JPH02285686A - Gas laser - Google Patents

Gas laser

Info

Publication number
JPH02285686A
JPH02285686A JP10880689A JP10880689A JPH02285686A JP H02285686 A JPH02285686 A JP H02285686A JP 10880689 A JP10880689 A JP 10880689A JP 10880689 A JP10880689 A JP 10880689A JP H02285686 A JPH02285686 A JP H02285686A
Authority
JP
Japan
Prior art keywords
gas laser
container
laser medium
laser device
side hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10880689A
Other languages
Japanese (ja)
Inventor
Tsutomu Sugiyama
勤 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10880689A priority Critical patent/JPH02285686A/en
Publication of JPH02285686A publication Critical patent/JPH02285686A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce a fluctuation in the output of a laser beam and to improve the quality of a laser processing by a method wherein a sound absorbing material is mounted on the inner wall of an external container covering a wind guiding part or the interior of the container is partitioned by a partition wall constituted of the sound absorbing material or an elastic material and moreover, the frequency of pressure pulsation is determined in such a way that the frequency is within a range of specified multiple of an acoustic resonance frequency inherent to these devices. CONSTITUTION:A frequency to beat a pressure pulsation is determined in such a way that the frequency is included within a range 0.8 to 1.2 times larger than a resonance frequency, which is determined according to the volume of a space 12a of a resonance container 10 excluding a porous sound absorbing material 11a in the container 10, the aperture area of a side hole 8, the length of a connecting duct 9 and the speed of sound of a gas laser medium. The container 10 absorbs the energy of a frequency component of pressure pulsation, which coincides with a resonance frequency determined by Helmholtz's resonance theorem, and the energy is made to dissipate by a friction loss in the hole 8 and at the connecting part 9. At this time, the residual amount which is short dissipation is absorbed by the material 11a adhered on the inner wall of the container. As a result, as the pressure pulsation is absorbed before being propagated to a laser resonator 1 and a periodical fluctuation in the pressure of a gas laser medium in the resonator 1 is eliminated, a discharge voltage is not fluctuated and the degree of variability of laser output is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭酸ガスレーザ等の気体レーザ装置において
、特にレーザ光の出力変動を低減して加工品質の改善を
図る気体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas laser device such as a carbon dioxide laser, and particularly to a gas laser device that improves processing quality by reducing output fluctuations of laser light.

従来の技術 従来のルーツプロワを使用した気体レーザ装置の構成例
を第3図に示す。気体レーザ媒質は、ルーツプロワ3に
よりレーザ共振器10供給ダクト17を通して供給され
、高電圧電源2による放電にて励起されレーザ光を出力
しているが、ルーツプロワ3が発生する気体レーザ媒質
の圧力脈動により放電電圧が変化する。その結果、励起
入力が変動して出力変動を生じ、切断加工などの時に切
断面粗さが大きくなる問題点があった。従来は、ルーツ
プロワ3出口側の供給ダクト17に図には示されていな
いがオリフィスを設けたり、特開昭63−7680号公
報に記載のごとくルーツプロワ出口側に大容積の容器を
直列に取り付けるなどの方法が用いられている。
2. Description of the Related Art An example of the configuration of a gas laser device using a conventional roots blower is shown in FIG. The gas laser medium is supplied by the roots blower 3 through the laser resonator 10 supply duct 17, and is excited by discharge from the high voltage power supply 2 to output laser light. However, due to pressure pulsations in the gas laser medium generated by the roots blower 3, The discharge voltage changes. As a result, there is a problem in that the excitation input fluctuates, causing output fluctuations, resulting in increased cut surface roughness during cutting. Conventionally, an orifice (not shown in the figure) is provided in the supply duct 17 on the exit side of the Roots blower 3, or a large volume container is installed in series on the Roots blower exit side as described in Japanese Patent Application Laid-Open No. 63-7680. method is used.

発明が解決しようとする課題 しかし、ダクト上に設けたオリフィスは気体レーザ媒質
の送風圧力損失が高い欠点があり、ダクトに直列に容器
を設ける場合は充分な容器容積を必要とするので装置が
大形化する問題があった。
Problems to be Solved by the Invention However, the orifice provided on the duct has the disadvantage of high blowing pressure loss of the gas laser medium, and when a container is provided in series with the duct, a sufficient container volume is required, making the device large. There was a problem to take shape.

