JPH0228630B2 - - Google Patents

Info

Publication number
JPH0228630B2
JPH0228630B2 JP59151191A JP15119184A JPH0228630B2 JP H0228630 B2 JPH0228630 B2 JP H0228630B2 JP 59151191 A JP59151191 A JP 59151191A JP 15119184 A JP15119184 A JP 15119184A JP H0228630 B2 JPH0228630 B2 JP H0228630B2
Authority
JP
Japan
Prior art keywords
liquid crystal
methylbutyloxy
added
phase
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59151191A
Other languages
Japanese (ja)
Other versions
JPS6130561A (en
Inventor
Kazuo Yoshinaga
Kazuharu Katagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59151191A priority Critical patent/JPS6130561A/en
Publication of JPS6130561A publication Critical patent/JPS6130561A/en
Priority to US07/443,035 priority patent/US4979805A/en
Publication of JPH0228630B2 publication Critical patent/JPH0228630B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、新規な液晶性化合物、及び該液晶性
化合物を含有し、液晶表示素子や液晶―光シヤツ
タ等に使用するのに好適な液晶組成物に関する。 [従来の技術] 液晶性化合物として、光学活性基を含有する化
合物が注目されている。光学活性基を含有するこ
とを特徴とする化合物の機能としては、液晶状
態においてカイラルネマテイツク相を利用するホ
ワイト・テイラー型のゲストホスト形電気光学効
果を利用するもの、カイラルネマテイツク相か
らネマテイツク相への電界による相転移現象を利
用するもの、カイラルネマテイツク相とスメク
テイツク相の熱による相転移現象を利用するも
の、スメクチツク相の強誘電現象を利用するも
のなどが知られている。また、単分子累積膜と
することにより非線形光学素子として、マトリツ
クス中へ固定化することにより円偏光ビームスプ
リツター、フイルター等の光学素子として利用で
きる。そこで、光学活性基を含有する化合物を合
成し、その機能を調べ、上記種々の用途への適用
につき研究が積み重ねられている。 また従来より知られている液晶表示素子として
は、TN(Twisted Nematic)型、動的散乱型
(DS型)、ゲスト・ホスト型および熱光学効果を
利用するもの等が挙げられる。特にTN型液晶素
子は時計・電卓等に広く用いられているが、応答
が遅いため高速応答性が要求される液晶―光シヤ
ツタ、テレビ画像表示装置、コンピユーター端末
表示装置などに対して充分満足できないのが現状
である。 このような従来型の液晶素子の欠点を改善する
ものとして、双安定性を有する液晶素子の使用
が、ClarkおよびLagerwallにより提案されてい
る(特開昭58―107216号公報、米国特許第
4367924号明細書等)。双安定性液晶としては、一
般に、カイラルスメクテイツクC相(SmC*)
H相(SmH*)、F相(SmF*)、I相(SmI
*)、G相(SmG*)などのカイラルスメクテイ
ツク相を有する強誘電液晶が用いられる。この液
晶は電界に対して第1の光学的安定状態と第2の
光学的安定状態からなる双安定状態を有し、例え
ば一方の電界ベクトルに対し第1の光学的安定状
態に液晶が配向し他の電界ベクトルに対しては第
2の光学的安定状態に液晶が配向される。またこ
の型の液晶は、加えられる電界に応答して、極め
て速やかに上記2つの安定状態のいずれかを取
り、且つ電界の印加のないときはその状態を維持
する性質を有する。 次に強誘電性液晶の動作説明を第1図および第
2図を使つて行なう。第1図において1と、1a
は、In2O3、SnO2あるいはITO(Indium―
TinOxide)等の薄膜からなる透明電極で被覆さ
れた基板(ガラス板)であり、その間に液晶分子
層2がガラス面に垂直になるよう配向したSmC
*相又はSmH*相の液晶が封入されている。太
線で示した線3が液晶分子を表わしており、この
液晶分子3はその分子に直交した方向に双極子モ
ーメント(P⊥)4を有している。基板1と1a
上の電極間に一定の閾値以上の電圧を印加する
と、液晶分子3のらせん構造がほどけ、双極子モ
ーメント(P⊥)4がすべて電界方向に向くよ
う、液晶分子3は配向方向を変えることができ
る。液晶分子3は、細長い形状を有しており、そ
の長軸方向と短軸方向で屈折率異方性を示し、従
つて例えばガラス面の上下に互いにクロスニコル
の偏光子を置けば、電圧印加極性によつて光学特
性が変わる液晶光学変調素子となることは、容易
に理解される。そらに好ましく用いられる液晶セ
ルは、その厚さを充分に薄く(例えば10μ以下)
することができる。このように液晶層が薄くなる
にしたがい、第2図に示すように電界を印加して
いない状態でも液晶分子のらせん構造がほどけ、
非らせん構造となり、その双極子モーメントPま
たはPaは上向き5又は下向き5aのどちらかの
状態をとる。このようなセルに、第2図に示す如
く一定の閾値以上の極性の異なる電界E又はQa
を電圧印加手段6と6aにより付与すると、双極
子モーメントは、電界E又はEaの電界ベクトル
に対応して上向き5又は下向き5aと向きを変
え、それに応じて液晶分子は、第1の安定状態7
かあるいは第2の安定状態7aの何れか一方に配
向する。 このような強誘電性を光学変調素子として用い
ることの利点は、先にも述べたが2つある。その
第1は、応答速度が極めて速いことであり、第2
は液晶分子の配向が双安定性を有することであ
る。第2の点を、例えば第2図によつて更に説明
すると、電界Eを印加すると液晶分子は第1の安
定状態7に配向するが、この状態は電界を切つて
も安定である。又、逆向きの電界Eaを印加する
と、液晶分子は第2の安定状態7aに配向してそ
の分子の向きを変えるが、やはり電界を切つても
この状態に留つている。又、与える電界Eが一定
の閾値を越えない限り、それぞれの配向状態にや
はり維持されている。このような応答速度の速さ
と、双安定性が有効に実現されるにはセルとして
は出来るだけ薄い方が好ましい。 上述した強誘電性を示す液晶化合物の具体例と
しては、p―デシルオキシベンジリデン―p′―ア
ミノ―2―メチルブチルシンナメート
(DOBAMBC)p―ヘキシルオキシベンジリデ
ン―p′―アミノ―2―クロロプロピルシンナメー
ト(HOBACPC)、4―D―(2―メチル)―ブ
チルレゾルシリデン―4′―オクチルアニリン
(MBRA8)などが挙げられる。しかし該化合物
は液晶素子として繰り返し通電させると、劣化が
起こり易く、セルの気密性封入条件、動作条件な
どの点で注意を要し、液晶素子開発上の大きな難
点となつている。一方、安定な液晶化合物の探索
も行なわれているが、高速応答性と安定性を満足
し、実用化されているものは見出されていないの
が現状である。 [発明が解決しようとする問題点] 本発明は、上記〜に例示した種々の用途に
有効な光学活性基を含有する新規な液晶性化合
物、及び該新規化合物を強誘電性液晶中に含有せ
しめてなり、優れた動作寿命特性を有し、応答速
度が速く、双安定性に優れ、液晶表示素子や液晶
シヤツタ等に使用するのに好適な液晶組成物を提
供するためになされたものである。 [問題点を解決するための手段及び作用] 本発明によれば、 (1) 一般式(): (式中Rは炭素数6〜12のアルキル基を示し、
*は不斉炭素原子を示す) で表わされる化合物の少なくとも1種を配合成分
として含有することを特徴とする強誘電性液晶組
成物が提供される。 一般式()中のアルキル基Rの鎖長が短かす
ぎるものは強誘電性液晶へ混合する場合に安定性
に欠ける欠点があり、相転移温度が高くなり、一
方鎖長が長すぎるものは融点が上昇することと粘
度が増加する欠点があり、そのバランスから、ア
ルキル基Rの炭素原子数は4〜20が好ましく、よ
り好ましくは炭素原子数6〜16、特に好ましくは
6〜12である。 上記一般式()で表わされる4―(β―メチ
ルブチルオキシ)―4′―アルキルアゾキシベンゼ
ンの好ましい具体例としては、S―(+)―4―
(β―メチルブチルオキシ)―4′―ヘキシルアゾ
キシベンゼン、S―(+)―4―(β―メチルブ
チルオキシ)―4′―ヘプチルアゾキシベンゼン、
S―(+)―4―(β―メチルブチルオキシ)―
4′―オクチルアゾキシベンゼン、S―(+)―4
―(β―メチルブチルオキシ)―4′―ノニルアキ
シゾベンゼン、S―(+)―4―(β―メチルブ
チルオキシ)―4′―デシルアゾキシベンゼン、S
―(+)―4―(β―メチルブチルオキシ)―
4′―ウンデシルアゾキシベンゼン、S―(+)―
4―(β―メチルブチルオキシ)―4′―ドデシル
アゾキシベンゼンが挙げられる。 次に本発明の新規液晶性化合物の製造法につい
て示す。 まず、p―アルキルアニリンを冷却下塩酸水溶
液にて滴下し、塩酸塩とする。次に亜硝酸ナトリ
ウム水溶液を滴下しジアゾニウム塩とする。この
ジアゾニウム塩水溶液をアルカリ条件にてフエノ
ールへ滴下し4′―アルキル―4―ハイドロキシア
ゾベンゼンを合成する。4′―アルキル―4―ハイ
ドロキシアゾベンゼンを精製後、過剰の水酸化カ
リウムと反応し、光学活性な2′―メチルブチルブ
ロマイドと反応させ4―(β―メチルブチルオキ
シ)4′―アルキルアゾベンゼンを得る。4―(β
―メチルブチルオキシ)―4′―アルキルベンゼン
を精製後氷酢酸に溶解し、60〜70℃に加熱し、過
酸化水素水を加えて反応させ、分離精製して4―
(β―メチルブチルオキシ)4′―アルキルアゾキ
シベンゼンを得る。 以上を化学式で示すと、以下の通りである。 本発明の4―(β―メチルブチルオキシ)―
4′―アルキルアゾキシベンゼンは光学活性物質で
あり、おもにコレステリツク相を示している。ネ
マチツク液晶に本発明の化合物を少量添加してホ
ワイト・テーラー型表示素子あるいはカイラルネ
マテイツク相からネマテイツク相への相転移型表
示素子で用いる液晶組成物とすることができ、又
TN表示素子で用いる液晶組成物に添加して、リ
バースドメインの発生を防止することができる。 又、本発明の一般式()で示される化合物を
含有し、強誘電性を有する液晶組成物において使
用される液晶化合物としては、スメクテイツクC
相を有する液晶化合物、好ましくはSmC*又は
カイラルスメクテイツク相を有する強誘電液晶化
合物が用いられる。 次に本発明の液晶組成物について説明する。 本発明の液晶組成物において使用される強誘電
性液晶化合物との具体例を以下に掲げる。 Schiff塩基型強誘電性液晶化合物: (1) DOBAMBC(p―デシルオキシベンジリデ
ンp′―アミノ―2―メチルブチルシンナメー
ト) (この系統がp―ヘキシルオキシ乃至p―デシ
ルオキシの炭素原子数のアルコキシ基を有する化
合物は強誘電性があり、本発明の組成物に使用で
きる。) (2) DOBAMBCC(p―デシルオキシベンジリデ
ンp′―アミノ―2―メチルブチルα―シアノシ
ンナメート) (この系統でp―デシルオキシ基がp―テトラ
デシルオキシ基で置き換わつた化合物も強誘電性
がある。) (3) OOBAMBCC(p―オクチルオキシベンジリ
デンp′―アミノ―2―アミノメチルブチルα―
クロロシンナメート) (4) HOBACPC(p―ヘキシルオキシベンジリデ
ンp′―アミノ―2―クロロα―プロピルシンナ
メート) (この系統でp―ヘキシルオキシ乃至p―ドデ
シルオキシの炭素原子数のアルコキシ基を有する
化合物は強誘電性がある。) (5) OOBAMBMC(p―オクチルオキシベンジ
リデンp′―アミノ―2―メチルブチルα―メチ
ルシンナメート) (6) DOBMBA[p―デシルオキシベンジリデン
p′―(2―メチルブチルオキシカルボニル)ア
ニリン] (この系統でp―ヘプチルオキシ乃至p―テト
ラデシルオキシの炭素原子数のアルコキシ基を有
する化合物は強誘電性がある。) エステル型強誘電性液晶化合物: (1) 4―n―ヘキシルオキシフエニル4―(2″―
メチルブチル)ビフエニル―4′―カルボキシレ
ート (2) 4―(2′―メチルブチル)フエニル4′―オク
チルビフエニル―4―カルボキシレート (3) 4―(2′―メチルブチルオキシ)フエニル
4′―ドデシルオキシフエニル―4―カルボキシ
レート (上記の2′―メチルブチルオキシ基が4′―ノニ
ルオキシ基で置き換わつた化合物も強誘電性を示
す。) アゾキシ型強誘電性液晶化合物: (1) PACMB(p―アゾキシシンナメートメチル
