JPH02285283A - Nuclear fusion - Google Patents

Nuclear fusion

Info

Publication number
JPH02285283A
JPH02285283A JP1104639A JP10463989A JPH02285283A JP H02285283 A JPH02285283 A JP H02285283A JP 1104639 A JP1104639 A JP 1104639A JP 10463989 A JP10463989 A JP 10463989A JP H02285283 A JPH02285283 A JP H02285283A
Authority
JP
Japan
Prior art keywords
elements
nuclear fusion
electrolytic solution
cathode
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1104639A
Other languages
Japanese (ja)
Inventor
Eiji Ofuku
大福 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP1104639A priority Critical patent/JPH02285283A/en
Publication of JPH02285283A publication Critical patent/JPH02285283A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To enable generating a more effective nuclear fusion reaction by using a hydrogen absorption alloy consisting of two or more kinds of elements as a cathode material. CONSTITUTION:A hydrogen storage material usable as a cathode, consists of two or more kinds of elements such as a nickel, a zirconium, rare earth metals and so on, for example, and a lanthanum, a cerium and so on, for example, are selected from rare earth metals, as extremely preferable ones. As examples of such an alloy consisting of those elements, a LaNi5 and the like in alloys of La series, and a FeTi and the like in alloys of Fe series, can be selected. The higher purity of a heavy water used as a solvent of an electrolytic solution is the more preferable, and a purity of higher than 50% is selected, for example. An electrolyte improving an ion conductivity of the electrolytic solution, is added to the electrolytic solution. As an electrolyte, salts, hydroxides and the like of I-III group elements in the periodic table, are used, and a DC1, DNO3 and the like are selected, for example, and the concentration is set to be in a range fro 0.0 to 10 mol/l. A voltage between electrodes is set to be around 1 to 50 V and an amount of an electric current is set to be round 1 to 10 mA/cm<2>. A nuclear fusion can occur under a high pressure of 10 to 1,000 atmospheric pressure and a high temperature of 100 to 1,000 deg.C, and otherwise under an ordinary temperature and pressure.

Description

【発明の詳細な説明】 11上立且ユ上1 本発明は、低温核融合反応を効率よく行なわせるための
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently carrying out a low-temperature nuclear fusion reaction.

11立且1 近年、エネルギー資源の消費増大に伴いない、新たなエ
ネルギー源の必要性が指摘されている。
11.1 In recent years, the need for new energy sources has been pointed out as the consumption of energy resources increases.

核分裂反応を利用した原子力エネルギーは原子力発電と
してすでに実用化されているが、安全性の問題、放射性
廃棄物Φ罰題などの課題を残しており、安全でクリーン
なエネルギー源の開発が求められている。
Nuclear energy using nuclear fission reactions has already been put into practical use as nuclear power generation, but there are still issues such as safety issues and penalties for radioactive waste, and there is a need for the development of safe and clean energy sources. There is.

そのような要望を満たすものとして核融合反応を利用し
ようとする試みが行なわれている。しかし従来の方法は
、1億度もの超高温を必要とするため、それを確保する
ための技術的な困難さに加え、装置自体のコストの問題
など多くの課題を残している。
Attempts are being made to utilize nuclear fusion reactions to meet such demands. However, the conventional method requires an extremely high temperature of 100 million degrees Celsius, which poses many problems, including the technical difficulty of ensuring this temperature and the cost of the equipment itself.

一方、英すウサンプトン大学のマーチン・フライシェマ
ン教授、米ユタ大学のスタン・ポンス教授、スチーブン
・ジョーンズ准教授らは、1989年3月、パラジウム
又はチタンを陰極として、重水を電気分解することによ
り核融合を行なわせることができたと発表し、極めて簡
便に核融合反応を行なわせることのできる方法として注
目された。
Meanwhile, in March 1989, Professor Martin Fleischemann of the University of Ushampton in the UK, Professor Stan Pons of the University of Utah, and Associate Professor Stephen Jones et al. It was announced that nuclear fusion could be carried out, and the method attracted attention as an extremely simple method to carry out nuclear fusion reactions.

