JPH02286638A - Production of branched dimerized alcohol - Google Patents

Production of branched dimerized alcohol

Info

Publication number
JPH02286638A
JPH02286638A JP1108875A JP10887589A JPH02286638A JP H02286638 A JPH02286638 A JP H02286638A JP 1108875 A JP1108875 A JP 1108875A JP 10887589 A JP10887589 A JP 10887589A JP H02286638 A JPH02286638 A JP H02286638A
Authority
JP
Japan
Prior art keywords
copper
reaction
catalyst
group
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1108875A
Other languages
Japanese (ja)
Other versions
JP2669553B2 (en
Inventor
Morio Matsuda
松田 守生
Yukinaga Yokota
行永 横田
Masamitsu Horio
堀尾 政光
Noriaki Fukuoka
福岡 紀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1108875A priority Critical patent/JP2669553B2/en
Publication of JPH02286638A publication Critical patent/JPH02286638A/en
Application granted granted Critical
Publication of JP2669553B2 publication Critical patent/JP2669553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain in a short time the title compound of good quality in high yield and selectivity by heating condensation of a primary alcohol in the presence of an alkaline catalyst and cocatalyst comprising copper, a 4th period transition metallic element and group III platinum-series element. CONSTITUTION:The objective compound of formula II can be obtained by dehydration condensation of a compound of formula I (R is 1-24C alkyl. cycloalkyl, aryl or aralkyl) in the presence of (A) an alkaline catalyst (pref. KOH) and (B) a cocatalyst comprising copper, a transition metallic element (e.g. Cr, Co, Ni) and platinum-series element (e.g. Pt, Pd) at 180-220 deg.C for 1-2hr. For the catalyst B, the molar ratios are as follows: copper/transition metallic element = (1:9) (9:1) and platinum-series element/(copper + transition metallic element) = 0.001-0.1. The amounts of the catalysts A and B are such as to be 0.3-2.0wt.% and 0.005-0.2wt.% based on the compound of the formula I, respectively. The present compound of the formula II is low in both iodine value and CHO concentration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は第1級アルコールを脱水縮合せしめて分枝の三
量化アルコールを得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for dehydrating and condensing primary alcohols to obtain branched trimerized alcohols.

〔従来の技術及び発明が解決しようとする課題〕従来よ
り第1級アルコールをアルカリ性物質またはアルカリ性
物質と助触媒の存在下で加熱縮合させると原料アルコー
ル2分子より1分子の水が除去され、1分子の分枝二量
化アルコールが得られることは広く知られており、ゲル
へ(Guerbet)反応と称されている。このゲルベ
反応の反応機構は既に多くの報告が出されており、次の
ような機構と考えられている。
[Prior art and problems to be solved by the invention] Conventionally, when a primary alcohol is heated and condensed in the presence of an alkaline substance or an alkaline substance and a co-catalyst, one molecule of water is removed from two molecules of raw alcohol, and 1 It is widely known that molecular branched dimerized alcohols can be obtained and is called the Guerbet reaction. Many reports have already been published regarding the reaction mechanism of this Guerbet reaction, and the mechanism is thought to be as follows.

RCHzCHzOH→RCH2CHO+ H2・・・ 
(1)2RCH2CHO→ RCHzCll−CCHO
+ H2O・・・ (2)PCI(2C)12011 
+KOI(−) RCHzCOOK + 2H2・・・
(5)上記の式中、Rは炭素数1〜24のアルキル、シ
クロアルキル、アリール及びアラルキル基からなる群よ
り選ばれる基を表す。
RCHzCHzOH→RCH2CHO+ H2...
(1) 2RCH2CHO→ RCHzCll-CCHO
+ H2O... (2) PCI (2C) 12011
+KOI(-) RCHzCOOK + 2H2...
(5) In the above formula, R represents a group selected from the group consisting of alkyl, cycloalkyl, aryl, and aralkyl groups having 1 to 24 carbon atoms.

上記の一般式(+1)で表される分枝二量化アルコール
は、上記(1)〜(4)式〇並発反応で生成すると考え
られる。反応温度、アルカリ量、助触媒量及び種類によ
り(1)〜(4)式の反応速度が異なり、自ずと選択性
が異なってくる。また(5)式の反応は一般に高温で起
きやすい副反応であり、原料アルコールTllを消費す
るので(5)式の反応が起きれば所望の分枝二量化アル
コール(II)の収率が悪くなる。従って(5)式の反
応を制御し、且つ(1)〜(4)式の反応を促進するた
めに助触媒の検討がされてきた。例えば銅クロマイト、
銅亜鉛、銅粉末、酸化亜鉛、亜鉛クロマイト、安定化ニ
ッケル、アルミナシリケートまたは活性炭に担持したニ
ッケル、白金、パラジウム、ルテニウム、ロジウム、あ
るいはラネー合金にニッケル、クロム、銅など)及びそ
の展開触媒などが助触媒として使用されてきた。
The branched dimerized alcohol represented by the above general formula (+1) is thought to be produced by the parallel reactions of the above formulas (1) to (4). The reaction rates of formulas (1) to (4) vary depending on the reaction temperature, the amount of alkali, the amount and type of co-catalyst, and the selectivity naturally varies. In addition, the reaction of formula (5) is a side reaction that is generally likely to occur at high temperatures and consumes the raw alcohol Tll, so if the reaction of formula (5) occurs, the yield of the desired branched dimerized alcohol (II) will decrease. . Therefore, cocatalysts have been investigated in order to control the reaction of formula (5) and promote the reactions of formulas (1) to (4). For example, copper chromite,
Copper zinc, copper powder, zinc oxide, zinc chromite, stabilized nickel, nickel supported on alumina silicate or activated carbon, platinum, palladium, ruthenium, rhodium, or Raney alloy with nickel, chromium, copper, etc.) and their development catalysts. It has been used as a promoter.

