ラン下で熱処理を
施す試みもなされるが、これによってもモジュラスの大
幅な改善は得られないだけでなく、熱収縮率が大幅に上
昇し、製品寸法に著しい影響を与えるという問題が発生
する。
In order to solve this problem, attempts have been made to perform heat treatment under a high tensile run during the heat treatment performed when applying adhesive to rubber, but even this does not result in a significant improvement in modulus. In addition, the thermal shrinkage rate increases significantly, which significantly affects product dimensions.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる従来の課題に着目して案出されたも
ので、耐久性に優れ、かつ走行による成長の小さい無限
軌道帯を提供することを目的とするものである。
The present invention was devised in view of the above-mentioned conventional problems, and an object of the present invention is to provide an endless track belt which is excellent in durability and exhibits little growth due to running.

ここで走行による成長とは、スノーモービル等に装着さ
れた無限軌道帯が走行により伸び、その結果、トラクシ
ョン性能が悪化するという事である。
Growth due to running here means that the endless track belt attached to a snowmobile or the like stretches due to running, and as a result, traction performance deteriorates.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するため、抗張力芯体の上下
部を補強布で覆い、更にカバーゴムで被覆して成る無端
軌道帯の、前記抗張力芯体を、ポリエステル系重合体を
芯成分Cとしポリアミド系重合体を鞘成分Sとする芯鞘
型複合繊維からなるコードを長手方向に配列して構成し
た事を特徴とするものである。
In order to achieve the above object, the present invention uses a polyester polymer as the core component C in the endless track belt of an endless track band in which the upper and lower parts of the tensile core are covered with reinforcing cloth and further covered with cover rubber. It is characterized by being constructed by arranging cords made of core-sheath type conjugate fibers in the longitudinal direction with polyamide polymer as the sheath component S.

〔発明の作用〕[Action of the invention]

この発明は、上記のように構成され、ポリアミド系重合
体を鞘成分として、芯成分のポリエステル系重合体を被
覆することにより、接着性の低いポリエステル系重合体
をゴム層から隔離し、接着性の良好なポリアミド系重合
体を常にゴム層と接するようにすることができ、これに
より繊維の接着性を大きく向上させることができ、かつ
ポリエステル系重合体の接着劣化を防止し、かつ耐化学
的安定性が低いという欠点を解消することができるので
ある。
This invention is constructed as described above, and by covering the core component polyester polymer with a polyamide polymer as a sheath component, the polyester polymer with low adhesiveness is isolated from the rubber layer, and the adhesive property is improved. This allows the polyamide polymer, which has good properties, to be in constant contact with the rubber layer, which greatly improves the adhesion of the fibers, prevents the adhesive deterioration of the polyester polymer, and provides chemical resistance. This eliminates the drawback of low stability.

本発明において用いる芯鞘型複合繊維とは、例えば第1
図に示すように、単繊維断面の中心に芯成分Cを有し、
その周囲を鞘成分Sが取り囲む形態を有し、これが繊維
の長手方向に同様な形態になっているものをいう。
The core-sheath type composite fiber used in the present invention is, for example, the first
As shown in the figure, it has a core component C at the center of the single fiber cross section,
It has a form in which the sheath component S surrounds it, and this has a similar form in the longitudinal direction of the fiber.

鞘成分S中に存在する芯成分Cの本数は、第1図のよう
に1本であってもよいし、あるいは2本以上の複数本で
あってもよい。
The number of core components C present in the sheath component S may be one as shown in FIG. 1, or may be two or more.