しかし、これらの方法により起こる核融合反応の量は極
めて微量で、しかも、核融合反応が起こるまでに長時間
の電解を継続しなければならないという課題を残してい
た。
However, the amount of nuclear fusion reaction that occurs with these methods is extremely small, and the problem remains that electrolysis must be continued for a long time before the fusion reaction occurs.

が       よ   と   る 本発明は、上記のような難点を解決し、低温核融合反応
を効率よく行なわせることができる方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned difficulties and provide a method capable of efficiently performing a low-temperature nuclear fusion reaction.

゛   る    の 本発明者らは、重水を電気分解することにより核融合反
応を行なわせるに際し、2種以上の元素からなる水素吸
蔵合金を陰極として使用することにより、上記課題を解
決し、重水素の関与する核融合反応を効率よく行なわせ
ることができることを知見し、本発明を達成するに至っ
た。
The inventors of the present invention have solved the above problem by using a hydrogen storage alloy consisting of two or more elements as a cathode when performing a nuclear fusion reaction by electrolyzing heavy water. The present inventors have discovered that it is possible to efficiently carry out nuclear fusion reactions involving

本発明につき更に詳しく説明する。The present invention will be explained in more detail.

本発明において陰極として使用できる水素吸蔵合金は2
種以上の元素からなり、水素吸蔵能を有するものであれ
ば、いずれでも使用することができ特に制限されるもの
ではないが、特に好ましい構成元素としては、ニッケル
、ジルコニウム、チタン、アルミニウム、スズ、インジ
ウム、鉛、希土類金属、コバルト、クロム、銅、鉄、バ
ナジウム、ニオブ、マグネシウム、モリブデン、パラジ
ウム、シリコン、ボロン、炭素、ハフニウム等が挙げら
れる。
The hydrogen storage alloys that can be used as the cathode in the present invention are 2
Any element can be used as long as it is composed of more than one type of element and has hydrogen storage ability, and is not particularly limited. Particularly preferable constituent elements include nickel, zirconium, titanium, aluminum, tin, Examples include indium, lead, rare earth metals, cobalt, chromium, copper, iron, vanadium, niobium, magnesium, molybdenum, palladium, silicon, boron, carbon, and hafnium.

希土類金属の中で特に好ましい元素としては、ランタン
、セリウム、イツトリウム、ユーロピウム・等が挙げら
れ、また水素吸蔵合金として知られるミツシュメタル(
Mm)等が挙げられる。
Particularly preferable elements among rare earth metals include lanthanum, cerium, yttrium, europium, etc., and mitshu metal (known as a hydrogen storage alloy)
Mm) etc.

これら元素から成る合金の例としては以下のようなもの
が挙げられるが、これらに限定されるものではない。
Examples of alloys made of these elements include, but are not limited to, the following.

−IJL金 LaNi5. LaCo5. LaCu5. LaAl
xNi5−+t。
-IJL Gold LaNi5. LaCo5. LaCu5. LaAl
xNi5−+t.

LaMnxNis−++、LaNi4Cu、 LaNi
4Cr、 LaNi4Alム玉皇濾 FeTi、 Fat−JexTi、 Fat−mMnx
Ti、 Fat−xNf、lTi江及立遣 Crt、di、 Crt、sTi し及豆遣 MgxCu、 Mg5Ni、 MgCa、 &4gi*
xLa+−xNi江五豆l CumTi+−m 騒晟立遣 MmNi5. Mn+NN15−Ji、 MmNis−
xMnx、 MmNis−xCrx。
LaMnxNis-++, LaNi4Cu, LaNi
4Cr, LaNi4Al Mugyokuro FeTi, Fat-JexTi, Fat-mMnx
Ti, Fat-xNf, lTi, Crt, di, Crt, sTi, MgxCu, Mg5Ni, MgCa, &4gi*
xLa+-xNijianggozul CumTi+-m MmNi5. Mn+NN15-Ji, MmNis-
xMnx, MmNis-xCrx.

