JPH0228550B2 - - Google Patents

Info

Publication number
JPH0228550B2
JPH0228550B2 JP58078001A JP7800183A JPH0228550B2 JP H0228550 B2 JPH0228550 B2 JP H0228550B2 JP 58078001 A JP58078001 A JP 58078001A JP 7800183 A JP7800183 A JP 7800183A JP H0228550 B2 JPH0228550 B2 JP H0228550B2
Authority
JP
Japan
Prior art keywords
zircon
aggregate
alumina
added
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58078001A
Other languages
Japanese (ja)
Other versions
JPS59203756A (en
Inventor
Kyohiro Hosokawa
Makoto Geshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP58078001A priority Critical patent/JPS59203756A/en
Publication of JPS59203756A publication Critical patent/JPS59203756A/en
Publication of JPH0228550B2 publication Critical patent/JPH0228550B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱間強度にすぐれたガス吹込用多孔
質耐火物の製造方法に関するものである。 取鍋等の溶融金属容器において、該容器の底部
に取付けたプラグから不活性ガスを吹込み、溶鋼
の温度・成分の均一化、介在分の浮上、脱ガス等
の処理が一般的に行なわれている。そして、近年
の鋼製品の高級化志向はガス吹込量の増大、溶鋼
の鍋内滞留時間の延長、ガス吹込機能を低下させ
ないための酸素洗浄と、プラグを構成する多孔質
耐火物にとつてその使用条件は増々、苛酷化して
いる。 この多孔質耐火物は、ガス透過性を維持させる
ために通気率0.5〜3.0cm3・cm/cm2・sec・cmH2O、気孔
率 25〜30%、細孔径50〜100μm程度の多孔質であ
るため、通常の耐火物に比べて耐食性・強度に劣
る。そこで、アルミナを骨材とし、これに粘土を
添加してなる従来材質では、粘土の割合を極力押
さえて耐火度を向上させているが、反面、熱間強
度の低下と、溶鋼浸透による変質で構造的スポー
ルが生じやすい。その結果、繰返し使用すると、
ガス透過方向と直角にキレツが発生し、ガス吹込
みの副次的作用である背面圧力で剥離し、多孔質
耐火物を短命なものにしている。 また、前記したアルミナ―粘度からなる材質
に、さらに酸化クロムを添加することも知られて
いる。しかし、耐スポール性において、顕著な効
果が得られないとともに、FeOとの反応性で通気
孔を閉塞し、ガス吹込み機能を低下させる。 本発明者らは、アルミナを骨材とする多孔質耐
火物において、従来の粘土、酸化クロム等に代え
てジルコンを特定の割合で添加すると熱間強度、
耐スポール性にすぐれた材質となることを知り、
本発明を完成したものである。 本発明は、粒度1mm以下が95wt%以上のジル
コン1〜10wt%、残部、粒度0.15〜2mmが70wt
%以上のアルミナよりなる配合物を混練、成形
後、焼成することを特徴とした、ガス吹込用多孔
質耐火物の製造方法である。 本発明をさらに詳述する。 まず、本発明を完成するに至つた実験の一部を
示す。第1〜3図は、骨材としてのアルミナ、お
よび耐火物製造工程における混練、成形、焼成等
の諸条件を下記のとおり一定にし、添加剤の種
類・添加量のみを変化させて得た多孔質耐火物に
ついて、強度を測定した結果を示すグラフであ
る。 (1) 骨材;電触アルミナ(純度99wt%以上) 1〜0.297mm (2) 添加剤;粘土 0.074mm以下 酸化クロム 0.074mm以下 ジルコン 0.297〜0.149mm ジルコン 0.074mm以下 (3) 混練;デキストリン1wt%を添加してミキサ
ーにより混練。 (4) 成形;フリクシヨンプレスで並形 (230×114×65mm)に成形。 (5) 焼成;24時間自然乾燥後、トンネルキルンに
て1650℃×8時間で焼成。 なお、各物性の測定方法は、後述の実施例と同
様にした。 第1図は粘土添加と、粘土と酸化クロムの併用
添加において、多孔質耐火物の熱間曲げ強さの変
化を示したものである。いずれの添加物の場合
も、顕著な熱間曲げ強さの向上は認められない。 同時に、剥離の有無を境界線で示す。この線よ
り上方は剥離が抑制され、下方は完全剥離する。 第2図は、ジルコン添加と熱間強度の関係を示
す。ジルコンを添加したものは、その添加量の
増大とともに、熱間曲げ強さが格段にすぐれてい
る。一方、ジルコンの微粉であるを添加したも
のは、前記のの場合より多少劣るものの、従来
のものに比べれば熱間曲げ強さの向上は明らかで
ある。添加量の増大とともに剥離も完全に抑制さ
れる。 第3図はジルコンの添加量と、常温下における
曲げ強さ、および耐スポール性と相関をもつ弾性
率、さらに下式より求められた熱衝撃損傷抵抗係
数を示す。 T(曲げ強さ)/E(弾性率)∝R(熱衝撃損傷抵抗
係数) ジルコンの添加とともに、耐スポール性の向上
が顕著であることは同図からも明らかである。ジ
ルコンの添加がこのような効果を奏するのは次の
理由によるものと想像される。すなわち、ジルコ
ンは周知の如く1530℃に加熱するとZrO2とSiO2
に解離するが、本発明においては解離したSiO2
が溶融状態でその表面張力により、表面エネルギ
ー最小の部分、すなわち骨材接触点近傍に集積
し、アルミナ骨材と反応してムライトを生成し、
さらにこのムライトがアルミナ骨材間の直接結合
と合体することによる強固な複合結合組織を形成
し、多孔質であるにもかかわらず、組織強度にす
ぐれたものとなる。 一方、粘土あるいは粘土と酸化クロムを併用す
る従来材質は、粘土中のSiO2成分が骨材からの
Al2O3成分と反応して同様にムライトを生成する
が、この反応は低温域で生じるので、SiO2が充
分に分散しないままでムライト生成し、安定し
て、本発明のように骨材の接触部位にムライトが
集中しない。 第4図は、本発明における多孔質耐火物の骨材
の結合形態を模式的に表わしたものである。1は
アルミナ骨材、2はアルミナ骨材の焼結部位、3
はジルコンの解離によるSiO2と骨材のAl2O3成分
との反応で生じたムライトである。ムライト3が
アルミナ骨材1間の直接結合を覆い、複合結合組
織となつている。 本発明における耐火物の結合組識は、強固であ
るにもかかわらず耐スポール性に優れた特性を示
すが、その理由はジルコン解離により生じたもう
一方のZrO2が、冷却時に示す正方から単斜への
転移による組織変化で、結合組織にマイクロクラ
ツクを形成し、これが熱衝撃の吸収と亀裂の伝播
を阻止するためである。 本発明に使用されるジルコンは、解離時の