この芯鞘型複合繊維においては、その芯成分Cをポリエ
ステル系重合体から構成し、鞘成分Sをポリアミド系重
合体から構成する必要がある。すなわち、ポリアミド系
重合体を鞘成分Sとして、芯成分Cのポリエステル系重
合体を被覆することにより、接着性の低いポリエステル
系重合体をゴム層から隔離し、接着性の良好なポリアミ
ド系重合体を常にゴム層と接するようにすることができ
、これにより繊維の接着性を大きく向上させることがで
き、かつポリエステル系重合体の接着劣化を防止し、か
つ耐化学的安定性が低いという欠点を解消することがで
きる。
In this core-sheath type composite fiber, the core component C needs to be made of a polyester polymer, and the sheath component S needs to be made of a polyamide polymer. That is, by covering the polyester polymer of the core component C with a polyamide polymer as the sheath component S, the polyester polymer with low adhesiveness is isolated from the rubber layer, and the polyamide polymer with good adhesiveness is formed. can be kept in constant contact with the rubber layer, which greatly improves the adhesion of the fibers, prevents the adhesion of polyester polymers from deteriorating, and overcomes the disadvantage of low chemical stability. It can be resolved.

芯鞘型複合繊維の芯成分Cを構成するポリエステル系重
合体としては、その代表的ポリマーであるエチレンテレ
フタレートを高分子鎖の反復構造単位とするポリエチレ
ンテレフタレートとすることが好ましい0重合度が大き
いポリマーが適用されるが、好ましくはオルソクロロフ
ェノールを溶媒として25゛Cで測定した極限粘度が少
なくとも0.80以上であるポリエチレンテレフタレー
トがよい。このポリエチレンテレフタレートは、イソフ
タル酸、P−オキシ安息香酸等のカルボン酸またはその
誘導体のような共重合性の第3成分が少量共重合されて
いてもよい。
As the polyester polymer constituting the core component C of the core-sheath composite fiber, it is preferable to use polyethylene terephthalate, which is a typical polymer of ethylene terephthalate, as a repeating structural unit of the polymer chain. A polymer with a high degree of polymerization Preferred is polyethylene terephthalate, which has an intrinsic viscosity of at least 0.80 as measured at 25°C using orthochlorophenol as a solvent. This polyethylene terephthalate may be copolymerized with a small amount of a copolymerizable third component such as a carboxylic acid such as isophthalic acid or P-oxybenzoic acid or a derivative thereof.

また、鞘成分Sのポリアミド系重合体としては、繊維形
成性を有する66ナイロン(ポリヘキサメチレンアジパ
ミド)、6ナイロン(ポリカプロラクタム)、46ナイ
ロン(ポリテトラメチレンアジパミド)並びにそれらの
共重合体等を挙げることができる。これらのうちでも、
特に、融点が高くてポリエステル系重合体の融点に近く
、かつ25°Cにおける硫酸中での相対粘度が少なくと
も2.8以上の66ナイロンがよい。芯鞘型複合繊維の
複合比率(芯成分Cと鞘成分Sとの断面積比率)は、芯
成分Cのポリエステル系重合体のゴムに対する接着性や
化学的安定性の改良効果をできるだけ大きくし、かつモ
ジュラスの低下をできるだけ小さくする範囲内で選定す
ればよい。
In addition, as the polyamide-based polymer of the sheath component S, 66 nylon (polyhexamethylene adipamide), 6 nylon (polycaprolactam), 46 nylon (polytetramethylene adipamide), and their co-products are used as the sheath component S. Examples include polymers. Among these,
Particularly preferred is 66 nylon, which has a high melting point close to that of polyester polymers and a relative viscosity of at least 2.8 in sulfuric acid at 25°C. The composite ratio of the core-sheath type composite fiber (the cross-sectional area ratio of the core component C and the sheath component S) is set so that the effect of improving the adhesion and chemical stability of the polyester polymer of the core component C to rubber is as large as possible, Moreover, it may be selected within a range that minimizes the decrease in modulus as much as possible.

この複合比率は、特に限定されるものではないが、芯:
鞘の断面積比で90:10〜lO:90、好ましくは8
0:20〜20 : 80、さらに好ましくは70:3
0〜30ニア0の範囲内で適宜選択される。鞘成分Sの
比率があまりに小さく、芯成分Cが大きくなる過ぎると
その芯成分Cのポリエステル系重合体が露出するように
なり、ゴムに対する接着性や耐化学的劣化性が低下する
ようになるから好ましくない。他方、鞘成分Sがあまり
に大きくなり過ぎると、ポリアミド系重合体の比率が過
剰になって、繊維コードのモジュラスが低くなり、走行
による成長が大きくなる。
This composite ratio is not particularly limited, but the core:
The sheath cross-sectional area ratio is 90:10 to lO:90, preferably 8
0:20-20:80, more preferably 70:3
It is appropriately selected within the range of 0 to 30 near 0. If the ratio of the sheath component S is too small and the core component C is too large, the polyester polymer of the core component C will be exposed, and the adhesiveness to rubber and chemical deterioration resistance will decrease. Undesirable. On the other hand, if the sheath component S becomes too large, the proportion of the polyamide polymer becomes excessive, the modulus of the fiber cord becomes low, and growth due to running increases.