MmNi’5−m5ix  (以上0<x(1)MmN
ls−1IAx−yZry、 MITINli−JxZ
ry(ただし、A: A1. Cr、 Cu、 Fe、
 Mrj:0.05<x<1;  0.05<y<0.
1)Mm(La  richlNis m立 TiCom、 TiCrx、 TiCrMnx  (た
だし、O<x<1)TiJi、  T1Ni 旧J口屹立 Ni5Ca、  Ni5Ce、  Ni5Pr、  N
i5Ndこれら合金は、本発明の核融合方法の陰極に使
用し得るものであるが、これらの中でも特に水素吸蔵能
に優れた合金が本発明における陰極材料として、より好
適である。
MmNi'5-m5ix (more than 0<x(1)MmN
ls-1IAx-yZry, MITINli-JxZ
ry (However, A: A1. Cr, Cu, Fe,
Mrj: 0.05<x<1;0.05<y<0.
1) Mm (LarichlNismstandTiCom, TiCrx, TiCrMnx (however, O<x<1) TiJi, T1Ni Former J口屹台Ni5Ca, Ni5Ce, Ni5Pr, N
i5Nd These alloys can be used for the cathode of the nuclear fusion method of the present invention, but among these, alloys with particularly excellent hydrogen storage capacity are more suitable as the cathode material of the present invention.

本発明における電解液の溶媒として使用される重水の純
度は高いほうが好ましく、50%・以上、より好ましく
は90%以上とするほうがより好適である。
The purity of the heavy water used as a solvent for the electrolytic solution in the present invention is preferably high, and is more preferably 50% or more, more preferably 90% or more.

本発明に使用する電解液には、電解液のイオジ伝導度を
向上させるべ(、電解質を添加する方が好ましいが、使
用し得る電解質としては、重水に溶解してイオン伝導に
よる導電性を発現させるものであれば特に制限はなく、
いずれも使用することができる。ただ、電気分解に際し
てそれ自身が電極反応するような電解質は好適でない。
It is preferable to add an electrolyte to the electrolytic solution used in the present invention to improve its iodine conductivity. There are no particular restrictions as long as the
Either can be used. However, an electrolyte that itself undergoes an electrode reaction during electrolysis is not suitable.

本発明における電解液を構成する電解質としては周期表
第1族、第2族、第3族の元素の塩、水酸化物等が好適
に使用し得るが、これらに制限されるものではない、具
体的に例示すると DCI、 DNO8,DヨSO,、DCIO,、DBF
4. DPF6. LiC1゜LiN0a、  Li5
SO4,LiClO4,Li0D、  NaC1,Na
N0*。
As the electrolyte constituting the electrolytic solution in the present invention, salts, hydroxides, etc. of elements of Group 1, Group 2, and Group 3 of the periodic table can be suitably used, but are not limited to these. Specific examples include DCI, DNO8, DYOSO, DCIO, DBF.
4. DPF6. LiC1゜LiN0a, Li5
SO4, LiClO4, Li0D, NaCl, Na
N0*.

NaCl0n、 NaCl0n、 Na0D、 KCI
、 KNOi、 K1SO4゜KClO4,KOD、 
MgC1g、 Mg(NOs)雪、 Mg5O+。
NaCl0n, NaCl0n, Na0D, KCI
, KNOi, K1SO4゜KClO4,KOD,
MgC1g, Mg(NOs) snow, Mg5O+.

ug(cto41 t、 Mg((101s、 CaC
Ls、 Ca(NGs) !+ Ca5Q4゜Ca(C
IO−) l+ Ca(00) *などが挙げられるが
これらに限定されるものではない。
ug(cto41t, Mg((101s, CaC
Ls, Ca(NGs)! + Ca5Q4゜Ca(C
Examples include, but are not limited to, IO−) l+ Ca(00) *.