SiO2の溶融分散の点から、好ましくは純度が
95wt%以上、理想的には99wt%以上とする。粒
度は1mm以下が95wt%以上のものを使用する。
1mm以上ではジルコンの不均一性による耐火物の
強度劣化、安定した通気性を維持するべき気孔形
成が困難となり、ガス吹込用耐火物としての機能
が失われるからである。 ジルコンの添加量が1wt%未満であれば、前記
の実験からも明らかなように熱間強度が小さく、
構造的スポールの抑制の効果が乏しい。10wt%
を超えるとジルコン解離後のSiO2過剰により、
骨材接触点以外へのSiO2の分配が多くなり、ま
た、未反応のSiO2が組織にクリストバライトと
して残存するため、耐食性が低下する。 骨材としてのアルミナは焼結品、電融品、両者
の併用のいずれでもよい。純度は特に限定するも
のではないが、熱間強度、耐スポール性の点で
97wt%以上が好ましい。純度が低いと耐火物の
焼成中、ジルコンの解離から生じたSiO2融液が
骨材との濡れ性が高いために骨材表面上での流動
が円滑でなく、骨材間の接触部位のムライト形成
が少なくなるためである。また、アルミナは結晶
粒の大きなものが表面が滑らかで、SiO2の吸収
も少なく、SiO2の流動が円滑である。したがつ
て、アルミナ原料の中でも結晶粒の大きい電融品
が特に好ましい。 骨材の粒度は0.15〜2mmを70wt%以上とする。
これは耐火物を多孔質にし、ガス透過の機能を持
たせるためであり、70wt%未満では成形圧等を
調整してもガス吹込みに必要な通気率0.5〜3.0(C.
G.S)が得られないからである。 この他、本発明の効果を阻害しない範囲であれ
ば、必要に応じてアルミナゾル、水酸化アルミニ
ウム、従来公知の酸化クロムなどの副原料を添加
してもよい。 以上からなる配合物に結合剤0.05〜5wt%程度
を添加し、混練後、オイルプレス、フリクシヨン
プレス等で成形する。 結合剤は、例えばイソブチルマレイン酸、デキ
ストリン、リグニンスルフオン酸ソーダ、ポリビ
ニールアルコール、フエノール樹脂などが好適で
あるが、これに限らず、公知の有機・無機質の結
合剤から任意のものが使用できる。また、結合剤
の種類によつては水を併用する。 焼成温度は1600℃が好ましい。1600℃以下で
は、ジルコンより解離したSiO2が溶融しないか、
または溶融不足によつて、骨材接触部位への
SiO2の集中が期待できず、熱間強度、耐スポー
リング性の向上が十分でない。上限の温度は特に
限定するものではないが、焼成効果の面から1800
℃以上は必要としない。温度があまり高いと、ジ
ルコンの解離で生じたSiO2が粘性不足となり、
重力の作用で骨材の接触部位に留まることなく流
下し、骨材間の結合強度不足によつて焼成中の亀
裂、軟化によるヘタリを生じる。 次に、本発明実施例とその比較例を示す。 各例は第1表に示す化学組成を有する原料を第
2図に示す割合で配合し、400Kgバツチでミキサ
ーにより混練後、フリクシヨンプレスにより高さ
200mm×下面150mmφ×上面100mmφの截頭円錐形
に成形した。焼成はトンネルキルンにて行なつ
た。
The present invention relates to a method for manufacturing a porous refractory for gas injection that has excellent hot strength. In a molten metal container such as a ladle, inert gas is generally blown into the container through a plug attached to the bottom of the container to equalize the temperature and composition of the molten steel, float any intervening materials, and degas the molten steel. ing. In recent years, the trend toward higher-grade steel products has led to increased gas injection volume, longer residence time of molten steel in the pot, oxygen cleaning to prevent deterioration of gas injection function, and improvements in the porous refractories that make up the plug. The conditions of use are becoming increasingly harsh. In order to maintain gas permeability, this porous refractory has a permeability of 0.5 to 3.0cm 3 cm/cm 2 sec cmH 2 O, a porosity of 25 to 30%, and a pore diameter of approximately 50 to 100 μm. Therefore, it has inferior corrosion resistance and strength compared to ordinary refractories. Therefore, with conventional materials made of alumina as aggregate and clay added to it, fire resistance is improved by minimizing the proportion of clay, but on the other hand, there is a decrease in hot strength and deterioration due to penetration of molten steel Structural spalls are likely to occur. As a result, with repeated use,
Cracks occur at right angles to the gas permeation direction and peel off due to back pressure, which is a secondary effect of gas injection, making the porous refractory short-lived. It is also known to further add chromium oxide to the material made of the above-mentioned alumina viscosity. However, in terms of spall resistance, no significant effect can be obtained, and the reactivity with FeO blocks the ventilation holes, reducing the gas blowing function. The present inventors have found that when zircon is added in a specific proportion in place of conventional clay, chromium oxide, etc. in porous refractories using alumina as aggregate, hot strength is improved.