2ブタノール) 本発明の組成物においては、強誘電性液晶化合
物及び一般式()で示される化合物は各々2種
以上混合して用いてもよい。 本発明の組成物においては、強誘電性液晶化合
物100重量部に対し、一般式()で示される4
―(β―メチルブチルオキシ)―4′―アルキルア
ゾキシベンゼン0.01〜100重量部が配合される。
0.01重量部未満の場合は動作寿命を延ばす効果が
発現せず、100重量部を超える場合は強誘電性液
晶が希釈されるため強誘電性液晶としての特性が
低下する。 [実施例] 次に実施例を挙げて本発明を説明する。 なお、以下の実施例において、相転移温度は
DSC(セイコー電子SSC 580 DS)により測定を
行い、温度制御した銅ブロツク中でガラス板に封
入した液晶を挿入し、偏光顕微鏡で観察すること
で確認した。 実施例 1 [S―(+)―4―(β―メチルブチルオキ
シ)4′―ヘプチルアゾキシベンゼンの製造] 4―ヘプチルアニリン32.9g(0.17M)を0℃
以下に冷却し10%塩酸水溶液85gを加え、次に亜
硝酸ナトリウム12.1gを70mlの水に溶解したもの
を加えた。滴下中は0℃以上とならないように冷
却した。滴下終了後30分間反応させたものを滴下
ロートへ移し、フエノール16gを含む8%
NaOH水溶液300mlへ滴下した。滴下中は5℃以
下に保つた。滴下終了後1時間攪拌を続け、その
後PH5〜6となるまで10%塩酸水溶液を加え、反
応物を析出させた。析出物を別し水にて洗浄後
減圧乾燥を1夜行つた。乾燥後石油エーテル500
mlで洗浄し、さらに減圧乾燥して34.7g
(0.12M)の4―ハイドロキシ4′―ヘプチルアゾ
ベンゼンを得た。収率は71%であつた。4―ハイ
ドロキシ4′―ヘプチルアゾベンゼン10g
(0.034M)を4.4gの水酸化カリウムとともに20
mlのエタノールに溶解し6時間加熱還流した。次
に10gのS―(+)―2―メチルブチルブロマイ
ドを加え12時間加熱還流した。反応終了後過し
溶媒を留去した。残分をベンゼンに溶解しシリカ
ゲルにてカラムクロマトを行つた。ベンゼンを留
去し、減圧乾燥して5.0g(0.014M)のS―
(+)4―(β―メチルブチルオキシ)4′―ヘプ
チルアゾベンゼンを得た。収率は41%であつた。
33℃〜8℃にてモノトロピツクなコレステリツク
液晶相を示した。 S―(+)―4―(β―メチルブチルオキシ)
4′―ヘプチルアゾベンゼン2.0g(0.0055M)を50
mlに氷酢酸に溶解し60〜70℃に加熱攪拌した。1
mlの30%過酸化水素水を加え1時間反応させた。
次に1mlの30%過酸化水素水を加え4時間反応さ
せた。その後8時間で4mlの30%過酸化水素水を
加え滴下終了後6時間反応させた。反応終了後ヘ
キサンにて抽出し、溶媒を留去した。ベンゼンに
溶解してシリカゲルにてカラムクロマトを行つ
た。ベンゼンを留去し減圧乾燥して1.8g
(0.0047M)のS―(+)―4―(β―メチルブ
チルオキシ)4′―ヘプチルアゾキシベンゼンを得
た。収率は85%であつた。 この化合物のIR,NMRデータ、及び相転移温
度を以下に示す。 IR:
[Industrial Application Field] The present invention relates to a novel liquid crystal compound and a liquid crystal composition containing the liquid crystal compound and suitable for use in liquid crystal display elements, liquid crystal light shutters, and the like. [Prior Art] Compounds containing optically active groups are attracting attention as liquid crystal compounds. The functions of compounds characterized by containing optically active groups include those that utilize the White-Taylor guest-host type electro-optical effect that utilizes a chiral nematic phase in the liquid crystal state, and those that utilize a chiral nematic phase to a nematic phase. Some of the known methods are those that utilize the phase transition phenomenon caused by an electric field, those that utilize the phase transition phenomenon that occurs due to heat between the chiral nematic phase and the smectic phase, and those that utilize the ferroelectric phenomenon of the smectic phase. Further, by forming a monomolecular cumulative film, it can be used as a nonlinear optical element, and by immobilizing it in a matrix, it can be used as an optical element such as a circularly polarized beam splitter or a filter. Therefore, research has been carried out to synthesize compounds containing optically active groups, examine their functions, and apply them to the various uses mentioned above. Further, conventionally known liquid crystal display elements include TN (Twisted Nematic) type, dynamic scattering type (DS type), guest-host type, and those using thermo-optic effects. In particular, TN type liquid crystal elements are widely used in watches, calculators, etc., but because of their slow response, they are not fully satisfactory for liquid crystals that require high-speed response, such as optical shutters, television image display devices, computer terminal display devices, etc. is the current situation. To improve the drawbacks of conventional liquid crystal devices, Clark and Lagerwall proposed the use of bistable liquid crystal devices (Japanese Patent Application Laid-open No. 107216/1983, U.S. Patent No.
4367924 specification, etc.). Bistable liquid crystals are generally chiral smectic C phase (SmC*).
H phase (SmH*), F phase (SmF*), I phase (SmI
*), a ferroelectric liquid crystal having a chiral smectic phase such as G phase (SmG*) is used. This liquid crystal has a bistable state consisting of a first optically stable state and a second optically stable state with respect to an electric field. For example, the liquid crystal is oriented in the first optically stable state with respect to one electric field vector. For other electric field vectors, the liquid crystal is oriented in a second optically stable state. Furthermore, this type of liquid crystal has the property of very quickly taking one of the above two stable states in response to an applied electric field, and maintaining that state when no electric field is applied. Next, the operation of the ferroelectric liquid crystal will be explained using FIGS. 1 and 2. 1 and 1a in Figure 1
is In 2 O 3 , SnO 2 or ITO (Indium-
A substrate (glass plate) coated with a transparent electrode made of a thin film such as TinOxide, etc., between which a liquid crystal molecular layer 2 is oriented perpendicular to the glass surface.
*phase or SmH* phase liquid crystal is enclosed. A thick line 3 represents a liquid crystal molecule, and this liquid crystal molecule 3 has a dipole moment (P⊥) 4 in a direction perpendicular to the molecule. Boards 1 and 1a
When a voltage higher than a certain threshold is applied between the upper electrodes, the helical structure of the liquid crystal molecules 3 is unraveled, and the liquid crystal molecules 3 are able to change their alignment direction so that all of the dipole moments (P⊥) 4 point in the direction of the electric field. can. The liquid crystal molecules 3 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, voltage can be applied. It is easily understood that this results in a liquid crystal optical modulation element whose optical properties change depending on the polarity. The liquid crystal cell preferably used in this field has a sufficiently thin thickness (for example, 10μ or less).
can do. As the liquid crystal layer becomes thinner, the helical structure of the liquid crystal molecules unravels even when no electric field is applied, as shown in Figure 2.