この発明で使用される芯鞘型複合繊維は、紡糸速度が少
なくとも2000m/分、好ましくは3000m/分以
上である高速紡糸方法により得ることが好ましい。この
高速紡糸方法を適用することにより、ポリエステル系重
合体からなる芯成分Cとポリアミド系重合体からなる鞘
成分Sとの接合(接着)力が向上するからである。この
理由は明らかではないが、前記2つの重合体の結晶化、
特に結晶化し易いポリアミド系重合体の結晶化が高速紡
糸のために抑制された状態でその高分子鎖が繊維軸方向
に配向され、同時に繊維軸方向に配向された芯成分Cの
ポリエステル系重合体と接合されるために、紡糸並びに
延伸工程等における両成分の接合界面における応力の集
中が著しく抑制されることによるものと推定される。
The core-sheath composite fiber used in the present invention is preferably obtained by a high-speed spinning method in which the spinning speed is at least 2000 m/min, preferably 3000 m/min or more. This is because by applying this high-speed spinning method, the bonding (adhesion) force between the core component C made of a polyester polymer and the sheath component S made of a polyamide polymer is improved. Although the reason for this is not clear, the crystallization of the two polymers,
The crystallization of the polyamide polymer, which is particularly prone to crystallization, is suppressed due to high-speed spinning, and its polymer chains are oriented in the fiber axis direction, and at the same time, the polyester polymer of the core component C is oriented in the fiber axis direction. This is presumed to be due to the fact that stress concentration at the bonding interface between the two components during spinning and drawing processes is significantly suppressed.

上記芯鞘型複合繊維からなるフィラメントは複数本が収
束、撚糸され、繊維コードに形成される。この繊維コー
ドに対して付与する撚りは、K=74D (上記式中、Kは撚係数、Tは撚数(回/10cd)、
Dはコードの総デニール数を示す)で示される撚係数が
1000〜2500の範囲、好ましくは、1500〜2
000の範囲である事がよい。撚係数が1000未満で
あると、耐屈曲疲労性が低下するのみならず、コードの
収束性が低下する結果、ゴムとの接着性も悪化する。一
方、撚係数が2500超の場合、モジュラスや強度の低
下が太き(なり、無限軌道帯の走行成長が大きくなる。
A plurality of filaments made of the core-sheath composite fibers are converged and twisted to form a fiber cord. The twist given to this fiber cord is K=74D (in the above formula, K is the twist coefficient, T is the number of twists (twice/10 cd),
D indicates the total denier of the cord), and the twist coefficient is in the range of 1000 to 2500, preferably 1500 to 2.
It is preferable that it be in the range of 000. If the twist coefficient is less than 1000, not only the bending fatigue resistance will be reduced, but also the convergence of the cord will be reduced, resulting in poor adhesion to rubber. On the other hand, when the twist coefficient exceeds 2,500, the modulus and strength decrease significantly, and the running growth of the endless track belt increases.

この撚りを加えた繊維コードは、すだれ状織物にした後
に、接着剤処理を施す。
This twisted fiber cord is made into a blind-like fabric and then treated with an adhesive.

ここで、接着剤処理に用いる接着剤としては、通常ポリ
アミド繊維とゴムとの接着に用・いられるレゾルシン・
ボルムアルデヒド初期縮合物とゴムラテックスとの混合
液からなる所謂RFL(レゾルシン・ホルムアルデヒド
初期縮合物とゴムラテックスの混合液)が用いられる。
Here, the adhesive used for adhesive treatment is resorcinol, which is usually used for bonding polyamide fibers and rubber.
A so-called RFL (mixture of a resorcinol/formaldehyde initial condensate and rubber latex), which is a mixture of a formaldehyde initial condensate and rubber latex, is used.