Knowing that the material has excellent spall resistance,
This completes the present invention. In the present invention, 1 to 10 wt% of zircon is 95 wt% or more with a particle size of 1 mm or less, and the balance is 70 wt% with a particle size of 0.15 to 2 mm.
% or more of alumina is kneaded, molded, and then fired. The invention will now be described in further detail. First, some of the experiments that led to the completion of the present invention will be shown. Figures 1 to 3 show porous pores obtained by keeping alumina as the aggregate and various conditions such as kneading, molding, and firing in the refractory manufacturing process constant as shown below, and only changing the type and amount of additives. 2 is a graph showing the results of measuring the strength of quality refractories. (1) Aggregate: Electrocatalyzed alumina (purity 99wt% or more) 1~0.297mm (2) Additive: Clay 0.074mm or less Chromium oxide 0.074mm or less Zircon 0.297~0.149mm Zircon 0.074mm or less (3) Kneading: Dextrin 1wt % and knead with a mixer. (4) Molding: Molded into a regular size (230 x 114 x 65 mm) using a friction press. (5) Firing: After 24 hours of natural drying, it was fired in a tunnel kiln at 1650℃ for 8 hours. In addition, the measurement method of each physical property was the same as the Example mentioned later. Figure 1 shows the change in hot bending strength of porous refractories when clay is added and when clay and chromium oxide are added together. No significant improvement in hot bending strength was observed with any of the additives. At the same time, the presence or absence of peeling is indicated by a border line. Peeling is suppressed above this line, and complete peeling occurs below this line. Figure 2 shows the relationship between zircon addition and hot strength. Those with zircon added have significantly better hot bending strength as the amount of zircon added increases. On the other hand, although the one to which fine zircon powder was added is somewhat inferior to the above-mentioned case, it is clear that the hot bending strength is improved compared to the conventional one. As the amount added increases, peeling is also completely suppressed. FIG. 3 shows the amount of zircon added, the bending strength at room temperature, the elastic modulus that correlates with spalling resistance, and the thermal shock damage resistance coefficient calculated from the formula below. T (bending strength)/E (modulus of elasticity)∝R (thermal shock damage resistance coefficient) It is clear from the same figure that the addition of zircon significantly improves the spalling resistance. The reason why the addition of zircon has such an effect is thought to be due to the following reasons. In other words, as is well known, when zircon is heated to 1530℃, it forms ZrO 2 and SiO 2
However, in the present invention, the dissociated SiO 2