It has a non-helical structure, and its dipole moment P or Pa takes either an upward direction 5 or a downward direction 5a. In such a cell, an electric field E or Qa of different polarity above a certain threshold value is applied as shown in Figure 2.
is applied by the voltage application means 6 and 6a, the dipole moment changes its direction upward 5 or downward 5a in response to the electric field E or the electric field vector of Ea, and accordingly, the liquid crystal molecules enter the first stable state 7.
or the second stable state 7a. As mentioned earlier, there are two advantages to using such ferroelectricity as an optical modulation element. The first is that the response speed is extremely fast, and the second is that the response speed is extremely fast.
is that the orientation of liquid crystal molecules has bistability. To further explain the second point, for example, with reference to FIG. 2, when an electric field E is applied, the liquid crystal molecules are oriented in a first stable state 7, and this state remains stable even when the electric field is turned off. Furthermore, when an electric field Ea in the opposite direction is applied, the liquid crystal molecules are oriented to the second stable state 7a and change their orientation, but they remain in this state even after the electric field is turned off. Further, as long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable that the cell be as thin as possible. Specific examples of the above-mentioned liquid crystal compounds exhibiting ferroelectricity include p-decyloxybenzylidene-p'-amino-2-methylbutylcinnamate (DOBAMBC), p-hexyloxybenzylidene-p'-amino-2-chloropropyl Examples include cinnamate (HOBACPC), 4-D-(2-methyl)-butylresolcylidene-4'-octylaniline (MBRA8), and the like. However, when this compound is repeatedly energized as a liquid crystal element, it tends to deteriorate, and care must be taken in terms of the airtight sealing conditions of the cell, operating conditions, etc., and this is a major difficulty in the development of liquid crystal elements. On the other hand, although searches have been made for stable liquid crystal compounds, no one that satisfies high-speed response and stability and has been put to practical use has yet to be found. [Problems to be Solved by the Invention] The present invention provides a novel liquid crystal compound containing an optically active group that is effective for the various uses listed above, and a method for incorporating the new compound into a ferroelectric liquid crystal. This invention was developed in order to provide a liquid crystal composition that has excellent operating life characteristics, fast response speed, and excellent bistability, and is suitable for use in liquid crystal display elements, liquid crystal shutters, etc. . [Means and effects for solving the problems] According to the present invention, (1) General formula (): (In the formula, R represents an alkyl group having 6 to 12 carbon atoms,
* indicates an asymmetric carbon atom) A ferroelectric liquid crystal composition is provided, which is characterized by containing at least one compound represented by the following as a compounding component. If the chain length of the alkyl group R in the general formula () is too short, it will lack stability when mixed into a ferroelectric liquid crystal, resulting in a high phase transition temperature, while if the chain length is too long, There are disadvantages of increased melting point and increased viscosity, and from the balance thereof, the number of carbon atoms in the alkyl group R is preferably 4 to 20, more preferably 6 to 16, particularly preferably 6 to 12. . Preferred specific examples of 4-(β-methylbutyloxy)-4'-alkylazoxybenzene represented by the above general formula () include S-(+)-4-
(β-methylbutyloxy)-4′-hexylazoxybenzene, S-(+)-4-(β-methylbutyloxy)-4′-heptylazoxybenzene,
S-(+)-4-(β-methylbutyloxy)-
4'-octylazoxybenzene, S-(+)-4
-(β-methylbutyloxy)-4'-nonylaxyzobenzene, S-(+)-4-(β-methylbutyloxy)-4'-decylazoxybenzene, S
-(+)-4-(β-methylbutyloxy)-
4'-Undecylazoxybenzene, S-(+)-
4-(β-methylbutyloxy)-4'-dodecylazoxybenzene is mentioned. Next, a method for producing the novel liquid crystal compound of the present invention will be described. First, p-alkylaniline is added dropwise to an aqueous solution of hydrochloric acid under cooling to form a hydrochloride. Next, a sodium nitrite aqueous solution is added dropwise to form a diazonium salt. This diazonium salt aqueous solution is added dropwise to phenol under alkaline conditions to synthesize 4'-alkyl-4-hydroxyazobenzene. After purifying 4'-alkyl-4-hydroxyazobenzene, it is reacted with excess potassium hydroxide and then with optically active 2'-methylbutyl bromide to obtain 4-(β-methylbutyloxy)4'-alkylazobenzene. . 4-(β
-Methylbutyloxy)-4'-alkylbenzene is purified, dissolved in glacial acetic acid, heated to 60-70℃, added hydrogen peroxide solution and reacted, separated and purified to produce 4-
(β-methylbutyloxy)4′-alkylazoxybenzene is obtained. The chemical formula for the above is as follows. 4-(β-methylbutyloxy)- of the present invention
4'-Alkylazoxybenzene is an optically active substance and mainly exhibits a cholesteric phase. A small amount of the compound of the present invention can be added to a nematic liquid crystal to obtain a liquid crystal composition for use in a White-Taylor type display element or a phase transition type display element from a chiral nematic phase to a nematic phase.
It can be added to liquid crystal compositions used in TN display elements to prevent the occurrence of reverse domains. Further, as the liquid crystal compound used in the liquid crystal composition containing the compound represented by the general formula () of the present invention and having ferroelectric properties, Smectic C