しかしながら、(3)及び(4)式の反応速度を向上さ
せた高品質の分枝二量化アルコール(II)の製造に関
しては未だ十分とは言えなかった。上記のような助触媒
を用いることにより、(1)及び(2)式の反応が促進
され、転換率が高められたが、逆にアルデヒド化合物、
不飽和化合物及びカルボン酸の副生を増大し、収率の低
下、選択率の低下を招くことになった。
However, the production of high quality branched dimerized alcohol (II) with improved reaction rates of formulas (3) and (4) has not yet been achieved. By using the above cocatalyst, the reactions of formulas (1) and (2) were promoted and the conversion rate was increased, but on the contrary, aldehyde compounds,
This increased by-products of unsaturated compounds and carboxylic acids, leading to a decrease in yield and selectivity.

特に副生されるアルデヒド化合物及び不飽和化合物は臭
い、着色、酸化の原因となり、その後の用途開発にとっ
て重大な障害となっていた。
In particular, by-produced aldehyde compounds and unsaturated compounds cause odor, coloring, and oxidation, and have been a serious hindrance to subsequent application development.

この欠点を改良するために本発明者らは特開昭58−1
59432号公報にて助触媒として銅−ニッケル触媒を
提案した。しかしながらその改良効果は認められたが、
反応速度が遅く助触媒の性能としてはまだ十分とは言え
なかった。
In order to improve this drawback, the present inventors have
No. 59432 proposed a copper-nickel catalyst as a promoter. However, although the improvement effect was recognized,
The reaction rate was slow and the performance of the cocatalyst was not sufficient.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記分枝二量化アルコールの製造に際して
問題となる(5)式の副反応は、高温で長時間反応が行
われることにより進行し、その結果主触媒であるアルカ
リ性物質が減少し、副生物の増大を引き起こすと考え、
この問題を解決するために、反応速度を増大させる助触
媒を開発すべく鋭意検討した結果、活性、選択性の不十
分であった銅−第4周期遷移金属元素触媒に、少量の第
8族白金族元素を添加した触媒が高活性でゲルベ反応の
反応速度を向上させることを見出し本発明を完成するに
至った。
The present inventors have found that the side reaction of formula (5), which is a problem in the production of the above-mentioned branched dimerized alcohol, progresses when the reaction is carried out at high temperature for a long time, and as a result, the alkaline substance that is the main catalyst decreases. , thought to cause an increase in by-products,
In order to solve this problem, we conducted extensive research to develop a cocatalyst that would increase the reaction rate. As a result, we found that a small amount of group 8 The present invention was completed by discovering that a catalyst containing a platinum group element has high activity and improves the reaction rate of the Guerbet reaction.

すなわち本発明は、 一般式(Il R−CL−CL−OR・・・ fl) (式中Rは炭素数1〜24のアルキル、シクロアルキル
、アリール及びアラルキル基からなる群より選ばれる基
である。) で表されるアルコールを、 (a)  アルカリ性物質からなる触媒及び、 (b)  銅、第4周期遷移金属元素、及び第8族白金
族元素を含有する触媒 の存在下に、加熱縮合せしめることを特徴とする分枝二
量化アルコールの製造方法を提供するものである。
That is, the present invention provides the following formula: .) The alcohol represented by (a) is heated and condensed in the presence of a catalyst consisting of an alkaline substance and (b) a catalyst containing copper, a fourth period transition metal element, and a group 8 platinum group element. The present invention provides a method for producing a branched dimerized alcohol characterized by the following.

本発明の銅、第4周期遷移金属元素、及び第8族白金族
元素を含有する触媒を当該反応に使用した場合、金属単
位重量当たりの反応活性が公知の銅クロマイト触媒、ラ
ネーニンケル触媒、パラジウム−炭素触媒、前述の銅−
ニッケル触媒等の数倍になるばかりでなく、前述の反応
式(3)及び(4)に対して触媒作用を与え、アルデヒ
ド化合物及び不飽和化合物のより少ない分枝二量化アル
コールが得られる。
When the catalyst of the present invention containing copper, a period 4 transition metal element, and a group 8 platinum group element is used in the reaction, a copper chromite catalyst, a Raney-Ninkel catalyst, a palladium- Carbon catalyst, copper as mentioned above
Not only is it several times as powerful as a nickel catalyst, but it also provides a catalytic effect on the reaction formulas (3) and (4) above, resulting in a branched dimerized alcohol containing fewer aldehyde compounds and unsaturated compounds.

さらに反応速度を速めることを利用して、より低温で反
応を行うことができ、反応速度が低下したことによりカ
ルボン酸塩の副生〔反応式(5)〕が抑制され、反応終
期での速度が速(、主触媒、すなわちアルカリ性物質が
副反応によって生成するカルボン酸の中和により消費さ
れないので主触媒であるアルカリ性物質の使用量の低減
も可能となった。
Furthermore, by increasing the reaction rate, the reaction can be carried out at a lower temperature, and by reducing the reaction rate, the by-product of carboxylic acid salt [reaction formula (5)] is suppressed, and the rate at the final stage of the reaction is reduced. Since the main catalyst, that is, the alkaline substance, is not consumed by the neutralization of the carboxylic acid produced by the side reaction, it is also possible to reduce the amount of the main catalyst, that is, the alkaline substance used.