本発明の目的は、気体レーザ媒質の送風圧力損失を伴わ
ず、装置の大形化を伴わず、送風機の発生する圧力脈動
を除去してレーザ光出力変動を低減し、レーザ加工の品
質を向上することにある。
The purpose of the present invention is to improve the quality of laser processing by eliminating pressure pulsations generated by a blower and reducing laser light output fluctuations without causing blowing pressure loss of the gas laser medium or increasing the size of the device. It's about doing.

課題を解決するだめの手段 本発明は、上記課題を解決するために、レーザ共振器の
気体レーザ媒質供給側導風部に側孔を設け、接続部を介
して側孔に容器を取り付ける。あるいは、側孔を含む範
囲の導風部を該導風部の断面積より大きい断面積を有す
る外部容器により覆う。そして容器内壁に吸音材を取り
付ける。あるいは、吸音材または弾性材で構成した隔壁
により容器内をくぎる。上記いずれの手段においても、
気体レーザ装置内の圧力変動の周波数が、吸音材を除く
容器容積と接続部と側孔または隔壁で区切7  ・−5
・ られた容器内の空間の容積と接続部と側孔の組合せで存
在する音響的共振周波数の0.8〜1.2倍の範囲の内
に含まれているようにする。
Means for Solving the Problems In order to solve the above problems, the present invention provides a side hole in the gas laser medium supply side air guiding section of the laser resonator, and attaches a container to the side hole via a connecting section. Alternatively, the area of the air guide section including the side hole is covered with an external container having a cross-sectional area larger than the cross-sectional area of the air guide section. Then, attach sound-absorbing material to the inner wall of the container. Alternatively, the inside of the container may be partitioned with a partition made of a sound-absorbing material or an elastic material. In any of the above means,
The frequency of pressure fluctuation in the gas laser device is divided by the volume of the container excluding the sound absorbing material, the connection part, and the side hole or partition 7 ・-5
- The acoustic resonance frequency should be within the range of 0.8 to 1.2 times the acoustic resonance frequency that exists due to the combination of the volume of the space inside the container, the connection part, and the side hole.

作用 上記本発明の構成において、圧力脈動は気体レーザ媒質
を供給する導風部内をルーツプロワの出口よりレーザ共
振器に向かって平面波として伝播している。導風部に側
孔をあけて中空容器を接続したり外部容器で覆うと、圧
力脈動は側孔を通して外部の容器内に入る。この時、ヘ
ルムホルツの共鳴現象により、容器の容積と接続開口又
は側孔の開口面積で決丑る共振周波数付近の音波が容器
内に吸い込まれる。吸い込まれる圧力脈動の振動エネル
ギーは側孔を通過する際の摩擦損失により失われる。発
明者の行った測定によれば、上記摩擦損失で失われる割
合は約75係で残りは再度導風部内へ放出される。
Operation In the configuration of the present invention described above, pressure pulsations propagate as plane waves from the exit of the Roots blower toward the laser resonator within the air guide section that supplies the gaseous laser medium. If a side hole is made in the air guide section and a hollow container is connected or covered with an external container, pressure pulsations will enter the external container through the side hole. At this time, due to the Helmholtz resonance phenomenon, a sound wave near a resonance frequency determined by the volume of the container and the opening area of the connection opening or side hole is sucked into the container. The vibrational energy of the sucked pressure pulsations is lost due to friction loss when passing through the side holes. According to measurements made by the inventor, the proportion lost due to the friction loss is approximately 75%, and the remainder is discharged into the air guide section again.