また接着剤を塗布した後、100〜160°Cで1〜3
分乾燥した後、200″C〜250°Cで30秒〜3分
の熱処理を、0.1−1.0g/dの張力下で施す。
Also, after applying the adhesive, 1-3 times at 100-160°C.
After drying for minutes, a heat treatment is applied at 200''C to 250C for 30 seconds to 3 minutes under a tension of 0.1-1.0 g/d.

この様にして接着熱処理を施したコードの2゜25 g
 / d時の伸びが8%以下、150°Cに於ける乾熱
収縮率が5%以下である事が必要である。
2゜25 g of the cord subjected to adhesive heat treatment in this way
The elongation at /d must be 8% or less, and the dry heat shrinkage rate at 150°C must be 5% or less.

ここで、2.25 g / d時の伸びが8%超の場合
、初期モジュラスが低くなり過ぎ、走行による成長が大
きくなる。
Here, if the elongation at 2.25 g/d is more than 8%, the initial modulus will be too low and the growth due to running will be large.

また乾熱収縮率が5%超の場合、無限軌道帯製造の時の
寸法変化が大きくなると同時に、芯体の初期モジュラス
が低下する。
Further, if the dry heat shrinkage rate exceeds 5%, dimensional changes during production of the endless track belt become large, and at the same time, the initial modulus of the core decreases.

また抗張力芯体を埋設するコードゴムや、それを加硫す
るに際し用いられるアミン系加硫促進剤や、老化防止剤
の種類、添加量は、特に制限されるものではない。
Further, there are no particular restrictions on the type and amount of the cord rubber in which the tensile core is embedded, the amine vulcanization accelerator used to vulcanize it, and the anti-aging agent.

以下に実施例を示す。Examples are shown below.

〔実施例〕〔Example〕

ポリエチレンテレフタレートを芯成分Cとし、66ナイ
ロンを鞘成分Sとする複合比率が断面積比で50150
の1500dの芯鞘型複合繊維フィラメント及び70/
30の1500dの芯鞘型複合繊維フィラメントを各々
所定の撚りを加え、2本撚りコードとした。
The composite ratio of polyethylene terephthalate as the core component C and 66 nylon as the sheath component S is 50150 in terms of cross-sectional area ratio.
1500d core-sheath composite fiber filament and 70/
30 1500 d core-sheath type composite fiber filaments were each twisted to a predetermined value to form a two-stranded cord.

また比較として、1500dのポリエステル繊維及び1
260dの66ナイロン繊維も各々撚りを加え、2本撚
りコードとした。
For comparison, 1500d polyester fiber and 1
The 260d 66 nylon fibers were also twisted to form a two-strand cord.

これらコードを用い55本/ 5 C1の打込み数にて
すだれ織物を作成し接着熱処理を施した。
Using these cords, blind fabrics were made with a number of 55 cords/5 C1 and subjected to adhesive heat treatment.

芯鞘型複合繊維コード及び66ナイロンコードについて
は、RFL (レゾルシン・ホルムアルデヒド初期縮合
物とゴムラテックスの混合液)で処理し、一方、ポリエ
ステルコードについては、Vulnax社製のポリエス
テル用接着剤“′バルカボンドE”を用いて前処理した
後、前記RFして処理する2浴処理を実施した。
Core-sheath composite fiber cords and 66 nylon cords were treated with RFL (a mixture of resorcinol formaldehyde initial condensate and rubber latex), while polyester cords were treated with Vulnax's polyester adhesive “Vulkabond”. A two-bath treatment was performed in which the sample was pretreated with E'' and then treated with RF.

熱処理温度として、130″Cで接着剤を乾燥後、別表
1に示す所定の温度でベーキングを施した。
After drying the adhesive at a heat treatment temperature of 130''C, baking was performed at a predetermined temperature shown in Attached Table 1.