本発明に用いられる触媒(a)を構成するアルカリ性物
質としては、金属ナトリウム、ナトリウムアルコラード
、水酸化ナトリウム、炭酸ナトリウム、ナトリウム・ア
ミド、金属カリウム、水酸化カリウム、カリウム・アミ
ド、炭酸カリウム、燐酸カリウム等が挙げられる。これ
らのなかでも水酸化カリウムが好ましい。触媒(a)の
使用量は通常ゲルベ反応で使用される一般的な量と同じ
でよいが、銅、第4周期遷移金属元素、及び第8族白金
族元素を含有する助触媒(blを併用するため比較的少
量とすることができる。従って、アルカリ性物質がカル
ボン酸のアルカリ塩となって消費される割合を抑制でき
るため、アルカリ性物質は従来法の約半量から約1/4
量で十分触媒作用をする。主触媒(a)は原料アルコー
ルに対して0.15〜3重量%、好ましくは0.3〜2
.0重量%の範囲で用いられる。
The alkaline substances constituting the catalyst (a) used in the present invention include sodium metal, sodium alcoholade, sodium hydroxide, sodium carbonate, sodium amide, potassium metal, potassium hydroxide, potassium amide, potassium carbonate, and phosphoric acid. Examples include potassium. Among these, potassium hydroxide is preferred. The amount of catalyst (a) used may be the same as the amount commonly used in the Guerbet reaction, but a cocatalyst (bl) containing copper, a fourth period transition metal element, and a group 8 platinum group element may be used. Therefore, the proportion of alkaline substances consumed as alkali salts of carboxylic acids can be suppressed, so the amount of alkaline substances can be reduced from about half to about 1/4 in the conventional method.
The amount is enough to have a catalytic effect. The main catalyst (a) is 0.15 to 3% by weight, preferably 0.3 to 2% by weight based on the raw material alcohol.
.. It is used in a range of 0% by weight.

本発明に用いられる助触媒(b)は銅、第4周期遷移金
属元素、及び第8族白金族元素(以下白金族元素と略す
)を含有することが必須であり、使用する触媒金属組成
において銅、第4周期遷移金属元素、及び白金族元素の
割合は、銅/第4周期遷移金属元素−1/9〜9/1で
あり、且つ白金族元素/(嗣子第4周期遷移金属元素)
=0.001〜0.1の範囲である。
The cocatalyst (b) used in the present invention must contain copper, a 4th period transition metal element, and a 8th group platinum group element (hereinafter abbreviated as platinum group element). The ratio of copper, 4th period transition metal element, and platinum group element is copper/4th period transition metal element - 1/9 to 9/1, and platinum group element/(heir 4th period transition metal element)
= range of 0.001 to 0.1.

助触媒(b)を構成するのに用いられる第4周期遷移金
属元素はクロム、コバルト、ニッケル、マンガン、鉄及
び亜鉛からなる群より選ばれる少なくとも1種以上が使
用され、また白金族元素は白金、パラジウム、ルテニウ
ム及びロジウムからなる群より選ばれる少なくとも1種
以上が使用される。
The fourth period transition metal element used to constitute the promoter (b) is at least one selected from the group consisting of chromium, cobalt, nickel, manganese, iron, and zinc, and the platinum group element is platinum. At least one selected from the group consisting of , palladium, ruthenium, and rhodium is used.

本発明において助触媒(b)は種々の形態を選択するこ
とができる。本発明においては銅、第4周期遷移金属元
素、白金族元素の3成分が触媒組成物として反応系内に
存在するとき初めてこの3成分間の相互作用による効果
が発揮され、この3成分が木質的な助触媒機能を有する
In the present invention, the promoter (b) can be selected from various forms. In the present invention, the effect of the interaction between these three components is exhibited only when the three components of copper, fourth period transition metal elements, and platinum group elements are present in the reaction system as a catalyst composition, and these three components are It has a co-catalyst function.

従って、助触媒(b)を構成する上記3種の金属元素の
好適な形態としては、 1)金属単体または、該金属の酸化物あるいは水酸化物
、及びこれらの混合物等のように反応媒体中で分散する
ような形態のもの。
Therefore, the preferable forms of the three metal elements constituting the cocatalyst (b) are as follows: 1) In the reaction medium, such as an elemental metal, an oxide or hydroxide of the metal, or a mixture thereof, etc. A type of material that is dispersed by

2)適当な担体上に銅、第4周期遷移金属元素、及び白
金族元素の3成分がそれぞれ支持されたものを混合して
、あるいは前記の3成分が同一の担体上に均一に支持さ
れて、反応媒体中で分散するような形態のもの。
2) A mixture of the three components copper, a fourth period transition metal element, and a platinum group element each supported on a suitable carrier, or a mixture of the three components supported uniformly on the same carrier. , in such a form that it is dispersed in the reaction medium.

3)金属の脂肪酸カルボン酸塩または適当な配位子によ
り安定化された錯体のように反応媒体中で金属コロイド
状となり、均−系となるような形態のもの。
3) Those in the form of metal colloids and homogeneous systems in the reaction medium, such as fatty acid carboxylates of metals or complexes stabilized with appropriate ligands.

4)1)及び2)のような反応媒体中で分散するような
形態のものと、3)のような反応媒体中で均一となるよ
うな形態のものとの混合物。
4) A mixture of 1) and 2) in a form that is dispersed in the reaction medium and 3) in a form that is homogeneous in the reaction medium.