これらの電解質は1種又は2種以上を混合して用いても
良(、またその濃度は特に制限されないが通常0.01
モル/I2から10モル/2の範囲で用いられる。
These electrolytes may be used alone or in combination of two or more (and their concentration is not particularly limited, but is usually 0.01
It is used in a range of mol/I2 to 10 mol/2.

本発明において電気分解の際に陰極と対極との間に印加
される極間電圧は1■から50v1好ましくは2vから
20Vの電圧が好適に用いられるが、これらに制限され
るものではない。
In the present invention, the interelectrode voltage applied between the cathode and the counter electrode during electrolysis is preferably 1 V to 50 V, preferably 2 V to 20 V, but is not limited thereto.

本発明において電気分解の際に陰極と対極との間に流れ
る電流量は、1mA/am”からIOA/ Cin ”
 、好ましくは10mA/cm”からIA/ c m 
”の電流値とするのが好ましいが、これらに制限される
ものではない。
In the present invention, the amount of current flowing between the cathode and the counter electrode during electrolysis ranges from 1 mA/am" to IOA/Cin"
, preferably from 10 mA/cm” to IA/cm
Although it is preferable to set the current value to ``, it is not limited to these values.

また電気分解中に電圧あるいは電流量を変化させること
により反応をコントロールすることもできる。
The reaction can also be controlled by changing the voltage or current amount during electrolysis.

なお、本発明の核融合方法は、常温、常圧において行な
っても良いが、陰極の水素吸蔵能を有効に発揮させるた
めにlO気圧から10000気圧の高圧下で行なっても
良い、また必要に応じて電解液の融点から室温までの低
温あるいは100℃から1000℃の昇温下で行なって
も良い。
The nuclear fusion method of the present invention may be carried out at room temperature and pressure, but in order to effectively utilize the hydrogen storage capacity of the cathode, it may also be carried out at high pressures ranging from 10 atm to 10,000 atm. Depending on the situation, it may be carried out at a low temperature from the melting point of the electrolytic solution to room temperature or at an elevated temperature from 100°C to 1000°C.

また、水素吸蔵能を有する合金がアモルファス材料であ
っても良い、アモルファス材料とすることにより、材料
の強度が増大し、反応時の発熱に耐えられるようになる
Further, the alloy having hydrogen storage ability may be an amorphous material. By making the material an amorphous material, the strength of the material increases and it becomes possible to withstand heat generation during reaction.

水素吸蔵合金の電極形状は、円筒状、平板状、線状、粒
子状、粉末状等のいずれの形状であっても良く、また多
孔質状であっても良い。
The electrode shape of the hydrogen storage alloy may be any shape such as cylindrical, flat, linear, particulate, or powdered, or may be porous.

免亘立激1 本発明は、重水を含有する電解液中に陰極と対極とを浸
漬して電気分解を行なうことによって核融合反応を行な
わせる方法において、該陰極材料として2種以上の元素
からなる水素吸蔵合金を用いることにより、より効率的
に核融合反応を行なわせることを可能にするものである
The present invention provides a method for carrying out a nuclear fusion reaction by immersing a cathode and a counter electrode in an electrolytic solution containing heavy water and performing electrolysis, in which the cathode material is made of two or more elements. By using the hydrogen storage alloy, it is possible to carry out nuclear fusion reactions more efficiently.

Claims (1)

【特許請求の範囲】[Claims] 重水を電気分解することにより核融合反応を行なわせる
に際し、2種以上の元素からなる水素吸蔵合金を陰極と
して使用することことを特徴とする核融合方法。
A nuclear fusion method characterized in that a hydrogen storage alloy made of two or more elements is used as a cathode when carrying out a nuclear fusion reaction by electrolyzing heavy water.
JP1104639A 1989-04-26 1989-04-26 Nuclear fusion Pending JPH02285283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104639A JPH02285283A (en) 1989-04-26 1989-04-26 Nuclear fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104639A JPH02285283A (en) 1989-04-26 1989-04-26 Nuclear fusion

Publications (1)

Publication Number Publication Date
JPH02285283A true JPH02285283A (en) 1990-11-22