A liquid crystal compound having a phase, preferably SmC* or a ferroelectric liquid crystal compound having a chiral smectoid phase is used. Next, the liquid crystal composition of the present invention will be explained. Specific examples of ferroelectric liquid crystal compounds used in the liquid crystal composition of the present invention are listed below. Schiff base type ferroelectric liquid crystal compound: (1) DOBAMBC (p-decyloxybenzylidene p'-amino-2-methylbutylcinnamate) (Compounds in this family having an alkoxy group with the number of carbon atoms ranging from p-hexyloxy to p-decyloxy have ferroelectric properties and can be used in the composition of the present invention.) (2) DOBAMBCC (p-decyloxybenzylidene p '-Amino-2-methylbutyl α-cyanocinnamate) (Compounds in this series in which p-decyloxy group is replaced with p-tetradecyloxy group are also ferroelectric.) (3) OOBAMBCC (p-octyloxybenzylidene p'-amino-2-aminomethylbutyl α ―
chlorocinnamate) (4) HOBACPC (p-hexyloxybenzylidene p'-amino-2-chloro α-propyl cinnamate) (Compounds in this series that have an alkoxy group with the number of carbon atoms from p-hexyloxy to p-dodecyloxy are ferroelectric.) (5) OOBAMBMC (p-octyloxybenzylidene p'-amino-2-methylbutyl α -methyl cinnamate) (6) DOBMBA [p-decyloxybenzylidene
p′-(2-methylbutyloxycarbonyl)aniline] (In this system, compounds having an alkoxy group with the number of carbon atoms of p-heptyloxy to p-tetradecyloxy are ferroelectric.) Ester-type ferroelectric liquid crystal compounds: (1) 4-n-hexyloxyph Enil 4-(2″-
Methylbutyl)biphenyl-4'-carboxylate (2) 4-(2'-methylbutyl)phenyl 4'-octylbiphenyl-4-carboxylate (3) 4-(2'-methylbutyloxy)phenyl
4'-dodecyloxyphenyl-4-carboxylate (Compounds in which the above 2'-methylbutyloxy group is replaced with a 4'-nonyloxy group also exhibit ferroelectricity.) Azoxy-type ferroelectric liquid crystal compounds: (1) PACMB (p-azoxycinnamate methyl 2-butanol) In the composition of the present invention, two or more of the ferroelectric liquid crystal compound and the compound represented by the general formula () may be used as a mixture. In the composition of the present invention, 4 parts represented by the general formula () is added to 100 parts by weight of the ferroelectric liquid crystal compound.
0.01 to 100 parts by weight of -(β-methylbutyloxy)-4'-alkylazoxybenzene is blended.
If the amount is less than 0.01 part by weight, no effect of extending the operating life will be exhibited, and if it exceeds 100 parts by weight, the ferroelectric liquid crystal will be diluted and its properties as a ferroelectric liquid crystal will deteriorate. [Example] Next, the present invention will be explained with reference to Examples. In addition, in the following examples, the phase transition temperature is
Measurement was performed using DSC (Seiko Electronics SSC 580 DS), and confirmation was made by inserting a liquid crystal sealed in a glass plate in a temperature-controlled copper block and observing it with a polarizing microscope. Example 1 [Production of S-(+)-4-(β-methylbutyloxy)4'-heptylazoxybenzene] 32.9 g (0.17 M) of 4-heptylaniline was heated to 0°C.
After cooling, 85 g of a 10% aqueous hydrochloric acid solution was added, and then 12.1 g of sodium nitrite dissolved in 70 ml of water was added. During the dropping, the solution was cooled so that the temperature did not exceed 0°C. After the dropwise addition was completed, the mixture was allowed to react for 30 minutes and then transferred to a dropping funnel.8% containing 16g of phenol was added.
It was added dropwise to 300 ml of NaOH aqueous solution. The temperature was kept below 5°C during the dropping. After the dropwise addition was completed, stirring was continued for 1 hour, and then 10% aqueous hydrochloric acid solution was added until the pH reached 5 to 6 to precipitate the reaction product. The precipitate was separated, washed with water, and then dried under reduced pressure overnight. Petroleum ether 500 after drying
ml and further dried under reduced pressure to give 34.7g.
(0.12M) of 4-hydroxy 4'-heptyl azobenzene was obtained. The yield was 71%. 4-Hydroxy 4'-heptyl azobenzene 10g
(0.034M) with 4.4g of potassium hydroxide
It was dissolved in 1 ml of ethanol and heated under reflux for 6 hours. Next, 10 g of S-(+)-2-methylbutyl bromide was added and the mixture was heated under reflux for 12 hours. After the reaction was completed, the mixture was filtered and the solvent was distilled off. The residue was dissolved in benzene and subjected to column chromatography on silica gel. Benzene was distilled off and dried under reduced pressure to obtain 5.0g (0.014M) of S-
(+)4-(β-methylbutyloxy)4'-heptyl azobenzene was obtained. The yield was 41%.
It exhibited a monotropic cholesteric liquid crystal phase at 33°C to 8°C. S-(+)-4-(β-methylbutyloxy)
4′-heptyl azobenzene 2.0g (0.0055M) 50
ml of glacial acetic acid and stirred while heating to 60-70°C. 1
ml of 30% hydrogen peroxide solution was added and reacted for 1 hour.
Next, 1 ml of 30% hydrogen peroxide solution was added and reacted for 4 hours. Thereafter, 4 ml of 30% hydrogen peroxide solution was added over a period of 8 hours, and the mixture was allowed to react for 6 hours after the dropwise addition was completed. After the reaction was completed, the mixture was extracted with hexane and the solvent was distilled off. It was dissolved in benzene and subjected to column chromatography on silica gel. Distill off benzene and dry under reduced pressure to give 1.8g
(0.0047M) of S-(+)-4-(β-methylbutyloxy)4'-heptylazoxybenzene was obtained. The yield was 85%. The IR, NMR data, and phase transition temperature of this compound are shown below. IR:

【式】1280cm-1 Ar―O―CH2 1260cm-1 NMR:Ar―CH2 ― 2.5(t) 0.7〜2.0メチル、メチレン Ar―O―CH2 ―3.7(q) Ar 7.7〜8.2 相転移温度: Cryst9℃ −33℃Ch43℃ 41℃Iso 各略語は以下の意味を有する(以後の実施例に
おいても同様)。 Cryst:結晶 Ch:コレステリツク相 Iso:等方性液体 実施例 2 [S―(+)―4―(β―メチルブチルオキ
シ)4′―ヘキシルアゾキシベンゼンの製造] 4―ヘキシルアニリン30.1g(0.17M)を0℃
以下に冷却し10%塩酸水溶液85gを加え、次に亜
硝酸ナトリウム11.6gを68gの水に溶解したもの
を加えた。滴下中は0℃以上とならないように冷
却した。滴下終了後30分間反応させたものを滴下
ロートへ移し、フエノール16gを含む8%
NaOH水溶液170gへ滴下した。滴下中は5℃以
下に保つた。滴下終了後0.5時間攪拌を続けその
後PH5〜6となるまで10%塩酸水溶液を加え、反
応物を析出させた。析出物を別し水にて洗浄
後、減圧乾燥を1夜行つた。乾燥後石油エーテル
500mlで洗浄し、さらに減圧乾燥して29.6g
(0.10M)の4―ハイドロキシ4′―ヘキシルアゾ
ベンゼンを得た。収率は59%であつた。4―ハイ
ドロキシ―4′―ヘキシルアゾベンゼン8.6g
(0.030M)を3.3gの水酸化カリウムとともに20
mlのエタノールに溶解し9時間加熱還流した。次
に9.0gのS―(+)―2―メチルブチルブロマ
イドを加え12時間加熱還流した。反応終了後過
し溶媒を留去した。残分をベンゼンに溶解し、シ
リカゲルにてカラムクロマトを行つた。ベンゼン
を留去し、減圧乾燥して5.9g(0.017M)のS―
(+)4―(β―メチルブチルオキシ)4′―ヘキ
シルアゾベンゼンを得た。収率は57%であつた。
11〜13℃にてモノトロピツクなコレステリツク液
晶相を示した。S―(+)―4―(β―メチルブ
チルオキシ)4′ヘキシルアゾベンゼン2.5g(7.1
×10-3M)を50mlの氷酢酸に溶解し60〜70℃に加
熱攪拌した。1mlの30%過酸化水素水を加え1時
間反応させた。次に1mlの30%過酸化水素水を加
え4時間反応させた。その後8時間で4mlの30%
過酸化水素水を加え滴下終了後6時間反応させ
た。反応終了後ヘキサンにて抽出し、溶媒を留去
した。ベンゼンに溶解してシリカゲルにてカラム
クロマトを行つた。ベンゼンを留去し減圧乾燥し
て1.7g(4.6×10-3M)のS―(+)―4―(β
―メチルブチルオキシ)4′―ヘキシルアゾキシベ
ンゼンを得た。収率は65%であつた。 この化合物のIR,NMRデータ及び相転移温度
を以下に示す。 IR:
[Formula] 1280cm -1 Ar-O-CH 2 1260cm -1 NMR: Ar-C H 2 - 2.5 (t) 0.7-2.0 methyl, methylene Ar-O-C H 2 -3.7 (q) Ar 7.7 - 8.2 Phase Transition temperature: Cryst9°C -33°CCh43°C 41°CIso Each abbreviation has the following meaning (the same applies to the following examples). Cryst: Crystal Ch: Cholesteric phase Iso: Isotropic liquid Example 2 [Production of S-(+)-4-(β-methylbutyloxy)4'-hexylazoxybenzene] 30.1 g (0.17 g) of 4-hexylaniline M) at 0℃
After cooling, 85 g of a 10% aqueous hydrochloric acid solution was added, and then 11.6 g of sodium nitrite dissolved in 68 g of water was added. During the dropping, the solution was cooled so that the temperature did not exceed 0°C. After the dropwise addition was completed, the mixture was allowed to react for 30 minutes and then transferred to a dropping funnel.8% containing 16g of phenol was added.
It was added dropwise to 170 g of NaOH aqueous solution. The temperature was kept below 5°C during the dropping. After the addition was completed, stirring was continued for 0.5 hours, and then 10% aqueous hydrochloric acid solution was added until the pH reached 5 to 6 to precipitate the reaction product. The precipitate was separated, washed with water, and then dried under reduced pressure overnight. Petroleum ether after drying
Washed with 500ml and dried under reduced pressure to yield 29.6g.
(0.10M) of 4-hydroxy4'-hexylazobenzene was obtained. The yield was 59%. 4-Hydroxy-4'-hexylazobenzene 8.6g
(0.030M) with 3.3g of potassium hydroxide
It was dissolved in 1 ml of ethanol and heated under reflux for 9 hours. Next, 9.0 g of S-(+)-2-methylbutyl bromide was added and the mixture was heated under reflux for 12 hours. After the reaction was completed, the mixture was filtered and the solvent was distilled off. The residue was dissolved in benzene and subjected to column chromatography on silica gel. Benzene was distilled off and dried under reduced pressure to obtain 5.9g (0.017M) of S-
(+)4-(β-methylbutyloxy)4'-hexylazobenzene was obtained. The yield was 57%.
It exhibited a monotropic cholesteric liquid crystal phase at 11-13°C. S-(+)-4-(β-methylbutyloxy)4'hexylazobenzene 2.5g (7.1
×10 -3 M) was dissolved in 50 ml of glacial acetic acid and stirred while heating to 60-70°C. 1 ml of 30% hydrogen peroxide solution was added and reacted for 1 hour. Next, 1 ml of 30% hydrogen peroxide solution was added and reacted for 4 hours. 30% of 4ml in the next 8 hours
Hydrogen peroxide solution was added and the mixture was reacted for 6 hours after the dropwise addition was completed. After the reaction was completed, the mixture was extracted with hexane and the solvent was distilled off. It was dissolved in benzene and subjected to column chromatography on silica gel. Benzene was distilled off and dried under reduced pressure to obtain 1.7 g (4.6×10 -3 M) of S-(+)-4-(β
-Methylbutyloxy)4'-hexylazoxybenzene was obtained. The yield was 65%. The IR, NMR data and phase transition temperature of this compound are shown below. IR:

【式】1270cm-1 Ar―O―CH2 1245cm-1 NMR(Sppm):Ar―CH2 ―2.6(t) 0.7〜2.0メチル、メチレン Ar―O―CH2 ―3.7 Ar 6.7〜8.3 相転移温度: Cryst−2℃ −18℃Ch32℃ 28℃Iso 実施例 3 [S―(+)―4―(β―メチルブチルオキ
シ)4′―オクチルアゾキシベンゼンの製造] 4―オクチルアニリン35g(0.17M)を0℃以
下に冷却し10%塩酸水溶液85gを加え、次に亜硝
酸ナトリウム12.0gを68mlの水に溶解したものを
加えた。滴下中は0℃以上とならないように冷却
した。滴下終了後30分間反応させたものを滴下ロ
ートへ移し、フエノール16gを含む8%NAOH
水溶液170gへ滴下した。滴下中は5℃以下に保
つた。滴下終了後1時間攪拌を続け、その後PH5
〜6となるまで10%塩酸水溶液を加え、反応物を
析出させた。析出物を別し水にて洗浄後減圧乾
燥を1夜行つた。乾燥後石油エーテル500mlで洗
浄し、さらに減圧乾燥して30.8g(0.10M)の4
―ハイドロキシ―4′―ヘプチルアゾベンゼンを得
た。収率は59%であつた。4―ハイドロキシ―
4′―オクチルアゾベンゼン10g(0.032M)を3.6
gの水酸化カリウムとともに20mlのエタノールに
溶解し6時間加熱還流した。次に9gのS―
(+)―2―メチルブチルブロマイドを加え、12
時間加熱還流した。反応終了後過し溶媒を留去
した。残分をベンゼンに溶解しシリカゲルにてカ
ラムクロマトを行つた。ベンゼンを留去し、減圧
乾燥して5.7g(0.015M)のS―(+)4―(β
―メチルブレルオキシ)4′―オクチルアゾベンゼ
ンを得た。収率は47%であつた。6℃〜26℃にて
モノトロピツクなコレステリツク液晶相を示し
た。S―(+)―4―(β―メチルブチルオキ
シ)4′オクチルアゾベンゼン2.1g(5.5×10-3M)
を50mlの氷酢酸に溶解し60〜70℃に加熱攪拌し
た。1mlの30%過酸化水素水を加え1時間反応さ
せた。次に1mlの30%過酸化水素水を加え4時間
反応させた。その後8時間で4mlの30%過酸化水
素水を加え滴下終了後6時間反応させた。反応終
了後ヘキサンにて抽出し、溶媒を留去した。ベン
ゼンに溶解してシリカゲルにてカラムクロマトを
行つた。ベンゼンを留去し減圧乾燥して1.7g
(4.3×10-3M)のS―(+)―4―(β―メチル
ブレルオキシ)4′―オクチルアゾキシベンゼンを
得た。収率は78%であつた。 この化合物のIRデータ及び相転移温度を以下
に示す。 IR:
[Formula] 1270cm -1 Ar-O-CH 2 1245cm -1 NMR (Sppm): Ar-C H 2 -2.6 (t) 0.7-2.0 Methyl, methylene Ar-O-C H 2 -3.7 Ar 6.7-8.3 Phase Transition temperature: Cryst -2℃ -18℃Ch32℃ 28℃Iso Example 3 [Production of S-(+)-4-(β-methylbutyloxy)4'-octylazoxybenzene] 35g of 4-octylaniline ( 0.17M) was cooled to below 0°C, 85g of a 10% aqueous hydrochloric acid solution was added, and then 12.0g of sodium nitrite dissolved in 68ml of water was added. During the dropping, the solution was cooled so that the temperature did not exceed 0°C. After the dropwise addition was completed, the reaction mixture was allowed to react for 30 minutes, then transferred to a dropping funnel and added with 8% NAOH containing 16g of phenol.
It was added dropwise to 170 g of the aqueous solution. The temperature was kept below 5°C during the dropping. Continue stirring for 1 hour after completion of the dropwise addition, then adjust the pH to 5.
A 10% aqueous hydrochloric acid solution was added until the concentration reached ~6 to precipitate the reaction product. The precipitate was separated, washed with water, and then dried under reduced pressure overnight. After drying, wash with 500ml of petroleum ether and dry under reduced pressure to obtain 30.8g (0.10M) of 4
-Hydroxy-4'-heptyl azobenzene was obtained. The yield was 59%. 4-Hydroxy-
4′-octyl azobenzene 10g (0.032M) at 3.6
The mixture was dissolved in 20 ml of ethanol together with 1 g of potassium hydroxide, and heated under reflux for 6 hours. Next, 9g of S-
Add (+)-2-methylbutyl bromide and add 12
The mixture was heated to reflux for an hour. After the reaction was completed, the mixture was filtered and the solvent was distilled off. The residue was dissolved in benzene and subjected to column chromatography on silica gel. Benzene was distilled off and dried under reduced pressure to obtain 5.7g (0.015M) of S-(+)4-(β
-Methylbryloxy)4'-octyl azobenzene was obtained. The yield was 47%. It exhibited a monotropic cholesteric liquid crystal phase between 6°C and 26°C. S-(+)-4-(β-methylbutyloxy)4'octylazobenzene 2.1g (5.5×10 -3 M)
was dissolved in 50 ml of glacial acetic acid and stirred while heating to 60-70°C. 1 ml of 30% hydrogen peroxide solution was added and reacted for 1 hour. Next, 1 ml of 30% hydrogen peroxide solution was added and reacted for 4 hours. Thereafter, 4 ml of 30% hydrogen peroxide solution was added over a period of 8 hours, and after the dropwise addition was completed, the reaction was allowed to proceed for 6 hours. After the reaction was completed, the mixture was extracted with hexane and the solvent was distilled off. It was dissolved in benzene and subjected to column chromatography on silica gel. Distill off benzene and dry under reduced pressure to give 1.7g
(4.3×10 -3 M) of S-(+)-4-(β-methylbryloxy)4'-octylazoxybenzene was obtained. The yield was 78%. The IR data and phase transition temperature of this compound are shown below. IR:

【式】1280cm-1 Ar―O―CH2 1255cm-1 相転移温度: Cryst10℃ −19℃Ch44℃ 42℃Iso 実施例 4 DOBAMBC100重量部に対してS―(+)―
4―(β―メチルブチルオキシ)―4―オクチル
アゾベンゼンを5重量部加えて液晶組成物を調製
した。次いでピツチ100μmで幅62.5μmのストラ
イプ状のITO膜を電極として設けた正方形状ガラ
ス基板を用意し、これの電極となるITO膜が設け
られている側を下向きにして斜め蒸着装置にセツ
トし、次いでモリブデン製るつぼ内にSiO2の結
晶をセツトした。しかる後に蒸着装置内を
10-5Torr程度の真空状態としてから、所定の方
法でガラス基板上にSiO2を斜め蒸着し、800Åの
斜め蒸着膜を形成した(A電極板)。 一方、同様のストライプ状のITO膜が形成され
たガラス基板上にポリイミド形成溶液(日立化成
工業(株)製の「PIQ」;不揮発分濃度14.5wt%)を
スピナー塗布機で塗布し、120℃で30分間、200℃
で60分間そして350℃で30分間加熱を行なつて800
Åの被膜を形成した(B電極板)。 次いでA電極板の周辺部に注入口となる個所を
除いて熱硬化型エポキシ接着剤をスクリーン印刷
法によつて塗布した後に、A電極板とB電極板の
ストライプ状パターン電極が直交する様に重ね合
せ、2枚の電極板の間隔が2μとなるようポリイ
ミドスペーサで保持した。 こうして作成したセル内に等方相とした前記液
晶組成物を注入口から注入し、その注入口を封口
した。このセルを徐冷によつて降温させ、温度を
65℃で維持させた状態で、一対の偏光子をクロス
ニコル状態で設けてから顕微鏡観察したところモ
ノドメインのらせんのとけたSMC*が形成され
ていることが確認できた。次にこの液晶セルを同
温度下で、40V(ピーク―ピーク)、100Hzの矩形
波を繰り返し印加した。初期の電流値と500時間
の連続動作後の電流値の比較によつて劣化をみ
た。その結果初期電流値0.5μAに対し、連続動作
後は0.7μAであつた。 実施例 5 実施例4の液晶セルを調製したときに用いた液
晶組成物に代えてDOBAMBCを100重量部、S
―(+)―4―(β―メチルブチルオキシ)―
4′―デシルアゾキシベンゼンを3重量部およびS
―(+)―4―(β―メチルブチルオキシ)―
4′―ドデシルアゾキシベンゼンを2重量部よりな
る液晶組成物を用いたほかは実施例4と全く同様
の方法で液晶セルを調製した。実施例4と同様に
して連続動作による劣化を電流値より調べた。初
期電流値0.6μAに対し、連続動作後0.7μAであつ
た。 比較例 1 実施例4の液晶セルを調製したときに用いた液
晶組成物においてS―(+)―4―(β―メチル
ブチルオキシ)―4′―オクチルアゾキシベンゼン
を除いた以外は実施例4と全く同様の方法で液晶
セルを調整した。実施例4と全く同様の方法で電
流値を測定した。初期電流値0.6μAに対し、連続
動作後は1.1μAであつた。 比較例 2 実施例4の液晶セルを調製したときに用いた液
晶組成物において、S―(+)―4―(β―メチ
ルブチルオキシ)―4′―オクチルアゾキシベンゼ
ンを、P―β―メチルブチル―P′―β―メチルブ
チルオキシアゾキシベンゼンに変えた以外は実施
例4と全く同様の方法で液晶セルを調製した。実
施例4と全く同様の方法で電流値を測定した。初
期電流値0.6μAに対し、連続動作後は1.1μAであ
つた。 以上の実施例、比較例から明らかなように、一
般式で表わされる4―(β―メチルブチルオキ
シ)―4′―アルキルアゾキシベンゼンを液晶組成
物中へ添加することにより、液晶素子の寿命を格
段に延長させることができるものである。 [発明の効果] 本発明に係る新規な化合物4―(β―メチルブ
チルオキシ)4′―アルキルアゾキシベンゼンは、
液晶性を示し、また、強誘電性液晶化合物に4―
(β―メチルブチルオキシ)4′―アルキルアゾキ
シベンゼンを含有せしめてなる本発明の液晶組成
物は、強誘電性液晶化合物の有する特性を損なう
ことなく動作寿命が延長され、液晶表示素子の寿
命延長に寄与し、液晶表示素子や液晶光シヤツタ
等に使用するのに適しており、工業的意義は大き
い。
[Formula] 1280cm -1 Ar―O―CH 2 1255cm -1 Phase transition temperature: Cryst10℃ -19℃Ch44℃ 42℃Iso Example 4 S―(+)― based on 100 parts by weight of DOBAMBC
A liquid crystal composition was prepared by adding 5 parts by weight of 4-(β-methylbutyloxy)-4-octylazobenzene. Next, a square glass substrate on which a striped ITO film with a pitch of 100 μm and a width of 62.5 μm was provided as an electrode was prepared, and the substrate was placed in an oblique evaporation apparatus with the side on which the ITO film serving as the electrode was placed facing downward. Next, SiO 2 crystals were set in a molybdenum crucible. After that, inside the vapor deposition equipment
After creating a vacuum state of about 10 -5 Torr, SiO 2 was obliquely vapor-deposited on the glass substrate by a predetermined method to form an obliquely-deposited film of 800 Å (electrode plate A). On the other hand, a polyimide forming solution ("PIQ" manufactured by Hitachi Chemical Co., Ltd.; non-volatile content concentration 14.5 wt%) was applied using a spinner coater onto a glass substrate on which a similar striped ITO film was formed, and the temperature was increased to 120°C. for 30 minutes at 200℃
800℃ for 60 minutes and 30 minutes at 350℃.
A film with a thickness of 1.5 Å was formed (B electrode plate). Next, a thermosetting epoxy adhesive was applied to the periphery of the A electrode plate except for the area that would become the injection hole by screen printing, and then the striped pattern electrodes of the A electrode plate and the B electrode plate were made to intersect at right angles. The two electrode plates were stacked one on top of the other and held with a polyimide spacer so that the distance between the two electrode plates was 2 μ. The liquid crystal composition in an isotropic phase was injected into the cell thus created through the injection port, and the injection port was sealed. The temperature of this cell is lowered by slow cooling.
A pair of polarizers was placed in a crossed nicol state while the temperature was maintained at 65°C, and observation under a microscope confirmed the formation of a monodomain SMC* with a melted helix. Next, a 40V (peak-to-peak), 100Hz square wave was repeatedly applied to this liquid crystal cell at the same temperature. Deterioration was determined by comparing the initial current value and the current value after 500 hours of continuous operation. As a result, while the initial current value was 0.5 μA, the current was 0.7 μA after continuous operation. Example 5 In place of the liquid crystal composition used when preparing the liquid crystal cell of Example 4, 100 parts by weight of DOBAMBC and S
-(+)-4-(β-methylbutyloxy)-
3 parts by weight of 4'-decylazoxybenzene and S
-(+)-4-(β-methylbutyloxy)-
A liquid crystal cell was prepared in exactly the same manner as in Example 4, except that a liquid crystal composition containing 2 parts by weight of 4'-dodecylazoxybenzene was used. In the same manner as in Example 4, deterioration due to continuous operation was investigated from the current value. While the initial current value was 0.6 μA, it was 0.7 μA after continuous operation. Comparative Example 1 Example except that S-(+)-4-(β-methylbutyloxy)-4'-octylazoxybenzene was removed from the liquid crystal composition used when preparing the liquid crystal cell of Example 4. A liquid crystal cell was prepared in exactly the same manner as in Example 4. The current value was measured in exactly the same manner as in Example 4. While the initial current value was 0.6 μA, it was 1.1 μA after continuous operation. Comparative Example 2 In the liquid crystal composition used when preparing the liquid crystal cell of Example 4, S-(+)-4-(β-methylbutyloxy)-4'-octylazoxybenzene was replaced with P-β- A liquid crystal cell was prepared in exactly the same manner as in Example 4 except that methylbutyl-P'-β-methylbutyloxyazoxybenzene was used. The current value was measured in exactly the same manner as in Example 4. While the initial current value was 0.6 μA, it was 1.1 μA after continuous operation. As is clear from the above Examples and Comparative Examples, by adding 4-(β-methylbutyloxy)-4'-alkylazoxybenzene represented by the general formula into the liquid crystal composition, the lifespan of the liquid crystal element can be improved. can be significantly extended. [Effect of the invention] The novel compound 4-(β-methylbutyloxy)4'-alkylazoxybenzene according to the present invention is
It exhibits liquid crystallinity and also has 4-
The liquid crystal composition of the present invention containing (β-methylbutyloxy)4'-alkylazoxybenzene has an extended operating life without impairing the properties of the ferroelectric liquid crystal compound, and the life of the liquid crystal display element. It is suitable for use in liquid crystal display elements, liquid crystal light shutters, etc., and has great industrial significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、カイラルスメクテイツク液晶を用い
た光学変調素子を模式的に示す斜視図である。第
2図は、同光学変調素子の双安定性を模式的に示
す斜視図である。 1,1a…基板、2…液晶分子層、3…液晶分
子、4…分子と直交した方向の双極子モーメン
ト、5…上向き、5a…下向き、6…電圧印加手
段、7…第1の安定状態、7a…第2の安定状
態。
FIG. 1 is a perspective view schematically showing an optical modulation element using chiral smectic liquid crystal. FIG. 2 is a perspective view schematically showing the bistability of the optical modulation element. DESCRIPTION OF SYMBOLS 1, 1a...Substrate, 2...Liquid crystal molecule layer, 3...Liquid crystal molecules, 4...Dipole moment in the direction orthogonal to the molecules, 5...Upward, 5a...Downward, 6...Voltage application means, 7...First stable state , 7a...second stable state.