等が挙げられ、3成分金属の相互作用が発現されればい
ずれの形態のものを用いてもよい。
etc., and any form may be used as long as the interaction of the three component metals is expressed.

助触媒(b)の使用形態としては、触媒金属の安定化、
すなわち活性表面の固定化の面から及び触媒被毒物質に
対する耐久性の面から、適当な担体上に上記の3種の金
属を担持させたものが好ましい。
The cocatalyst (b) is used for stabilizing the catalyst metal,
That is, from the viewpoint of immobilization of the active surface and durability against catalyst poisoning substances, it is preferable to have the above three types of metals supported on a suitable carrier.

銅、第4周期遷移金属元素、及び白金族元素を担体に支
持させる場合、適合する担体としては通常用いられてい
るもの、例えばアルミナ、シリカアルミナ、ケイソウ土
、シリカ、活性炭、天然及び合成ゼオライト等を使用す
ることができる。前記3種の金属の担体への担持量は任
意でよいが、担体に対して5〜70%の範囲が好ましい
When copper, fourth period transition metal elements, and platinum group elements are supported on a carrier, suitable carriers include those commonly used, such as alumina, silica-alumina, diatomaceous earth, silica, activated carbon, natural and synthetic zeolites, etc. can be used. The amount of the three types of metals supported on the carrier may be arbitrary, but it is preferably in the range of 5 to 70% based on the carrier.

銅、第4周期遷移金属元素、及び白金族元素を担体に支
持させる方法も種々選ぶことができる。この場合、触媒
原料金属の形態としては、各金属の酸化物;水酸化物:
塩化物、硫酸塩、酢酸塩、脂肪族カルボン酸塩等の金属
塩;アセチルアセトン錯体、ジメチルグリオキシム錯体
等の金属錯体等が挙げられ、特に白金族元素に関しては
、カルボニル錯体、アミン錯体、ホスフィン錯体等も使
用できる。
Various methods can be selected for supporting copper, the fourth period transition metal element, and the platinum group element on the carrier. In this case, the forms of the catalyst raw material metals include oxides of each metal; hydroxides:
Examples include metal salts such as chlorides, sulfates, acetates, and aliphatic carboxylates; metal complexes such as acetylacetone complexes and dimethylglyoxime complexes, and especially for platinum group elements, carbonyl complexes, amine complexes, and phosphine complexes. etc. can also be used.

これらの金属原料種を担体上に支持させる方法としては
、 ■ 適当な金属塩の溶液に担体を入れ、十分に含浸させ
た後、乾燥、焼成させる方法(含浸法) ■ 担体と適当な金属塩の水溶液を充分混合した後、炭
酸ナトリウムや水酸化ナトリウム、あるいはアンモニア
水等のアルカリ水溶液を加えて金属塩を担体上に沈澱さ
せる方法あるいは、 担体の水スラリーに適当な金属塩の水溶液と炭酸ナトリ
ウムや水酸化ナトリウム、あるいはアンモニア水等のア
ルカリ水溶液を、スラリー〇pHを一定(例えばpH=
7)に保ちつつ同時に加え、金属塩を担体上に沈澱させ
る方法(共沈法) ■ ゼオライト上でナトリウムやカリウム等と銅、第4
周期遷移金属元素、及び白金族元素をイオン交換させる
方法(イオン交換法)■ 銅、第4周期遷移金属元素、
白金族元素及びアルミニウム金属を加熱熔融した後、冷
却固化して合金とし、合金中のアルミニウムを水酸化ナ
トリウム等のアルカリで溶出させる方法(合金法) 等が挙げられ、いずれの方法を用いてもよいが、例えば
■の共沈法の場合、金属の沈着後充分に水洗し、100
”C付近で乾燥後、300〜700°Cで焼成して助触
媒を得る。
Methods for supporting these metal raw materials on a carrier include: ■ A method in which the carrier is placed in a solution of an appropriate metal salt, sufficiently impregnated, and then dried and fired (impregnation method) ■ The carrier and an appropriate metal salt After thoroughly mixing an aqueous solution of the metal salt, add an alkaline aqueous solution such as sodium carbonate, sodium hydroxide, or aqueous ammonia to precipitate the metal salt on the carrier, or add an aqueous solution of the appropriate metal salt and sodium carbonate to the aqueous slurry of the carrier. slurry with an alkaline aqueous solution such as sodium hydroxide, or aqueous ammonia, and keep the pH constant (for example, pH=
7) A method of precipitating metal salts on a carrier by simultaneously adding them while maintaining the same temperature (co-precipitation method).
Method for ion-exchanging periodic transition metal elements and platinum group elements (ion exchange method)■ Copper, fourth period transition metal elements,
Methods include heating and melting platinum group elements and aluminum metals, cooling and solidifying them to form an alloy, and eluting the aluminum in the alloy with an alkali such as sodium hydroxide (alloy method). However, for example, in the case of the coprecipitation method (■), after the metal is deposited, rinse thoroughly with water and
After drying at around C, a cocatalyst is obtained by calcining at 300 to 700°C.

本発明の分枝二量化アルコールの製造方法においては、
上記のような助触媒(b)を使用するの冊 で、従来より低い反応温度にて反応を行うことができる
。反応は180〜220°Cの範囲の温度で行うのが好
ましく、反応温度が180°Cより低い場合には反応速
度が遅く、また220°Cより高い場合には前述した反
応式(5)のような副反応が発生する。また反応時間は
1〜2時間時間色するのが好ましい。
In the method for producing a branched dimerized alcohol of the present invention,
By using the cocatalyst (b) as described above, the reaction can be carried out at a lower reaction temperature than conventional methods. The reaction is preferably carried out at a temperature in the range of 180 to 220°C; if the reaction temperature is lower than 180°C, the reaction rate is slow, and if it is higher than 220°C, the reaction formula (5) described above is Side reactions such as this occur. The reaction time is preferably 1 to 2 hours.