また熱処理時のテンションは別表1に示すが、芯鞘型複
合繊維に於いては、テンション条件を変量させた。
The tension during heat treatment is shown in Attached Table 1, and the tension conditions were varied for the core-sheath type composite fiber.

この様にして得られた接着熱処理済すだれ織物に、天然
ゴム系のゴム組成物をコートした後、第2図に示す断面
形状を有する無限軌道帯(トラックベルト)を作り、実
車耐久テストを実施たした。
After coating the thus obtained bonded and heat-treated bamboo blind fabric with a natural rubber-based rubber composition, a track belt having the cross-sectional shape shown in Figure 2 was made, and an actual vehicle durability test was conducted. I did.

評価は接着処理済すだれ織物のコードの引張強さ及び2
.25 g / d時の中間伸度150°Cの乾熱収縮
率と、実車耐久テスト後の芯体より採取したコードの強
力保持率及び芯体とカバーゴムとの剥離接着テスト、ま
た走行前後の無限軌道帯の寸法変化を測定した。
The evaluation is based on the tensile strength of the adhesive-treated blind fabric cord and 2
.. The dry heat shrinkage rate at an intermediate elongation of 150°C at 25 g/d, the strong retention rate of the cord taken from the core after the actual vehicle durability test, the peel adhesion test between the core and the cover rubber, and the results before and after running. The dimensional changes of the track belt were measured.

以上の結果を表1に示す。The above results are shown in Table 1.

(以下余白) 表1の実施例1.2及び実施例3に示す様に、本願発明
品は、従来例1のポリエステル芯体のトラックベルトに
比較し、成長性は同等で耐久性に明らかに優れており、
又、従来例2のナイロン芯体品に比較し耐久性はほぼ同
じであるが、成長性に明らかに優れている事がわかる。
(Leaving space below) As shown in Examples 1.2 and 3 of Table 1, the product of the present invention has the same growth performance and clear durability as compared to the track belt with a polyester core of Conventional Example 1. Excellent,
Furthermore, compared to the nylon core product of Conventional Example 2, it can be seen that although the durability is almost the same, the growth property is clearly superior.

一方、比較例1に示す様に芯鞘型複合繊維コードを用い
ても、中間伸度が8%超の場合、成長性が著しく劣る事
がわかる。
On the other hand, even if a core-sheath type composite fiber cord is used as shown in Comparative Example 1, when the intermediate elongation is more than 8%, the growth performance is significantly inferior.

又、比較例2は乾熱収縮率が5%超であった為に、加硫
後の製品が設計寸法に対し、大幅に小さくなり、テスト
に供す事が出来なかった。
Further, in Comparative Example 2, since the dry heat shrinkage rate was more than 5%, the product after vulcanization was significantly smaller than the designed dimensions, and could not be used for testing.

〔発明の効果〕〔Effect of the invention〕

この発明は、上記のように無限軌道帯の抗張力芯体を、
ポリエステル系重合体を芯成分とし、ポリアミド系重合
体を鞘成分とする芯鞘型複合繊維で構成すると共に、こ
の繊維を長手方向に配列して構成したので、以下のよう
な優れた効果を奏するものである。
This invention provides the tensile strength core of the endless track belt as described above.
It is composed of a core-sheath composite fiber with a polyester polymer as a core component and a polyamide polymer as a sheath component, and the fibers are arranged in the longitudinal direction, resulting in the following excellent effects. It is something.

(a)、耐久性に優れた無限軌道帯とすることが出来る
(a) An endless track belt with excellent durability can be obtained.

(b)、成長性の小さい無限軌道帯とすることが出来る
(b) It is possible to form an endless track belt with low growth potential.