そこで、共鳴吸収をさせる容器内に吸音材を取り付けて
摩擦損失せずに残−)ている圧力脈動の振動エネルギー
を吸収させる。あるいは、吸音材または弾性材で構成さ
れた隔壁の振動を通して隔壁の外の空間に振動を伝え、
摩擦損失で散逸せずに残っている圧力脈動の振動エネル
ギーを吸収させる。その結果、レーザ共振器に伝播する
途中で圧力脈動を吸収してレーザ共振器に圧力脈動を伝
播させないことにより気体レーザ媒質の励起入力の変動
を抑え、レーザ出力変動を低減してレーザ加工の品質を
向上させる。
Therefore, a sound-absorbing material is installed inside the container to absorb the vibrational energy of the pressure pulsations that remains without frictional loss. Alternatively, vibrations are transmitted to the space outside the bulkhead through the vibration of a bulkhead made of sound-absorbing or elastic materials,
The remaining vibrational energy of pressure pulsations that is not dissipated due to friction loss is absorbed. As a result, by absorbing pressure pulsations on the way to the laser resonator and preventing pressure pulsations from propagating to the laser resonator, fluctuations in the excitation input of the gas laser medium are suppressed, laser output fluctuations are reduced, and the quality of laser processing is improved. improve.

実施例 以下、本発明の実施例を図により説明する。第1図aは
本発明の実施例の構成を示す。レーザ共振器1は高電圧
電源2による放電励起で気体レーザ媒質を励起してレー
ザ光を出力する。レーザ共振器1は供給ダクト6及び排
気ダクト7により各各ルーツプロワ3の送風口310取
り付けられたガス冷却器4及び吸気口32に取り付けら
れたガス冷却器6に接続されている。供給ダクト6には
側孔8をあけ、共鳴容器1oを接続ダクト9により接続
する。各接続ダクト9の長さ及び共鳴容器10の奥行き
長さは、その中で圧力脈動の定在波9 ・−7 が発生せぬように脈動波長よりも短い。共鳴容器10の
内壁には多孔質の吸音材11i&が貼付けられている。
EXAMPLES Hereinafter, examples of the present invention will be explained with reference to the drawings. FIG. 1a shows the configuration of an embodiment of the invention. The laser resonator 1 excites a gas laser medium by discharge excitation by a high voltage power supply 2 and outputs laser light. The laser resonator 1 is connected by a supply duct 6 and an exhaust duct 7 to a gas cooler 4 attached to an air outlet 310 and a gas cooler 6 attached to an inlet 32 of each roots blower 3 . A side hole 8 is opened in the supply duct 6, and the resonance container 1o is connected to it through a connection duct 9. The length of each connecting duct 9 and the depth of the resonant vessel 10 are shorter than the pulsation wavelength so that no standing waves of pressure pulsations 9 .-7 are generated therein. A porous sound absorbing material 11i& is attached to the inner wall of the resonance container 10.

共鳴容器10の容積は、共鳴容器1Qの中で多孔質吸音
材11aを除いた空間12&の容積と側孔8の開口面積
と接続ダクト9の長さ及び気体レーザ媒質の音速により
定められる共鳴周波数に圧力脈動の周波数が一致する様
に決められている。
The volume of the resonance container 10 is the resonance frequency determined by the volume of the space 12 & excluding the porous sound absorbing material 11a in the resonance container 1Q, the opening area of the side hole 8, the length of the connection duct 9, and the sound speed of the gas laser medium. The frequency of pressure pulsation is determined to match the .