本発明において、助触媒(b)は原料アルコールに対し
て0.002〜1.0重量%、好ましくは0.005〜
0.2重量%用いられる。
In the present invention, the cocatalyst (b) is 0.002 to 1.0% by weight, preferably 0.005 to 1.0% by weight based on the raw material alcohol.
0.2% by weight is used.

本発明に使用される原料アルコールは下記の一般式(1
1で表される第1級アルコールであればよい。
The raw material alcohol used in the present invention has the following general formula (1
Any primary alcohol represented by 1 may be used.

R−CH2−CH2−OH・・・  (11(式中Rは
炭素数1〜24のアルキル、シクロアルキル、アリール
及びアラルキル基からなる群より選ばれる基である。) 本発明の反応は脱水反応であり、反応中生成する水を反
応系外に除去しながら反応を進行させるのが一般的であ
る。そのためには原料アルコールの沸点以上で原料アル
コールを還流しながら脱水反応を行う方法が一般的であ
るが、原料アルコールの沸点と反応温度が異なる場合は
適当に加圧あるいは減圧して反応が行われる。
R-CH2-CH2-OH... (11 (In the formula, R is a group selected from the group consisting of alkyl, cycloalkyl, aryl, and aralkyl groups having 1 to 24 carbon atoms.) The reaction of the present invention is a dehydration reaction. Generally, the reaction proceeds while removing the water produced during the reaction from the reaction system.For this purpose, it is common to carry out the dehydration reaction while refluxing the raw alcohol at a temperature above the boiling point of the raw alcohol. However, if the boiling point of the raw alcohol and the reaction temperature are different, the reaction is carried out under appropriate pressure or reduction.

あるいは、窒素ガス等の不活性ガスを吹き込みながら反
応水を反応系外に追い出す方法がとられる。
Alternatively, a method may be used in which the reaction water is expelled from the reaction system while blowing inert gas such as nitrogen gas.

〔実施例〕〔Example〕

本発明について以下の実施例をもって更に詳細に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。
The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例−1 合成ゼオライトに担持された銅、第4周期遷移金属元素
、及び白金族元素からなる3元助触媒を以下のようにし
て調製した。
Example 1 A three-component cocatalyst consisting of copper, a fourth period transition metal element, and a platinum group element supported on synthetic zeolite was prepared as follows.

劫肚謀少聞製 11のフラスコに合成ゼオライトを仕込み、次いで硝酸
銅、硝酸ニッケル及び塩化パラジウムを各金属原子のモ
ル比でCu:Ni:Pd=4:1:0.05となるよう
に水に溶かしたものを前記フラスコに入れ、攪拌しなが
ら90°Cまで昇温した。次いでこれに10%Na2C
O3水溶液を徐々に滴下した。
Synthetic zeolite was placed in a No. 11 flask manufactured by Wufu Shaobin, and then copper nitrate, nickel nitrate, and palladium chloride were added to water so that the molar ratio of each metal atom was Cu:Ni:Pd=4:1:0.05. The mixture was poured into the flask, and the temperature was raised to 90°C while stirring. Then add 10% Na2C to this
O3 aqueous solution was gradually added dropwise.

1時間の熟成の後、沈澱物を濾過、水洗し、80°Cで
10時間乾燥後、400°Cで3時間焼成して合成ゼオ
ライトに担持された助触媒を得た。
After aging for 1 hour, the precipitate was filtered, washed with water, dried at 80°C for 10 hours, and then calcined at 400°C for 3 hours to obtain a cocatalyst supported on synthetic zeolite.

得られた助触媒の金属酸化物の担体に対する担持量は5
0%であった。
The amount of the obtained co-catalyst supported on the metal oxide support was 5
It was 0%.

次に、上記のようにして得られた助触媒を用いてアルコ
ール製造のためのゲルへ反応を行った。
Next, using the cocatalyst obtained as described above, a reaction was carried out to form a gel for alcohol production.

y四二反皇 攪拌機、温度計、窒素吹込管、及び反応水を分離するだ
めの凝集器と分離器を備えた11の4ツロフラスコに、
デカノール−1(純度99%)505g、粒状水酸化カ
リウム7.5g、及び上記助触媒0.05gを仕込み、
窒素ガスを流量計に通し301/Hrで系内にバブリン
グさせ、系内を昇温する。系内温度が220°Cに達し
た時点を反応開始時間とし、反応水が出なくなるまで2
20°Cで反応を続行する。反応時間1時間25分で反
応を停止し、冷却した。
11 4-way flasks equipped with a 4-way stirrer, a thermometer, a nitrogen blowing tube, and a condenser and a separator to separate the reaction water;
505 g of decanol-1 (99% purity), 7.5 g of granular potassium hydroxide, and 0.05 g of the above cocatalyst were charged,
Nitrogen gas is passed through a flowmeter and bubbled into the system at 301/hr to raise the temperature in the system. The reaction start time is when the system temperature reaches 220°C, and the reaction is continued for 2 hours until the reaction water stops coming out.
Continue the reaction at 20°C. After a reaction time of 1 hour and 25 minutes, the reaction was stopped and cooled.