In the molten state, due to its surface tension, it accumulates in the area of minimum surface energy, that is, near the point of contact with the aggregate, and reacts with the alumina aggregate to produce mullite.
Furthermore, this mullite forms a strong composite connective tissue by combining with the direct bonds between the alumina aggregates, resulting in excellent tissue strength despite being porous. On the other hand, with conventional materials that use clay or a combination of clay and chromium oxide, the SiO2 component in the clay is removed from the aggregate.
Mullite is produced in the same way by reacting with the Al 2 O 3 component, but since this reaction occurs in a low temperature range, mullite is produced without SiO 2 being sufficiently dispersed, and it is stable and can be used as aggregate as in the present invention. Mullite does not concentrate at the contact area. FIG. 4 schematically shows the bonding form of the aggregate of the porous refractory according to the present invention. 1 is the alumina aggregate, 2 is the sintered part of the alumina aggregate, 3
is mullite produced by the reaction between SiO 2 due to the dissociation of zircon and the Al 2 O 3 component of the aggregate. Mullite 3 covers the direct bonds between alumina aggregates 1, forming a composite connective tissue. Although the bonding structure of the refractory in the present invention is strong, it exhibits excellent spalling resistance. This is because microcracks are formed in the connective tissue due to the tissue change due to the oblique transition, which absorbs thermal shock and prevents crack propagation. The zircon used in the present invention has a
From the viewpoint of melting and dispersing SiO2 , it is preferable that the purity is
The content should be 95wt% or more, ideally 99wt% or more. Use particles with a particle size of 1 mm or less that accounts for 95 wt% or more.
If it is more than 1 mm, the strength of the refractory will deteriorate due to the non-uniformity of the zircon, and it will be difficult to form pores to maintain stable air permeability, and the function as a refractory for gas injection will be lost. If the amount of zircon added is less than 1wt%, the hot strength will be low, as is clear from the above experiment.
Poor effectiveness in suppressing structural spalls. 10wt%
Due to excess SiO2 after zircon dissociation,
The distribution of SiO 2 to areas other than the aggregate contact points increases, and unreacted SiO 2 remains in the structure as cristobalite, resulting in a decrease in corrosion resistance. The alumina used as the aggregate may be a sintered product, a fused product, or a combination of both. Purity is not particularly limited, but in terms of hot strength and spall resistance
97wt% or more is preferable. If the purity is low, the SiO 2 melt generated from the dissociation of zircon has high wettability with the aggregate during firing of the refractory, so it does not flow smoothly on the aggregate surface, and the contact area between the aggregates This is because mullite formation is reduced. In addition, alumina with large crystal grains has a smooth surface, absorbs less SiO 2 , and allows smooth flow of SiO 2 . Therefore, among alumina raw materials, electrolytic products with large crystal grains are particularly preferred. The particle size of the aggregate should be 0.15 to 2 mm at 70 wt% or more.