Family

ID=14386022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104639A Pending JPH02285283A (en) 1989-04-26 1989-04-26 Nuclear fusion

Country Status (1)

Country Link
JP (1) JPH02285283A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022905A1 (en) * 1991-06-11 1992-12-23 Electric Power Research Institute, Inc. Method for producing heat from deuterated palladium
WO1993014503A1 (en) * 1992-01-10 1993-07-22 Chlorine Engineers Corp., Ltd. Energy generating method based on gravitational collapse
WO1994019808A1 (en) * 1993-02-26 1994-09-01 Akio Takahashi Atomic converter
WO1998049688A1 (en) * 1997-04-28 1998-11-05 Savic Trust Reg., Vaduz Device to obtain heat energy, working medium and electrodes to be used in this device, material for working medium and electrodes and method to obtain this material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022905A1 (en) * 1991-06-11 1992-12-23 Electric Power Research Institute, Inc. Method for producing heat from deuterated palladium
WO1993014503A1 (en) * 1992-01-10 1993-07-22 Chlorine Engineers Corp., Ltd. Energy generating method based on gravitational collapse
WO1994019808A1 (en) * 1993-02-26 1994-09-01 Akio Takahashi Atomic converter
WO1998049688A1 (en) * 1997-04-28 1998-11-05 Savic Trust Reg., Vaduz Device to obtain heat energy, working medium and electrodes to be used in this device, material for working medium and electrodes and method to obtain this material

Similar Documents

Publication Publication Date Title
Ouyang et al. Enhanced high-rate discharge properties of La11. 3Mg6. 0Sm7. 4Ni61. 0Co7. 2Al7. 1 with added graphene synthesized by plasma milling
JP3231230B2 (en) Method of forming hydrogen storage active material for electrode
Lewis The palladium-hydrogen system
CN107863253A (en) A kind of nanoporous nickel-iron-manganese alloys/oxides combination electrode and preparation method thereof
CN110359068A (en) A method of carbon nanotube metal material for coating is prepared based on melten salt electriochemistry method
CN104513925A (en) Yttrium-nickel rare earth family hydrogen storage alloy, and secondary battery containing hydrogen storage alloy
Xie et al. Molten salt electrochemical production and in situ utilization of hydrogen for iron production
Ji et al. The Electrolytic Reduction of Gd2O3 in LiCl-KCl-Li2O Molten Salt
JPH02285283A (en) Nuclear fusion
JPH0831444A (en) Electrochemical cell and actuation thereof
Jankowska et al. Electrochemical properties of sealed Ni–MH batteries using nanocrystalline TiFe-type anodes
CN106544535A (en) A kind of preparation method containing yttrium, nickel element hydrogen bearing alloy
EP0089141B1 (en) Process for the electrolytic production of hydrogen
Han et al. Electrochemical evolution of hydrogen on composite La–Ni–Al/Ni–S alloy film in water electrolysis
CN107528052A (en) Graphene derived from a kind of double-network hydrogel/tin-nickel alloy composite and its preparation method and application
JP3755841B2 (en) Magnesium-based hydrogen storage material and method for producing the same
Lu et al. The Phase Structure and Electrochemical Properties of La4MgNi19-xCox (x= 0~ 2) Hydrogen Storage Alloys
CN109637682A (en) A kind of method of molten salt reactor fuel reconstruct
JP3718238B2 (en) Method for stabilizing hydrogen storage alloys
Shumin et al. The effect of vacuum evaporation plating on phase structure and electrochemical properties of AB5–5 mass% LaMg3 composite alloy
JP3984668B2 (en) Method for activating hydrogen storage material
JPH04168239A (en) Hydrogen storage alloy for nickel-hydrogen battery
JP4442377B2 (en) Method for producing hydrogen storage alloy powder for alkaline storage battery, and hydrogen storage alloy powder and alkaline storage battery using the same
KR100237137B1 (en) Electrode material alloy for secondary cell composed of ni/mh
Wang Recycling and Upcycling Electrode Materials from Spent Lithium-Ion and Alkaline Batteries