Claims (1)

【特許請求の範囲】 1 一般式(): (式中Rは炭素数6〜12のアルキル基を示し、
*は不斉炭素原子を示す) で表わされる化合物の少なくとも1種を配合成分
として含有することを特徴とする強誘電性液晶組
成物。
[Claims] 1 General formula (): (In the formula, R represents an alkyl group having 6 to 12 carbon atoms,
* indicates an asymmetric carbon atom) A ferroelectric liquid crystal composition containing at least one compound represented by the following as a compounding component.
JP59151191A 1984-07-23 1984-07-23 Liquid crystal compound and liquid crystal composition Granted JPS6130561A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59151191A JPS6130561A (en) 1984-07-23 1984-07-23 Liquid crystal compound and liquid crystal composition
US07/443,035 US4979805A (en) 1984-07-23 1989-12-01 Ferroelectric liquid crystal device containing optically active azo or azoxy benzene type mesomorphic compound with extended life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59151191A JPS6130561A (en) 1984-07-23 1984-07-23 Liquid crystal compound and liquid crystal composition

Publications (2)

Publication Number Publication Date
JPS6130561A JPS6130561A (en) 1986-02-12
JPH0228630B2 true JPH0228630B2 (en) 1990-06-25

Family

ID=15513257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59151191A Granted JPS6130561A (en) 1984-07-23 1984-07-23 Liquid crystal compound and liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS6130561A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183256A (en) * 1985-02-09 1986-08-15 Chisso Corp Optically active azoxy compound and liquid crystal composition
JP5623886B2 (en) * 2009-12-09 2014-11-12 富士フイルム株式会社 Colored photosensitive composition, method for producing color filter, color filter, and liquid crystal display device
JP5143240B2 (en) * 2011-01-06 2013-02-13 富士フイルム株式会社 Colored photosensitive composition, method for producing color filter, color filter, liquid crystal display device, and organic EL display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511426A (en) * 1974-06-18 1976-01-08 Matsushita Electric Ind Co Ltd AZOKISHIBENZEN JUDOTAINO SEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511426A (en) * 1974-06-18 1976-01-08 Matsushita Electric Ind Co Ltd AZOKISHIBENZEN JUDOTAINO SEIZOHOHO

Also Published As

Publication number Publication date
JPS6130561A (en) 1986-02-12

Similar Documents

Publication Publication Date Title
EP0175591A2 (en) Lactic acid derivative, liquid crystal composition containing same and liquid crystal device
JP3187611B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method and display device using them
JP2801269B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH0383971A (en) Liquid crystalline compound, liquid crystalline composition containing the same compound and liquid crystalline element using the same composition
EP0267670B1 (en) Optically active liquid crystal compound having cyano group
JP2691946B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH0269440A (en) Optically active liquid-crystallizable compound, liquid crystal composition containing the same compound and liquid crystal element
JP2952053B2 (en) Optically active compound, liquid crystal composition containing the same, method of using the same, liquid crystal element using the same, and display device
JP3039750B2 (en) Quinoxaline compound, liquid crystal composition containing the same, liquid crystal element having the same, display device and display method using the same
JP3308626B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method using them, and display device
US4979805A (en) Ferroelectric liquid crystal device containing optically active azo or azoxy benzene type mesomorphic compound with extended life
JP2819332B2 (en) Liquid crystal compound and liquid crystal composition containing the same
JPH09151179A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the composition, liquid crystal apparatus and displaying method using them
EP0162437B1 (en) Liquid crystal compound and liquid crystal composition including the same
JPH0228630B2 (en)
JP2580205B2 (en) Optically active-2-biphenylylpyridines
JP3171370B2 (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same, liquid crystal device using them and display method
JPH01121244A (en) Optically active liquid crystal compound, liquid crystal composition containing said compound and liquid element using said compound
JPH01242543A (en) Liquid crystal compound and liquid crystal composition and element containing said compound
JP2974352B2 (en) Optically active compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH0578548B2 (en)
JPS63104949A (en) Fluoroalkane derivative, liquid crystal composition and liquid crystal element containing said derivative
JPH0228631B2 (en)
JPH01272571A (en) Optically active liquid crystal compound and liquid crystal composition containing the same compound
JPS63218647A (en) Liquid crystal compound and liquid crystal composition containing said compound