反応液を濾過して銅−ニッケルーパラジウム触媒、及び
析出しているカルボン酸のカリウム塩を除去し、濾液を
減圧蒸留して分枝二量化アルコールである2−オクチル
ドデカノール−1を得た。
The reaction solution was filtered to remove the copper-nickel-palladium catalyst and precipitated potassium salt of carboxylic acid, and the filtrate was distilled under reduced pressure to obtain 2-octyldodecanol-1, which is a branched dimerized alcohol. .

得られた2−オクチルドデカノール−1の収量は430
.0 gで対理論収率91.1%、選択率は97.0%
であった。また、2−オクチルドデカノール1のヨウ素
価は1.2 、CIO濃度ば128ppmであった。
The yield of 2-octyldodecanol-1 obtained was 430
.. The theoretical yield was 91.1% at 0 g, and the selectivity was 97.0%.
Met. Further, the iodine value of 2-octyldodecanol 1 was 1.2, and the CIO concentration was 128 ppm.

尚、分校三量化アルコールの品質としてはヨウ素価(不
飽和度)及びC110濃度が低い方が好ましい。(以下
の例中も同様。) 比較例−1 助触媒として銅−ニッケルーパラジウム触媒の代わりに
、銅−ニッケル触媒(銅が80重量%、ニッケルが20
重量%で、全触媒中に銅とニッケルの総量の占める割合
は40重量%)0.05gを用いてその他は実施例−1
と同様にしてゲルへ反応を行った。反応時間は3時間と
した。
As for the quality of the fractionated trimerized alcohol, it is preferable that the iodine value (degree of unsaturation) and C110 concentration are low. (The same applies to the following examples.) Comparative Example-1 Instead of a copper-nickel-palladium catalyst as a co-catalyst, a copper-nickel catalyst (80% by weight of copper and 20% by weight of nickel) was used as a promoter.
In terms of weight%, the total proportion of copper and nickel in the total catalyst is 40% by weight) 0.05g was used, and the rest were Example-1
The reaction was carried out on the gel in the same manner as above. The reaction time was 3 hours.

得られた2−オクチルドデカノール−1の収量は424
.0 gで対理論収率89,9%、選択率は95.0%
であった。また、2−オクチルドデカノール1のヨウ素
価は1.5 、CHO濃度は148ppmであった。
The yield of 2-octyldodecanol-1 obtained was 424
.. The theoretical yield was 89.9% at 0 g, and the selectivity was 95.0%.
Met. Further, the iodine value of 2-octyldodecanol 1 was 1.5, and the CHO concentration was 148 ppm.

実施例−2〜7及び比較例−2 第4周期遷移金属元素としてN++ Co+ Cr  
MnFe、 Znを用い、白金族元素としてはRuを用
いて表−1に示すような組成の銅、第4周期遷移金属元
素、及び白金族元素からなる各種助触媒をCu/第4周
期遷移金属元素/Ru組成比=4/110.02となる
ように実施例−1と同様に調製し、それらの各種助触媒
と、比較例−2として実施例−1と同様の銅−ニッケル
触媒(Cu/Ni組成比−4/1)を用いて、原料アル
コールにはオクタノ−ルー1を用い、その他の条件は実
施例1と同様にしてゲルへ反応を行い、分枝二量化アル
コールである2−ヘキシルデカノール−1を得た。
Examples-2 to 7 and Comparative Example-2 N++ Co+ Cr as the fourth period transition metal element
Using MnFe, Zn and Ru as the platinum group element, various co-catalysts consisting of copper, fourth period transition metal elements, and platinum group elements as shown in Table 1 were mixed with Cu/fourth period transition metal. It was prepared in the same manner as in Example-1 so that the element/Ru composition ratio = 4/110.02, and these various co-catalysts and a copper-nickel catalyst (Cu /Ni composition ratio -4/1), octano-1 was used as the raw alcohol, and other conditions were the same as in Example 1, and the gel was reacted. Hexyldecanol-1 was obtained.

各反応における触媒組成、反応時間、対理論収率及び選
択率、2−ヘキシルデカノール−1のヨウ素価及びC)
to 濃度を表−1に示した。
Catalyst composition, reaction time, theoretical yield and selectivity, iodine value of 2-hexyldecanol-1 and C) in each reaction
The to concentrations are shown in Table-1.

表  −1 実施例−2〜7では助触媒が比較例−2に比べて2倍以
上の活性を示し、選択性も向上している。また、得られ
た2−へキシルデカノール=1の品質も良好である。
Table 1 In Examples 2 to 7, the co-catalysts exhibited more than twice the activity as compared to Comparative Example 2, and the selectivity was also improved. Moreover, the quality of the obtained 2-hexyldecanol=1 is also good.

実施例−8〜11及び比較例−3 ■8 第4周期遷移金属元素としてZnを用い、白金族元素と
してはRu、 pt、 Pd+ Rhを用いて表−2に
示すような組成の銅、第4周期遷移金属元素、及び白金
族元素からなる各種助触媒を、Cu/第4周期遷移金属
元素/Ru組成比−4/ 110.02となるように実
施例−1と同様に調製し、それらの各種助触媒と、比較
例−2として実施例1と同様の銅−ニッケル触媒(Cu
/Ni組成比−4/1)を用いて、原料アルコールには
ドデカノール−1を用い、その他の条件は実施例−1と
同様にしてゲルへ反応を行い、分校三量化アルコールで
ある2−デシルテトラデカノールを得た。
Examples 8 to 11 and Comparative Example 3 ■8 Using Zn as the fourth period transition metal element and using Ru, pt, Pd + Rh as the platinum group elements, copper and Various promoters consisting of a 4th period transition metal element and a platinum group element were prepared in the same manner as in Example 1 so that the composition ratio of Cu/4th period transition metal element/Ru was -4/110.02. various promoters, and the same copper-nickel catalyst (Cu
/Ni composition ratio -4/1), dodecanol-1 was used as the raw alcohol, and the other conditions were the same as in Example 1. Tetradecanol was obtained.