This is to make the refractory porous and have a gas permeation function.If it is less than 70wt%, the air permeability required for gas injection will be 0.5 to 3.0 (C) even if the molding pressure is adjusted.
GS) cannot be obtained. In addition, auxiliary raw materials such as alumina sol, aluminum hydroxide, and conventionally known chromium oxide may be added as necessary, as long as they do not impede the effects of the present invention. Approximately 0.05 to 5 wt% of a binder is added to the above-mentioned mixture, and after kneading, it is molded using an oil press, friction press, or the like. The binder is preferably, for example, isobutyl maleic acid, dextrin, sodium lignin sulfonate, polyvinyl alcohol, phenolic resin, etc., but is not limited to these, and any known organic/inorganic binder can be used. . Depending on the type of binder, water may also be used. The firing temperature is preferably 1600°C. At temperatures below 1600℃, SiO 2 dissociated from zircon may not melt or
Or, due to insufficient melting, contact with aggregate may occur.
Concentration of SiO 2 cannot be expected, and hot strength and spalling resistance are not sufficiently improved. The upper limit temperature is not particularly limited, but from the viewpoint of firing effect, it is set at 1800℃.
Temperatures above ℃ are not required. If the temperature is too high, the SiO 2 produced by the dissociation of zircon will lack viscosity.
Due to the action of gravity, the aggregates do not remain in contact with each other and flow down, resulting in cracks during firing and sagging due to softening due to insufficient bonding strength between the aggregates. Next, examples of the present invention and comparative examples thereof will be shown. For each example, raw materials having the chemical composition shown in Table 1 are blended in the proportions shown in Fig. 2, mixed in 400 kg batches with a mixer, and then mixed with a friction press.
It was molded into a truncated conical shape of 200 mm x bottom surface 150 mmφ x top surface 100 mmφ. Firing was performed in a tunnel kiln.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明を完成するに
至つた実験の一部を示すもので第1図は熱間曲げ
と粘土添加量の関係を示す図、第2図は熱間曲げ
とジルコン添加量の関係を示す図、第3図は曲げ
強さ及び弾性率とジルコン添加量の関係を示す
図、第4図は本発明における多孔質耐火物の骨材
の結合形態を模式的に表した図である。 1…アルミナ骨材、2…アルミナ骨材の焼結部
位、3…ムライト。
Figures 1, 2, and 3 show some of the experiments that led to the completion of the present invention. Figure 1 shows the relationship between hot bending and the amount of clay added, and Figure 2 shows the relationship between hot bending and the amount of clay added. Figure 3 shows the relationship between bending strength and the amount of zircon added, Figure 4 shows the relationship between the bending strength and modulus of elasticity and the amount of zircon added, and Figure 4 shows the bonding form of the aggregate of the porous refractory in the present invention. FIG. 1...Alumina aggregate, 2...Sintered part of alumina aggregate, 3...Mullite.