次に、本発明の実施例の動作を説明する。圧力脈動はル
ーツブロワ3の送風口31よりレーザ共振器10向かい
、供給ダクト6の中を気体レーザ媒質の組成で決丑る音
速で伝播する。供給ダクト6の中の圧力脈動波の伝播特
性は側孔8のところで変わるため、側孔8を通じて共鳴
容器10内へ伝播する。共鳴容器10は、ヘルムホルツ
の共鳴原理により定められる共振周波数と一致する圧力
脈動の振動数成分エネルギーを吸収して側孔8及び接続
部91?の摩擦損失で散逸させるが、散逸しき)1ない
残余分を多孔質吸音材11aにより吸収する0、その結
果、圧力脈動はレーザ共振器10伝播する前に吸収され
てレーザ共振器1内の気体レーザ媒質圧力の周期的変動
がなくなるので放電電圧が変動せず、レーザ出力変動率
は低下する。この時、共鳴容器1Qが供給ダクト6に並
列しているため供給ダクト6を通過する気体レーザ媒質
の送風圧力損失は発生しない。又、共鳴条件により決ま
る共鳴容器10の寸法は圧力脈動の波長により上限が定
まるため、気体レーザ装置を大形化することなく容器を
ダクトに追加できる。
Next, the operation of the embodiment of the present invention will be explained. The pressure pulsations propagate from the air outlet 31 of the Roots blower 3 toward the laser resonator 10 through the supply duct 6 at a sonic speed determined by the composition of the gaseous laser medium. Since the propagation properties of the pressure pulsating waves in the supply duct 6 change at the side hole 8 , they propagate through the side hole 8 into the resonance vessel 10 . The resonance container 10 absorbs the frequency component energy of the pressure pulsation that matches the resonance frequency determined by the Helmholtz resonance principle, and the side hole 8 and the connecting portion 91? However, the remaining amount is absorbed by the porous sound absorbing material 11a.As a result, the pressure pulsations are absorbed before propagating to the laser resonator 10 and the gas inside the laser resonator 1 is absorbed. Since periodic fluctuations in the laser medium pressure are eliminated, the discharge voltage does not fluctuate, and the laser output fluctuation rate decreases. At this time, since the resonance container 1Q is parallel to the supply duct 6, no blowing pressure loss of the gas laser medium passing through the supply duct 6 occurs. Furthermore, since the upper limit of the dimensions of the resonance container 10 determined by the resonance conditions is determined by the wavelength of the pressure pulsation, the container can be added to the duct without increasing the size of the gas laser device.

第1図b、第1図Cは本発明の他の実施例である。第1
図aと同じ符号を付けであるのは、同等の機能を有する
。第1図すの例においては、共鳴容器10の内部に多孔
質吸音材で作られた隔壁14aで共鳴容器10を空間1
2bと空間13bに区切る。空間12bの容積と側孔8
の開口面積と接続ダクト9の長さ及び気体レーザ媒質の
音速により定められる共鳴周波数に圧力脈動の周波数が
一致する様に隔壁14aの寸法が決められている。共鳴
容器1oに吸い込まれるときの摩擦損失にて逸散してい
ない残余の脈動エネルギーは多孔11 ・・−/ 質吸音材の隔壁142Lを通して空間13bの気体レー
ザ媒質を振動させることで吸収し、共鳴容器10より再
放出されることを抑制する。第1図Cの例では、弾性材
の隔壁14bを設けて共鳴容器10を空間12Cと空間
13Cに区切る。空間120の容積と側孔8の開口面積
と接続ダクト9の長さ及び気体レーザ媒質の音速により
定められる共鳴周波数及び、弾性材隔壁13Cの弾性率
と空間130で決まる共鳴周波数を、共鳴容器1゜に吸
収される圧力脈動の周波数に調整して、共鳴容器10内
へ吸収されてくる圧力脈動を空間13Cに閉じ込めてい
る。
Figures 1b and 1c show other embodiments of the present invention. 1st
Components with the same reference numerals as in Figure a have equivalent functions. In the example of FIG.
2b and space 13b. Volume of space 12b and side hole 8
The dimensions of the partition wall 14a are determined so that the frequency of the pressure pulsation matches the resonance frequency determined by the opening area of the connecting duct 9, the length of the connecting duct 9, and the sound speed of the gas laser medium. The remaining pulsating energy that has not been dissipated due to friction loss when being sucked into the resonance container 1o is absorbed by vibrating the gaseous laser medium in the space 13b through the partition wall 142L of the porous 11... Re-release from the container 10 is suppressed. In the example shown in FIG. 1C, a partition wall 14b made of an elastic material is provided to divide the resonance container 10 into a space 12C and a space 13C. The resonant frequency determined by the volume of the space 120, the opening area of the side hole 8, the length of the connecting duct 9, and the sound velocity of the gas laser medium, and the resonant frequency determined by the elastic modulus of the elastic partition wall 13C and the space 130 are determined by the resonant container 1. The pressure pulsations absorbed into the resonance container 10 are confined in the space 13C by adjusting the frequency of the pressure pulsations absorbed in the resonance chamber 10.

第2図aと第2図すは共鳴容器の構成を変えたさらに他
の実施例であるが、第1図と同じ符号を付けであるのは
、同等の機能を有する。第2図aの例においては、側孔
8を含む範囲の供給ダクト6を外部容器16で覆う。外
部容器16の内壁には多孔質の吸音材11bが貼付けら
れている。外部容器16の容積は、外部容器16の中で
多孔質吸音材11bを除いた空間12dの容積と側孔8
の開口面積及び気体レーザ媒質の音速により定められる
共鳴周波数に圧力脈動の周波数が一致する様に定められ
ている。
2A and 2A show still other embodiments in which the structure of the resonance container is changed, but the same reference numerals as in FIG. 1 have the same functions. In the example shown in FIG. 2a, the area of the supply duct 6 including the side hole 8 is covered with an external container 16. A porous sound absorbing material 11b is attached to the inner wall of the outer container 16. The volume of the outer container 16 is the volume of the space 12d excluding the porous sound absorbing material 11b in the outer container 16, and the side hole 8.
The frequency of the pressure pulsation is determined to match the resonance frequency determined by the aperture area of the gas laser medium and the sound velocity of the gas laser medium.

第2図すの例においては、第2図aと同じ符号を付けで
あるのは、同等の機能を有するが、外部容器16の内部
に多孔質吸音材で作られた隔壁14Cで外部容器16を
空間126と空間13dに区切る。空間126の容積と
側孔8の開口面積及び気体レーザ媒質の音速により定め
られる共鳴周波数に圧力脈動の周波数が一致する様に隔
壁14Cの位置寸法が決められている。外部容器15に
吸い込まれるときの摩擦損失にて散逸していない残余の
脈動エネルギーは多孔質吸音材の隔壁14Cを通して空
間13dの気体レーザ媒質を振動させることで吸収し、
外部容器15よシ再放出されることを抑制する。又、図
示してはいないが、第2図すの例において第1図Cの例
同様、弾性材の隔壁を設けて外部容器16を二つの空間
に区切シ、外部容器16内へ吸収されてくる圧力脈動を
閉じ込める構成としても良い。
In the example of FIG. 2, the same reference numerals as in FIG. is divided into a space 126 and a space 13d. The positional dimensions of the partition wall 14C are determined so that the frequency of the pressure pulsation matches the resonance frequency determined by the volume of the space 126, the opening area of the side hole 8, and the sound speed of the gas laser medium. The remaining pulsating energy that has not been dissipated due to friction loss when being sucked into the outer container 15 is absorbed by vibrating the gas laser medium in the space 13d through the partition wall 14C made of porous sound absorbing material.
Re-release from the outer container 15 is suppressed. Also, although not shown, in the example of FIG. 2, as in the example of FIG. It may also be configured to confine the pressure pulsations that occur.

13 ・・−ノ 発明の効果 以上のように、本発明の気体レーザ装置によれは、ルー
ツブロワの発生する圧力脈動がレーザ共振器に伝播する
前に吸収除去されるので、気体レーザ媒質の励起条件の
変動にょるレーザ光出方変動が低減し、レーザ加工の品
質を向上する効果があり、かつ、気体レーザ媒質の送風
圧力損失を伴わず、かつ気体レーザ装置を大形化するこ
とがない。
13.--Effects of the Invention As described above, in the gas laser device of the present invention, the pressure pulsations generated by the Roots blower are absorbed and removed before propagating to the laser resonator, so that the excitation conditions of the gas laser medium can be improved. The variation in the laser beam output direction due to the variation in is reduced, which has the effect of improving the quality of laser processing, and there is no blowing pressure loss of the gas laser medium, and there is no need to increase the size of the gas laser device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の第1の実施例を示す気体レーザ装置
の気体レーザ媒質回路図、第1図すおよび第1図Cは本
発明の第2.第3の実施例における要部断面図、第2図
aは本発明の第4の実施例を示す気体レーザ装置の気体
レーザ媒質回路図、第2図すは本発明の第5の実施例に
おける要部断面図、第3図は従来の気体レーザ装置の気
体レーザ媒質回路図である。 1・・・・・・レーザ共振器、2・・・・・・高電圧電
源、3・・・・・・ルーツプロワ、4・・・・・・ガス
冷却器、5・旧・・ガス冷却器、6・・・・・・供給ダ
クト、7・・・・・・排気ダクト、8・・・・・・側孔
、9・・・・・・接続ダクト、10・・・・・・共鳴容
器、11a、b・・・・・・多孔質吸音材、12aze
・・・・・・共鳴容器内の空間、13b−d・・・・・
・共鳴容器内の隔壁で区切られた空間、14a、c・・
・・・・多孔質吸音材隔壁、14b・・・・・・弾性相
隔壁、15・・・・・外部容器、31・・・・・・ルー
ツプロワ送風口、32・・・・・・ルーツブロワ吸気口
FIG. 1a is a gas laser medium circuit diagram of a gas laser device showing a first embodiment of the present invention, and FIGS. FIG. 2a is a cross-sectional view of a main part in the third embodiment, FIG. 2a is a gas laser medium circuit diagram of a gas laser device showing a fourth embodiment of the present invention, and FIG. FIG. 3 is a sectional view of a main part, and is a gas laser medium circuit diagram of a conventional gas laser device. 1...Laser resonator, 2...High voltage power supply, 3...Roots blower, 4...Gas cooler, 5...Old...Gas cooler , 6... Supply duct, 7... Exhaust duct, 8... Side hole, 9... Connection duct, 10... Resonance vessel , 11a, b... Porous sound absorbing material, 12aze
...Space inside the resonance container, 13b-d...
・Space separated by partition walls in the resonance container, 14a, c...
... Porous sound-absorbing material partition wall, 14b ... Elastic phase partition wall, 15 ... External container, 31 ... Roots blower air outlet, 32 ... Roots blower intake mouth.

Claims (12)

【特許請求の範囲】[Claims] (1)気体レーザ媒質を励起する励起部と、気体レーザ
媒質を励起させてレーザ光を取り出すレーザ共振器と、
気体レーザ媒質を送風する送風機と、気体レーザ媒質の
冷却器と、前記送風機よりレーザ共振器に気体レーザ媒
質を導く導風部より構成される気体レーザ装置において
、前記レーザ共振器の気体レーザ媒質の供給側導風部に
側孔を設け、接続部を介して側孔に容器を取り付け、前
記容器内壁に吸音材を取り付けたことを特徴とする気体
レーザ装置。
(1) An excitation unit that excites a gas laser medium; a laser resonator that excites the gas laser medium and extracts laser light;
In a gas laser device comprising a blower for blowing a gas laser medium, a cooler for the gas laser medium, and an air guiding section that guides the gas laser medium from the blower to a laser resonator, 1. A gas laser device, characterized in that a side hole is provided in the supply-side air guide section, a container is attached to the side hole via a connecting section, and a sound absorbing material is attached to the inner wall of the container.
(2)吸音材を除いた容器内容積と側孔と接続部よりな
る音響的共振周波数の0.8〜1.2倍の範囲内に気体
レーザ装置内の圧力変動の周波数が含まれていることを
特徴とする特許請求の範囲第1項記載の気体レーザ装置
(2) The frequency of pressure fluctuation within the gas laser device is included within the range of 0.8 to 1.2 times the acoustic resonance frequency formed by the internal volume of the container excluding the sound-absorbing material, the side hole, and the connection part. A gas laser device according to claim 1, characterized in that:
(3)気体レーザ媒質を励起する励起部と、気体レーザ
媒質を励起させてレーザ光を取り出すレーザ共振器と、
気体レーザ媒質を送風する送風機と、気体レーザ媒質の
冷却器と、前記送風機よりレーザ共振器に気体レーザ媒
質を導く導風部より構成される気体レーザ装置において
、前記レーザ共振器の気体レーザ媒質の供給側導風部に
側孔を設け、接続部を介して側孔に容器を取り付け、前
記容器内が隔壁で区切られたことを特徴とする気体レー
ザ装置。
(3) an excitation unit that excites a gas laser medium; a laser resonator that excites the gas laser medium and extracts laser light;
In a gas laser device comprising a blower for blowing a gas laser medium, a cooler for the gas laser medium, and an air guiding section that guides the gas laser medium from the blower to a laser resonator, A gas laser device characterized in that a side hole is provided in the supply side air guiding section, a container is attached to the side hole via a connecting section, and the inside of the container is partitioned by a partition wall.
(4)容器内において隔壁で区切られて接続部を内包す
る空間部の容積と側孔と接続部よりなる音響的共振周波
数の0.8〜1.2倍の範囲内に気体レーザ装置内の圧
力変動の周波数が含まれていることを特徴とする特許請
求の範囲第3項記載の気体レーザ装置。
(4) Within the range of 0.8 to 1.2 times the acoustic resonance frequency of the volume of the space separated by the partition wall and containing the connection part in the container, the side hole, and the connection part, 4. The gas laser device according to claim 3, wherein the frequency of pressure fluctuation is included.
(5)隔壁が吸音材で構成されていることを特徴とする
特許請求の範囲第3項記載の気体レーザ装置。
(5) The gas laser device according to claim 3, wherein the partition wall is made of a sound absorbing material.
(6)隔壁が弾性材で構成されていることを特徴とする
特許請求の範囲第3項記載の気体レーザ装置。
(6) The gas laser device according to claim 3, wherein the partition wall is made of an elastic material.
(7)気体レーザ媒質を励起する励起部と、気体レーザ
媒質を励起させてレーザ光を取り出すレーザ共振器と、
気体レーザ媒質を送風する送風機と、気体レーザ媒質の
冷却器と、前記送風機よりレーザ共振器に気体レーザ媒
質を導く導風部より構成される気体レーザ装置において
、前記レーザ共振器の気体レーザ媒質の供給側導風部に
側孔を設け、側孔を含む範囲の導風部を前記導風部の断
面積より大きい断面積を有する外部容器により覆い、前
記外部容器の内壁に吸音材を取り付けたことを特徴とす
る気体レーザ装置。
(7) an excitation unit that excites a gas laser medium; a laser resonator that excites the gas laser medium and extracts laser light;
In a gas laser device comprising a blower for blowing a gas laser medium, a cooler for the gas laser medium, and an air guiding section that guides the gas laser medium from the blower to a laser resonator, A side hole is provided in the supply side air guide part, the air guide part in a range including the side hole is covered by an outer container having a cross-sectional area larger than the cross-sectional area of the air guide part, and a sound absorbing material is attached to the inner wall of the outer container. A gas laser device characterized by:
(8)吸音材を除く外部容器の内容積と側孔よりなる音
響的共振周波数の0.8〜1.2倍の範囲内に気体レー
ザ装置内の圧力変動の周波数が含まれていることを特徴
とする特許請求の範囲第7項記載の気体レーザ装置。
(8) The frequency of pressure fluctuation within the gas laser device is included within the range of 0.8 to 1.2 times the acoustic resonance frequency formed by the internal volume of the external container excluding the sound absorbing material and the side holes. A gas laser device according to claim 7 characterized by:
(9)気体レーザ媒質を励起する励起部と、気体レーザ
媒質を励起させてレーザ光を取り出すレーザ共振器と、
気体レーザ媒質を送風する送風機と、気体レーザ媒質の
冷却器と、前記送風機よりレーザ共振器に気体レーザ媒
質を導く導風部より構成される気体レーザ装置において
、レーザ共振器の気体レーザ媒質の供給側導風部に側孔
を設け、側孔を含む範囲の導風部を前記導風部の断面積
より大きい断面積を有する外部容器により覆い、前記外
部容器内が隔壁で区切られたことを特徴とする気体レー
ザ装置。
(9) an excitation unit that excites a gas laser medium; a laser resonator that excites the gas laser medium and extracts laser light;
In a gas laser device comprising a blower for blowing a gas laser medium, a cooler for the gas laser medium, and an air guide section that guides the gas laser medium from the blower to a laser resonator, supplying the gas laser medium to the laser resonator. A side hole is provided in the side air guide part, the area of the air guide part including the side hole is covered by an external container having a cross-sectional area larger than the cross-sectional area of the air guide part, and the inside of the external container is separated by a partition wall. Characteristic gas laser device.
(10)外部容器内において隔壁で区切られて側孔を内
包する空間部の容積と側孔よりなる音響的共振周波数の
0.8〜1.2倍の範囲内に気体レーザ装置内の圧力変
動の周波数が含まれていることを特徴とする特許請求の
範囲第9項記載の気体レーザ装置。
(10) Pressure fluctuation within the gas laser device within a range of 0.8 to 1.2 times the acoustic resonance frequency formed by the volume of the space separated by the partition wall and containing the side hole in the external container and the side hole. 10. The gas laser device according to claim 9, wherein the gas laser device includes a frequency of .
(11)隔壁が吸音材で構成されていることを特徴とす
る特許請求の範囲第9項記載の気体レーザ装置。
(11) The gas laser device according to claim 9, wherein the partition wall is made of a sound absorbing material.
(12)隔壁が弾性材で構成されていることを特徴とす
る特許請求の範囲第9項記載の気体レーザ装置。
(12) The gas laser device according to claim 9, wherein the partition wall is made of an elastic material.
JP10880689A 1989-04-27 1989-04-27 Gas laser Pending JPH02285686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10880689A JPH02285686A (en) 1989-04-27 1989-04-27 Gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10880689A JPH02285686A (en) 1989-04-27 1989-04-27 Gas laser

Publications (1)

Publication Number Publication Date
JPH02285686A true JPH02285686A (en) 1990-11-22

Family

ID=14493957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10880689A Pending JPH02285686A (en) 1989-04-27 1989-04-27 Gas laser

Country Status (1)

Country Link
JP (1) JPH02285686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274988A (en) * 1997-03-31 1998-10-13 Tokai Rubber Ind Ltd Resonance type silencer
WO2007012414A1 (en) * 2005-07-26 2007-02-01 Daimlerchrysler Ag Shunt resonator for an intake line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737194B2 (en) * 1977-01-27 1982-08-07
JPS6235008A (en) * 1985-08-08 1987-02-16 Agency Of Ind Science & Technol Temperature control type adaptive noise suppressor
JPS637680A (en) * 1986-06-27 1988-01-13 Komatsu Ltd Gas laser system
JPS648309A (en) * 1987-06-29 1989-01-12 Honda Motor Co Ltd Exhaust muffler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737194B2 (en) * 1977-01-27 1982-08-07
JPS6235008A (en) * 1985-08-08 1987-02-16 Agency Of Ind Science & Technol Temperature control type adaptive noise suppressor
JPS637680A (en) * 1986-06-27 1988-01-13 Komatsu Ltd Gas laser system
JPS648309A (en) * 1987-06-29 1989-01-12 Honda Motor Co Ltd Exhaust muffler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274988A (en) * 1997-03-31 1998-10-13 Tokai Rubber Ind Ltd Resonance type silencer
WO2007012414A1 (en) * 2005-07-26 2007-02-01 Daimlerchrysler Ag Shunt resonator for an intake line

Similar Documents

Publication Publication Date Title
JP3288510B2 (en) Silencer
US20210233507A1 (en) Soundproof system
JP4417489B2 (en) Electroacoustic conversion by waveguides.
US8123468B2 (en) Centrifugal fan
WO2020217819A1 (en) Fan muffling system
JPS6085043A (en) Engine noise controller of automobile and so forth
WO2012144078A1 (en) Soundproofing device
JP2000507360A (en) Wind tunnel
JP2016133226A (en) Noise eliminator of blower
JPH02285686A (en) Gas laser
ATE233462T1 (en) SPEAKER SYSTEM
JP3340855B2 (en) Silencer
JPH02270384A (en) Gas laser device
JPH02281676A (en) Gas laser device
EP4230873A1 (en) Noise reduced blower means and their use in electric power tools and devices
RU2026759C1 (en) Device for ultrasonic cleaning (variants)
KR100635694B1 (en) Acoustic silencer for high frequency range
JPH1011069A (en) Noise reducing device
JP2000220539A (en) Intake device
JPH02281674A (en) Gas laser device
JPH02281677A (en) Gas laser device
RU2138671C1 (en) Air cleaner of internal combustion engine
US20050236225A1 (en) Device and method for active soundproofing, and power unit for aeroplanes
JP4098396B2 (en) Toner supply device
JPH01231498A (en) Speaker system