各反応における触媒組成、反応時間、対理論収率及び選
択率、2−デシルテトラデカノールのヨウ素価及びCl
l0濃度を表−2に示した。
Catalyst composition, reaction time, theoretical yield and selectivity, iodine value and Cl of 2-decyltetradecanol in each reaction
The l0 concentration is shown in Table-2.

表 実施例−8〜11では助触媒が比較例−3に比べて2倍
以上の活性を示し、選択性も向上している。また、得ら
れた2−デシルテトラデカノールの品質も良好である。
In Examples 8 to 11 in the table, the cocatalyst exhibits more than twice the activity as compared to Comparative Example 3, and the selectivity is also improved. Moreover, the quality of the obtained 2-decyltetradecanol is also good.

実施例〜12〜17 原料アルコールとしてオクタノ−ルー1を用い、主触媒
としてKOHを用い、助触媒として実施例−1と同様に
して調製されたCu−NiRu触媒(金属組成比Cu 
/ Ni / Ru= 4 / ] 10.02)を用
い・、それぞれの触媒の使用量を表−3に示すように種
々変えた以外は実施例−1と同様にしテケルへ反応を行
い2−へキシルデカノール−1を得た。
Examples ~12~17 A Cu-NiRu catalyst prepared in the same manner as in Example-1 (metal composition ratio Cu
/Ni/Ru=4/ ] 10.02), and the reaction to give Tekel was carried out in the same manner as in Example 1, except that the amounts of each catalyst were varied as shown in Table 3. Xyldecanol-1 was obtained.

実施例−12〜I7と比較例−1における触媒組成、反
応時間、対理論収率及び選択率、2−へキシルデカノー
ル−1のヨウ素価及びCll0濃度を表−3に示した。
Table 3 shows the catalyst composition, reaction time, theoretical yield and selectivity, iodine value and Cll0 concentration of 2-hexyldecanol-1 in Examples-12 to I7 and Comparative Example-1.

明による反応では、従来の方法である比較例1に比べて
主触媒の使用量は約1/4に、助触媒の使用量は約1 
/2.5にそれぞれ低減することができる。
In the reaction by Akira, the amount of main catalyst used was about 1/4 and the amount of co-catalyst was about 1/2 compared to Comparative Example 1, which is a conventional method.
/2.5, respectively.

〔発明の効果〕〔Effect of the invention〕

本発明の分校三量化アルコールの製造方法によれば、従
来の方法にくらべ反応時間を短縮することができ、アル
コールの収率、選択率を向上させることができる。
According to the method for producing a branched trimerized alcohol of the present invention, the reaction time can be shortened compared to conventional methods, and the yield and selectivity of alcohol can be improved.

また、生成した分校三量化アルコールはヨウ素価及びC
I(O濃度が低く、従来の方法で得られたアルコールよ
りも品質が良好である。
In addition, the produced branched trimerized alcohol has an iodine value and C
The I(O concentration is low and the quality is better than alcohol obtained by conventional methods.

更に本発明の製造方法によれば、従来の方法に比べ主触
媒のアルカリ性物質の使用量を低減できる。
Furthermore, according to the production method of the present invention, the amount of the alkaline substance used as the main catalyst can be reduced compared to conventional methods.

Claims (1)

【特許請求の範囲】 1 一般式( I ) R−CH_2−CH_2−OH・・・( I )(式中R
は炭素数1〜24のアルキル、シクロアルキル、アリー
ル及びアラルキル基か らなる群より選ばれる基である。) で表されるアルコールを、 (a)アルカリ性物質からなる触媒 及び、 (b)銅、第4周期遷移金属元素、及び第8族白金族元
素を含有する触媒 の存在下に、加熱縮合せしめることを特徴とする分枝二
量化アルコールの製造方法。 2 (b)銅、第4周期遷移金属元素、及び第8族白金
族元素を含有する触媒のモル比が、銅/第4周期遷移金
属元素=1/9〜9/1であり、かつ第8族白金族元素
/(銅+第4周期遷移金属元素)=0.001〜0.1
である請求項1記載の分枝二量化アルコールの製造方法
。 3 第4周期遷移金属元素がニッケル、クロム、コバル
ト、マンガン、鉄、及び亜鉛からなる群より選ばれる少
なくとも1種以上であり、第8族白金族元素が白金、パ
ラジウム、ルテニウム及びロジウムからなる群より選ば
れる少なくとも1種以上である請求項1記載の分枝二量
化アルコールの製造方法。
[Claims] 1 General formula (I) R-CH_2-CH_2-OH...(I) (in the formula R
is a group selected from the group consisting of alkyl, cycloalkyl, aryl and aralkyl groups having 1 to 24 carbon atoms. ) The alcohol represented by (a) is heated and condensed in the presence of a catalyst made of an alkaline substance and (b) a catalyst containing copper, a fourth period transition metal element, and a group 8 platinum group element. A method for producing a branched dimerized alcohol, characterized by: 2 (b) The molar ratio of the catalyst containing copper, a fourth period transition metal element, and a group 8 platinum group element is copper/fourth period transition metal element = 1/9 to 9/1, and Group 8 platinum group element/(copper + 4th period transition metal element) = 0.001 to 0.1
The method for producing a branched dimerized alcohol according to claim 1. 3. The 4th period transition metal element is at least one selected from the group consisting of nickel, chromium, cobalt, manganese, iron, and zinc, and the 8th group platinum group element is the group consisting of platinum, palladium, ruthenium, and rhodium. The method for producing a branched dimerized alcohol according to claim 1, wherein at least one kind is selected from the following.
JP1108875A 1989-04-27 1989-04-27 Method for producing branched dimerized alcohol Expired - Fee Related JP2669553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108875A JP2669553B2 (en) 1989-04-27 1989-04-27 Method for producing branched dimerized alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108875A JP2669553B2 (en) 1989-04-27 1989-04-27 Method for producing branched dimerized alcohol