Claims (1)

【特許請求の範囲】[Claims] 1 粒度1mm以下が95wt%以上のジルコン1〜
10wt%、残部、粒度0.15〜2mmが70wt%以上の
アルミナよりなる配合物を混練、成形後、焼成す
ることを特徴とするガス吹込用多孔質耐火物の製
造方法。
1 Zircon with a particle size of 1 mm or less at 95 wt% or more
1. A method for producing a porous refractory for gas injection, which comprises kneading and molding a compound consisting of alumina of 10 wt% and the remainder having a particle size of 0.15 to 2 mm at 70 wt% or more, followed by firing.
JP58078001A 1983-05-02 1983-05-02 Manufacture of gas-blowing porous refractories Granted JPS59203756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078001A JPS59203756A (en) 1983-05-02 1983-05-02 Manufacture of gas-blowing porous refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078001A JPS59203756A (en) 1983-05-02 1983-05-02 Manufacture of gas-blowing porous refractories

Publications (2)

Publication Number Publication Date
JPS59203756A JPS59203756A (en) 1984-11-17
JPH0228550B2 true JPH0228550B2 (en) 1990-06-25

Family

ID=13649559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078001A Granted JPS59203756A (en) 1983-05-02 1983-05-02 Manufacture of gas-blowing porous refractories

Country Status (1)

Country Link
JP (1) JPS59203756A (en)

Also Published As

Publication number Publication date
JPS59203756A (en) 1984-11-17

Similar Documents

Publication Publication Date Title
KR101552717B1 (en) Refractory composition for glass melting furnaces
EP2167434B1 (en) Azs refractory composition
US5420087A (en) Refractory or fireproof brick as tin bath bottom brick
US4703022A (en) Alumina and MgO preheatable insulating refractory liners and methods of use thereof
WO1993000309A1 (en) Process for producing silica brick
KR100936163B1 (en) Refractories for industrial iron and steel
US5506181A (en) Refractory for use in casting operations
JP4272856B2 (en) Manufacturing method of immersion nozzle for continuous casting with difficulty alumina adhesion
JPH0228550B2 (en)
JPH082975A (en) Refractory for casting application
JPS6090867A (en) Improved alkali-resistant refractory composition
KR100643839B1 (en) Porous Refractories for Gas Purging
JPS59146975A (en) Plate refractories for sliding nozzle
JPH05117043A (en) Dry ramming refractory for induction furnace
JPH0428672B2 (en)
CN113526966A (en) Refractory brick without bubbles and gaps inside and processing method thereof
JPS6342529B2 (en)
JPH06172044A (en) Castable refractory of alumina spinel
EP0302975A1 (en) A method of making a zircon and mgo preheatable insulating refractory liner and methods of use thereof
KR100830829B1 (en) A composite of tundish coating material for high oxygen steel
CA1244486A (en) Insulating refractory
JPH06263527A (en) Alumina refractory
JPH0532456A (en) Refractory material
JP3738085B2 (en) Alumina / Zircon / Baderite Refractories and Alumina / Zircon / Zirconia Refractories
CN116675525A (en) High-strength alkali-resistant light refractory castable and preparation method thereof