(C)、ゴム配合の自由度が太き(、デイツプ加工を簡
略化出来るので、生産性に優れた無限軌道帯とすること
が出来る。
(C) The degree of freedom in rubber compounding is large (Dip processing can be simplified, so a track belt with excellent productivity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を実施した芯鞘型複合繊維の説明図
、第2図は無限軌道帯の断面図である。 1・・・合成繊維マルチフィラメントコード抗張力芯体
、2,3・・・上下補強布、4・・・カバーゴム、5・
・・ラグゴム、C・・・芯成分、S・・・鞘成分。 第 図
FIG. 1 is an explanatory diagram of a core-sheath type composite fiber according to the present invention, and FIG. 2 is a sectional view of a track belt. 1... Synthetic fiber multifilament cord tensile strength core, 2, 3... Upper and lower reinforcing cloth, 4... Cover rubber, 5...
...Lag rubber, C...core component, S...sheath component. Diagram

Claims (1)

【特許請求の範囲】[Claims] 抗張力芯体の上下部を補強布で覆い、更にカバーゴムで
被覆して成る無端軌道帯において、前記、抗張力芯体を
、ポリエステル系重合体を芯成分とし、ポリアミド系重
合体を鞘成分とする芯鞘型複合繊維で構成すると共に、
この繊維を長手方向に配列して構成したことを特徴とす
る無限軌道帯。
In an endless track belt in which the upper and lower parts of a tensile core are covered with reinforcing cloth and further covered with cover rubber, the tensile core has a polyester polymer as a core component and a polyamide polymer as a sheath component. Consisting of core-sheath composite fibers,
An endless track belt characterized by being constructed by arranging these fibers in the longitudinal direction.
JP1107381A 1989-04-28 1989-04-28 Catapillar belt Pending JPH02286939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107381A JPH02286939A (en) 1989-04-28 1989-04-28 Catapillar belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107381A JPH02286939A (en) 1989-04-28 1989-04-28 Catapillar belt

Publications (1)

Publication Number Publication Date
JPH02286939A true JPH02286939A (en) 1990-11-27

Family

ID=14457677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107381A Pending JPH02286939A (en) 1989-04-28 1989-04-28 Catapillar belt

Country Status (1)

Country Link
JP (1) JPH02286939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624366A (en) * 1992-03-24 1994-02-01 Yokohama Rubber Co Ltd:The Caterpillar belt
EP0623765A1 (en) * 1993-02-19 1994-11-09 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in power transmission belts
US5672421A (en) * 1993-02-19 1997-09-30 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in rubber goods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624366A (en) * 1992-03-24 1994-02-01 Yokohama Rubber Co Ltd:The Caterpillar belt
EP0623765A1 (en) * 1993-02-19 1994-11-09 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in power transmission belts
US5672421A (en) * 1993-02-19 1997-09-30 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in rubber goods
US5744237A (en) * 1993-02-19 1998-04-28 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in rubber goods

Similar Documents

Publication Publication Date Title
KR101602605B1 (en) Hybrid Tire Cord and Method for Manufacturing The Same
KR101580352B1 (en) Hybrid Fiber Cord and Method for Manufacturing The Same
KR100849087B1 (en) Cord for reinforcing rubber and preparing method thereof
JPS6132183Y2 (en)
JP2516614Y2 (en) Aromatic polyamide fiber cord for rubber reinforcement
JPH02286939A (en) Catapillar belt
KR102498390B1 (en) Cord Comprising Multifilament Para-Aramid Yarn Containing Non-Circular Filaments
JPH03163241A (en) Power transmission force belt
US11938765B2 (en) Hybrid tire cord with strong adhesion to rubber and excellent fatigue resistance, and method for manufacturing the same
JPS61253202A (en) Radial tire
JP3591988B2 (en) Cord-rubber composite
JPH0251686A (en) Hose
JPS58124631A (en) Method of adhering aromatic polyamide fiber to rubber compound
JP2004066930A (en) Tire
JPS594197Y2 (en) multi rib belt
KR20180035400A (en) Hybrid Tire Cord and Method for Manufacturing The Same
JPH07127690A (en) Core wire for power transmission belt and power transmission belt using the same
JPH0252931B2 (en)
JP6850644B2 (en) How to manufacture high-strength dip cord
JPH0228409A (en) Conveyor belt
JPH02114074A (en) Caterpillar belt
JPH0340147B2 (en)
JP3677080B2 (en) Tensile body for belt and power transmission belt using the same
JPH09126279A (en) Tension member for belt and belt using the tension member
JPH0261128A (en) Combined cord for reinforcement of rubber