Publications (2)

Publication Number Publication Date
JPH02286638A true JPH02286638A (en) 1990-11-26
JP2669553B2 JP2669553B2 (en) 1997-10-29

Family

ID=14495809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108875A Expired - Fee Related JP2669553B2 (en) 1989-04-27 1989-04-27 Method for producing branched dimerized alcohol

Country Status (1)

Country Link
JP (1) JP2669553B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523472A (en) * 2000-09-20 2004-08-05 コグニス・ドイッチュランド・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Method for producing branched alcohol and / or hydrocarbon
CN100389101C (en) * 2005-09-28 2008-05-21 中国石油化工股份有限公司 Production of Guerbet alcohol
JP2008266267A (en) * 2007-04-25 2008-11-06 Mitsubishi Chemicals Corp Method for producing alcohol
JP2008303160A (en) * 2007-06-06 2008-12-18 Mitsubishi Chemicals Corp Method for producing alcohol
JP2013139416A (en) * 2011-12-29 2013-07-18 Kao Corp Method for producing guerbet alcohol
WO2016088896A1 (en) * 2014-12-05 2016-06-09 国立大学法人東京工業大学 Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method
WO2021125322A1 (en) * 2019-12-18 2021-06-24 花王株式会社 Method for producing guerbet alcohol
WO2022131353A1 (en) * 2020-12-17 2022-06-23 花王株式会社 Method for producing guerbet alcohol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3987555B1 (en) 2006-03-28 2007-10-10 三洋化成工業株式会社 Viscosity index improver and lubricating oil composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935308A (en) * 1972-08-02 1974-04-01
JPS58159432A (en) * 1982-03-18 1983-09-21 Kao Corp Preparation of branched dimerized alcohol
JPS6434933A (en) * 1987-07-13 1989-02-06 Exxon Chemical Patents Inc Condensation of alcohol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935308A (en) * 1972-08-02 1974-04-01
JPS58159432A (en) * 1982-03-18 1983-09-21 Kao Corp Preparation of branched dimerized alcohol
JPS6434933A (en) * 1987-07-13 1989-02-06 Exxon Chemical Patents Inc Condensation of alcohol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523472A (en) * 2000-09-20 2004-08-05 コグニス・ドイッチュランド・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Method for producing branched alcohol and / or hydrocarbon
CN100389101C (en) * 2005-09-28 2008-05-21 中国石油化工股份有限公司 Production of Guerbet alcohol
JP2008266267A (en) * 2007-04-25 2008-11-06 Mitsubishi Chemicals Corp Method for producing alcohol
JP2008303160A (en) * 2007-06-06 2008-12-18 Mitsubishi Chemicals Corp Method for producing alcohol
JP2013139416A (en) * 2011-12-29 2013-07-18 Kao Corp Method for producing guerbet alcohol
WO2016088896A1 (en) * 2014-12-05 2016-06-09 国立大学法人東京工業大学 Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method
US10322940B2 (en) 2014-12-05 2019-06-18 Japan Science And Technology Agency Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method
WO2021125322A1 (en) * 2019-12-18 2021-06-24 花王株式会社 Method for producing guerbet alcohol
WO2022131353A1 (en) * 2020-12-17 2022-06-23 花王株式会社 Method for producing guerbet alcohol

Also Published As

Publication number Publication date
JP2669553B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
EP0089569B1 (en) Process for preparation of guerbet alcohols
RU2154630C2 (en) Method of preparing aliphatic alpha, omega-aminotriles
JPH0336571B2 (en)
US7468342B2 (en) Catalysts and process for producing aromatic amines
JP3162405B2 (en) Metal compounds that can be used as catalysts
JPS6115865A (en) Production of tertiary amine
JPH02286638A (en) Production of branched dimerized alcohol
CN114054041A (en) Dimethyl oxalate hydrogenation catalyst, preparation method and application thereof
JPS62149648A (en) Production of secondary amine
JP3507200B2 (en) Nitrile production method
JPH05154383A (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
US5696294A (en) Process for producing N,N-dimethyl-N-alkylamine or N,N-dimethyl-N-alkenylamine
JP3616642B2 (en) Method for producing 1,4-butanediol
JPS615036A (en) Production of alcohol
RU2095136C1 (en) Nickel hydrogenation catalyst on carrier and method of preparing modified nickel hydrogenation catalyst on carrier
JPH09221437A (en) Production of ethanol
JP3092230B2 (en) Method for producing ethyleneamine
JPH02232A (en) Production of n-substituted amine
JP3970489B2 (en) Process for producing N, N-dimethyl-N-alkylamine
JPS629099B2 (en)
JP2620358B2 (en) Method for producing secondary amine
JPH0820561A (en) Production of carbonic acid ester
JPH10158214A (en) Production of carboxylate
US5175377A (en) Process for preparing an ortho-alkylated phenol
JP3074848B2 (en) Method for producing ethyleneamine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees