JPH02285257A - Gas analyser - Google Patents

Gas analyser

Info

Publication number
JPH02285257A
JPH02285257A JP10591989A JP10591989A JPH02285257A JP H02285257 A JPH02285257 A JP H02285257A JP 10591989 A JP10591989 A JP 10591989A JP 10591989 A JP10591989 A JP 10591989A JP H02285257 A JPH02285257 A JP H02285257A
Authority
JP
Japan
Prior art keywords
gas
combustible
combustible gas
separated
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10591989A
Other languages
Japanese (ja)
Inventor
Kenji Arai
健次 荒井
Koji Yamanaka
山中 功治
Tamotsu Okamura
岡村 保
Takahiro Yamashita
隆弘 山下
Toshiyuki Mochizuki
俊幸 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP10591989A priority Critical patent/JPH02285257A/en
Publication of JPH02285257A publication Critical patent/JPH02285257A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an analytical result within a short time by easily analyzing extracted gas at every single component by mounting the first and second separation means, the first and second detection means and a display and recording means. CONSTITUTION:A sample solution is separated into a liquid and gas in the first separation means, that is, a gas separator. The separated gas is sent to the first detection means, that is, a non-combustible gas detector to detect and separate a non-combustible gaseous component herein. Continuously, the gas enters the second separation means, that is, a mixed component separator to be separated into single components and is successively sent to the second detection means, that is, a combustible gas detector. The combustible gas detector detects the successively sent single components. The signals generated from both of the non-combustible gas detector and the combustible gas detector are sent to a display and recording means, that is, a detector output recording apparatus to be displayed and recorded. By this constitution, in performing the internal diagnosis of the insulating oil of a transformer, the analysis of the gas dissolved in the insulating oil can be easily performed at every single component by a series of continuous operations.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、油入電気機器の絶縁油中に溶解しているガス
の分析装置に係り、特に変圧器の絶縁油の内部診断に際
しガス成分の検出に好適なガス分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an analyzer for gas dissolved in insulating oil of oil-filled electrical equipment, and is particularly useful for analyzing gas components when diagnosing the inside of insulating oil of transformers. The present invention relates to a gas analyzer suitable for detecting.

(従来の技術) 変圧器の内部診断に関しては、油入変圧器の絶縁油中に
含まれるガスの成分分析を実施し絶縁油の劣化内容から
変圧器を診断する手段がある。このためには、変圧器か
ら絶縁油を採取し分析室において水銀を利用した脱気装
置により油中の溶解ガスを抽出しガス分析を行なう。ガ
ス分析手法として広く知られるガスクロマトグラフは、
分析精度には定評があるが、絶縁油中からガスを抽出す
るのに水銀を使用するなど操作が複雑で熟練を要し、不
活性ガス用の高圧ボンベが不可欠で装置も大型になる。
(Prior Art) Regarding the internal diagnosis of a transformer, there is a means of analyzing the components of gas contained in the insulating oil of an oil-immersed transformer and diagnosing the transformer from the details of the deterioration of the insulating oil. For this purpose, insulating oil is collected from the transformer, dissolved gases in the oil are extracted using a deaerator using mercury in an analysis room, and gas analysis is performed. Gas chromatography is widely known as a gas analysis method.
Although it has a reputation for analytical accuracy, it is complex and requires skill to operate, as it uses mercury to extract gas from insulating oil, requires a high-pressure cylinder for inert gas, and requires large equipment.

第7@ (A)は従来の油中ガス抽出装置、同図(B)
はガスクロマトグラフの構造の概略を示す図である。第
7図(A)に示すように、絶縁油2を試料容器15から
油中ガス抽出容器1内に導入し、水銀容器17の水位移
動を利用して油中ガス抽出容器1内を減圧し絶縁油2に
溶解しているガスを分離させ、分離したガスはガス採取
管コック18を介して同図(B)に示すガス導入口19
に導かれる。22はヘリウムガスボンベ、12は流量調
節弁である。ヘリウムガスは流量調節弁12によって流
量調節され、流路切換弁3を経てガス分離装置6に入り
、さらに可燃ガス検出装置!7および炭酸ガス検出装置
5に至る回路に流されこれら各装置の安定化を行なう。
No. 7 @ (A) is a conventional gas-in-oil extraction device, the same figure (B)
1 is a diagram schematically showing the structure of a gas chromatograph. As shown in FIG. 7(A), the insulating oil 2 is introduced from the sample container 15 into the gas-in-oil extraction container 1, and the pressure inside the gas-in-oil extraction container 1 is reduced using the water level movement in the mercury container 17. The gas dissolved in the insulating oil 2 is separated, and the separated gas is passed through the gas sampling pipe cock 18 to the gas inlet 19 shown in FIG.
guided by. 22 is a helium gas cylinder, and 12 is a flow control valve. The flow rate of the helium gas is adjusted by the flow rate control valve 12, passes through the flow path switching valve 3, enters the gas separation device 6, and then enters the combustible gas detection device! 7 and the circuit leading to the carbon dioxide gas detection device 5, and stabilizes each of these devices.

ガス分離袋@6はガス分離装置用温度調節器9によって
一定の温度に加温される。検量管4を真空ポンプ20に
よって減圧し、ガス採取管18のコックを開き内部のガ
スを検量管4に移す、検量管4のガスは流路切換弁3の
操作により流量調節弁12から流れてきたヘリウムガス
と共にガス分離装置6に送り込まれる。送り込まれたガ
スはガス分離装置6内の多孔質粒子のガス吸脱着による
ガス分配効果で単一成分となり、順次可燃ガス検出装置
7や炭酸ガス検出装置5に入りガス濃度に応じた電圧変
化曲線として記録される。記録計のベースラインと電圧
変化曲線に囲まれた範囲の面積を計測しこれを計算要素
としてガス濃度を知るものである。
The gas separation bag @6 is heated to a constant temperature by a gas separation device temperature controller 9. The pressure in the calibration tube 4 is reduced by the vacuum pump 20, the cock of the gas sampling tube 18 is opened, and the gas inside is transferred to the calibration tube 4. The gas in the calibration tube 4 flows from the flow control valve 12 by operating the flow path switching valve 3. The gas is sent to the gas separation device 6 together with the helium gas. The fed gas becomes a single component due to the gas distribution effect due to gas adsorption and desorption by porous particles in the gas separation device 6, and sequentially enters the combustible gas detection device 7 and the carbon dioxide detection device 5, forming a voltage change curve according to the gas concentration. recorded as. The area surrounded by the recorder's baseline and the voltage change curve is measured and used as a calculation element to determine the gas concentration.

最近、受変電設備や配電設備の安定化のため、am異常
の早期発見と対策が必要となり、油入変圧器の内部診断
を短時間で実施したいとの要望が高まっており、特開昭
54−126591号公報に開示されている技術は、前
記要望を満たすべ〈発明されたもので、絶縁油中に存在
するガスを気体の吹き込みによって抽出し、抽出された
ガスに含まれる可燃性ガスを混合成分のまま検出するも
のである。
Recently, in order to stabilize power receiving and substation equipment and distribution equipment, early detection and countermeasures for AM abnormalities have become necessary, and there has been an increasing demand for internal diagnosis of oil-immersed transformers in a short time. The technology disclosed in Japanese Patent Publication No. 126591 was invented to meet the above-mentioned needs, and the technology extracts the gas present in the insulating oil by blowing gas, and removes the flammable gas contained in the extracted gas. It detects the mixed components as they are.

(発明が解決しようとする課題) 上記従来技術は、診断の実施には抽出ガスを単一成分ご
と分析することを必須要件とし、例えばメタンガスとア
セチレンガスの濃度が全体の過半数を占めている場合に
は絶縁油の過熱による劣化が想定され、水素とアセチレ
ンガスを検出した場合は、絶縁油中で放電があったと考
えられ電気機器の構造破壊の恐れがある。さらにメタン
ガスとエチレンガスに炭酸ガスが検出されれば、絶縁紙
の過熱による劣化が推定される。このように炭酸ガス検
出の必要性が高いにもかかわらず、特開昭54−126
591号発明では炭酸ガスの検出ができず、また可燃性
ガスのなかでも重要なアセチレンガスの検出に対する配
慮もなく油入変圧器の内部診断用のガス分析装置として
は不十分なものがあり問題であった。したがって、上記
ガスクロマトグラフに匹敵する分析精度を有し小型で簡
便なガス分析装置の出現が好ましい0本発明は従来技術
の上記課題を解決するためのもので、絶縁油の内部診断
に際し抽出ガスの分析が単一成分ごとに容易に実施でき
、しかも取扱操作に熟練を必要とせず短時間に分析結果
が得られる小型で簡便なガス分析装置を提供することを
目的とするものである。
(Problems to be Solved by the Invention) The above-mentioned conventional technology requires that the extracted gas be analyzed for each single component in order to carry out diagnosis. For example, when the concentration of methane gas and acetylene gas accounts for the majority of the total, It is assumed that the insulating oil deteriorates due to overheating, and if hydrogen and acetylene gas are detected, it is thought that an electrical discharge occurred in the insulating oil and there is a risk of structural destruction of the electrical equipment. Furthermore, if carbon dioxide gas is detected in the methane gas and ethylene gas, it is assumed that the insulating paper has deteriorated due to overheating. Despite the high necessity of detecting carbon dioxide gas,
The No. 591 invention cannot detect carbon dioxide gas, nor does it take into account the detection of acetylene gas, which is an important combustible gas, and is therefore insufficient as a gas analyzer for internal diagnosis of oil-immersed transformers. Met. Therefore, it would be desirable to develop a small and simple gas analyzer that has analysis accuracy comparable to the gas chromatograph. The object of the present invention is to provide a small and simple gas analyzer that can easily perform analysis for each single component, and can obtain analysis results in a short time without requiring any skill in handling.

(課題を解決するための手段) 上記の目的は、液体中に吹き込んだ空気を循環させ、こ
の液体中から気体を分離する第1の分離手段と、第1の
分離手段により分離された気体から不燃性ガスを検出す
る第1の検出手段と、第1の分離手段により分離された
気体中の可燃性ガスを単一成分に分離する第2の分離手
段と、第2の分離手段により単一成分に分離された可燃
性ガスを検出する第2の検出手段と、第1の検出手段お
よび第2の検出手段の出力を表示および記録する表示記
録手段を備えて連続処理を行なうように構成されたガス
分析装置によって達成される。
(Means for Solving the Problems) The above objects include a first separation means for circulating air blown into a liquid and separating gas from the liquid; and a first separation means for separating gas from the liquid. a first detection means for detecting nonflammable gas; a second separation means for separating the combustible gas in the gas separated by the first separation means into a single component; The device is configured to carry out continuous processing, including a second detection means for detecting the combustible gas separated into its components, and a display and recording means for displaying and recording the outputs of the first detection means and the second detection means. This can be achieved using a gas analyzer.

(作用) 上記の構成により、絶縁油中の溶解しているガスを抽出
するための装置は、絶縁油中に空気を循環式に吹き込む
ことにより、絶縁油からガスを分離させるものであり、
吹き込んだ空気中にガスを混合させ濃縮させる。抽出し
たガス中に含まれる炭酸ガスの検出は、例えば非分離形
赤外線炭酸ガス検出器のような空気中の炭酸ガスを選択
的に検出する装置を使用し、炭酸ガスが特定の波長の赤
外線を吸収する作用により抽出ガス中の炭酸ガスを検出
してその濃度を計量するものである。抽出ガス中に含ま
れている混合成分の可燃性ガスを単一成分に分離する装
置は、ガスを吸脱着する作用を有する、例えば多孔質表
面を有する粒子にガスを接触させ、多孔質表面とガス成
分によって生ずるガス分配の効果を活用することにより
、単一成分に分離する。単一成分となった可燃ガスを検
出する装置は、例えば熱線形半導体可燃ガス検出器を使
用する。これは半導体を焼結したフィラメントからなる
ブリッジ回路の一辺にガスを接触させることにより半導
体の電気抵抗が変化するためブリッジ回路の平衡がくず
れ、これにより生ずる電気抵抗の変化によってガスを検
出しその濃度を知る。これらの装置を直列回路上に配列
構成することにより作動は連続して順次分析操作が実行
される。絶縁油中に吹き込む気体は空気のほか、ヘリウ
ム、アルゴン、窒素が使用可能である。
(Function) With the above configuration, the device for extracting the gas dissolved in the insulating oil separates the gas from the insulating oil by blowing air into the insulating oil in a circulation manner.
The gases are mixed and concentrated in the blown air. To detect carbon dioxide contained in the extracted gas, use a device that selectively detects carbon dioxide in the air, such as a non-separable infrared carbon dioxide detector. It detects carbon dioxide gas in the extracted gas by absorbing it and measures its concentration. A device for separating a combustible gas mixture contained in extracted gas into single components involves bringing the gas into contact with particles that have a porous surface that has the function of adsorbing and desorbing gas, for example, and By exploiting the effect of gas distribution caused by gas components, they are separated into single components. A device for detecting a single component combustible gas uses, for example, a thermal linear semiconductor combustible gas detector. This is because when a gas is brought into contact with one side of a bridge circuit made of a filament made of a sintered semiconductor, the electrical resistance of the semiconductor changes, causing the bridge circuit to become unbalanced.The resulting change in electrical resistance is used to detect the gas and its concentration. Know. By arranging these devices in a series circuit, the operation is continuous and sequential analytical operations are performed. In addition to air, helium, argon, and nitrogen can be used as the gas blown into the insulating oil.

(実施例) 本発明の一実施例を図面と共に説明する。第1図は本発
明に係るガス分析装置の一実施例を示すブロック図であ
る。試料液体は第1の分離手段すなわち、気体分離装置
内において液体と気体とに分離され、分離された気体は
第1の検出手段すなわち、不燃性ガス検出装置に送られ
ここで不燃性ガス成分が検出分離される。続いて気体は
第2の分離手段すなわち、混合成分分離装置に入り、こ
こで単一成分に分離されると共に順次第2の検出手段す
なわち、可燃ガス検出装置に送られる。可燃性ガス検出
装置は順次送られる単一成分を検出する。不燃性ガス検
出装置と可燃性ガス検出装置で発生した信号は表示記録
手段すなわち、検出装置出力記録装置に送られここで表
示記録される。
(Example) An example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a gas analyzer according to the present invention. The sample liquid is separated into liquid and gas in the first separation means, that is, the gas separation device, and the separated gas is sent to the first detection means, that is, the nonflammable gas detection device, where the nonflammable gas components are detected. Detected and separated. The gas then enters a second separation means, a mixed component separator, where it is separated into single components and is sequentially sent to a second detection means, a combustible gas detection device. The combustible gas detection device detects single components that are delivered sequentially. The signals generated by the non-flammable gas detection device and the combustible gas detection device are sent to a display/recording means, that is, a detection device output/recording device, where they are displayed and recorded.

次に第2図に示す装置構成図により本実施例の機能を詳
細に説明する。試料容器15中の14A縁油2を試料採
取弁16を経て油中ガス抽出容器1に移し、送気ポンプ
13がら空気流量調節弁14により流量調節した空気を
油中ガス抽出容器1内に吹き込む、絶縁油2中に吹き込
まれた空気は絶縁油2中を通過して油面上に達し、流路
切換弁3の操作を介して分析回路へ送られる。第3図(
A)、(B)は流路切換弁3内の切換え状態を示す。同
図(A)の状態では空気は検量管4を経て送気ポンプ1
3に戻される。戻された空気は再び油中ガス抽出器1に
送られる。この循環回路を繰返し通過することにより絶
縁油2中に溶解していたガスは空気中に拡散して循環回
路内に蓄積される。本発明の液体中から気体を分離する
第1の分離手段とは、例えば第2図の試料容器15.油
中ガス抽出容器1.試料採取弁16、送気ポンプ13、
空気流量調節弁14、流路切換弁3を含む制御系をいう
Next, the functions of this embodiment will be explained in detail with reference to the apparatus configuration diagram shown in FIG. The 14A edge oil 2 in the sample container 15 is transferred to the gas-in-oil extraction container 1 through the sampling valve 16, and the air whose flow rate is adjusted by the air flow control valve 14 is blown into the gas-in-oil extraction container 1 through the air supply pump 13. The air blown into the insulating oil 2 passes through the insulating oil 2, reaches the oil surface, and is sent to the analysis circuit through the operation of the flow path switching valve 3. Figure 3 (
A) and (B) show switching states within the flow path switching valve 3. In the state shown in Figure (A), air flows through the calibration tube 4 to the air supply pump 1.
Returned to 3. The returned air is sent to the gas-in-oil extractor 1 again. By repeatedly passing through this circulation circuit, the gas dissolved in the insulating oil 2 is diffused into the air and accumulated in the circulation circuit. The first separation means for separating gas from a liquid according to the present invention is, for example, the sample container 15 in FIG. Gas-in-oil extraction vessel 1. sample collection valve 16, air supply pump 13,
This refers to a control system that includes the air flow control valve 14 and the flow path switching valve 3.

このようにして前記循環回路内に蓄積された抽出ガスは
予め安定化されたガス分析回路へ送られる。すなわち、
流路切換弁3を第3図CB)の状態に切換え操作しキャ
リヤ用空気送気ポンプ8から送られてきた空気を検量管
4に導くことにより、検量管4内の抽出ガスは第1の検
出手段例えば本実施例では、炭酸ガス検出装置5に送り
込まれ抽出ガス中に含まれる炭酸ガスの検出がなされる
The extracted gas thus accumulated in the circulation circuit is sent to a pre-stabilized gas analysis circuit. That is,
By switching the flow path switching valve 3 to the state shown in FIG. 3 CB) and guiding the air sent from the carrier air supply pump 8 to the calibration tube 4, the extraction gas in the calibration tube 4 is transferred to the first For example, in this embodiment, the detection means sends the extracted gas to the carbon dioxide gas detection device 5 to detect carbon dioxide contained in the extracted gas.

第4図は炭酸ガス検出装置15の内部構造を示す図で、
赤外線光源24から放射された赤外線が赤外線受光器2
6に達するように構成された容器内に、試料ガス導入口
25から抽出ガスを導入すると。
FIG. 4 is a diagram showing the internal structure of the carbon dioxide gas detection device 15.
Infrared rays emitted from the infrared light source 24 are transmitted to the infrared receiver 2.
When the extraction gas is introduced from the sample gas inlet 25 into the container configured to reach 6.

抽出ガス中に炭酸ガスが存在すれば赤外線の吸収作用に
より抽出ガスの量が減少することから炭酸ガスを検知し
計量することができる。この作用は空気中においても発
現するから、空気中の炭酸ガスを選択的に検出すること
が可能である。炭酸ガス検出装置5を通過した抽出ガス
は試料ガス排出口28から排出される。続いて抽出ガス
は第2の分離手段例えば、本実施例の可燃性ガス分離装
置6に入り混合成分を単一成分に分離し、順次第2の検
出手段である可燃性ガス検出器7に送り込まれる。第5
図は可燃性ガス分離装置6の内部構造を示す図で、ガス
吸脱着作用を有する多孔質粒子例えば金属性粒子を充填
した容器からなっている。
If carbon dioxide gas is present in the extracted gas, the amount of extracted gas decreases due to the absorption of infrared rays, so that carbon dioxide gas can be detected and measured. Since this effect is also expressed in the air, it is possible to selectively detect carbon dioxide gas in the air. The extracted gas that has passed through the carbon dioxide detection device 5 is discharged from the sample gas discharge port 28. Next, the extracted gas enters a second separation means, for example, the combustible gas separator 6 of this embodiment, which separates the mixed components into single components, and sequentially sends them to the combustible gas detector 7, which is a second detection means. It will be done. Fifth
The figure shows the internal structure of the combustible gas separation device 6, which consists of a container filled with porous particles, such as metal particles, that have a gas adsorption/desorption function.

本実施例では3種類の多孔質粒子を使用しており第1多
孔質粒子充填チューブ29と第2多孔質粒子充填チュー
ブ30および第3多孔質粒子充填チューブ31とこれら
の回路を切換える切換弁32とを具有している。可燃性
ガス分離装置6に送り込まれた抽出ガスは第1多孔質粒
子充填チューブ29を通過する間に、粒子のガス吸着に
よる分配効果により2つにグループ分けされる。1つは
空気流と共に通過するグループで、他は第1多孔質粒子
充填チューブ29内の粒子に吸着されるグループである
。第1多孔質粒子充填グループ29を通過したグループ
は第2多孔質粒子充填チューブ30に入り、第2多孔質
粒子充填チューブ30をも通過する。この流れに際して
は、第2多孔質粒子充填チューブ30から第3多孔質粒
子充填チューブ31に流れる回路を形成するように切換
弁32による操作がなされる。これにより、第2多孔質
粒子充填チューブ3oを通過したグループは第3多孔質
粒子充填チューブ31に入る゛。第3多孔質粒子充填チ
ューブ31に入るグループを構成している各ガスは内部
粒子のガス吸着による分配効果により単一成分に分離さ
れ1粒子からの脱着時間の差によって順次流出する。
In this example, three types of porous particles are used: a first porous particle filling tube 29, a second porous particle filling tube 30, a third porous particle filling tube 31, and a switching valve 32 for switching these circuits. It has the following. While the extracted gas sent to the combustible gas separation device 6 passes through the first porous particle-filled tube 29, it is divided into two groups due to the distribution effect caused by the gas adsorption of the particles. One is a group that passes with the air flow, and the other is a group that is adsorbed by the particles in the first porous particle-filled tube 29. The group that has passed through the first porous particle filling group 29 enters the second porous particle filling tube 30 and also passes through the second porous particle filling tube 30 . During this flow, the switching valve 32 is operated so as to form a circuit that flows from the second porous particle filling tube 30 to the third porous particle filling tube 31. As a result, the group that has passed through the second porous particle filling tube 3o enters the third porous particle filling tube 31. Each gas constituting the group entering the third porous particle-filled tube 31 is separated into single components due to the distribution effect due to gas adsorption of the internal particles, and sequentially flows out depending on the difference in desorption time from one particle.

一方、第1多孔質粒子充填チューブ29に吸着されたグ
ループを構成する各ガスは@1多孔質粒子充填チューブ
29内の吸脱着による分配効果により、単一成分に分離
され粒子からの脱着時間の差によって順次第1多孔質粒
子充填チューブ29を通過していくが、この段階では各
成分を判別するのに十分な分離はなされていないが、次
の第2多孔質粒子充填チューブ3oに入った各成分は内
部粒子の吸脱着による分離効果により、第1多孔質粒子
充填チューブ29よりもさらに明確な分離がなされ、脱
着時間の差により順次流出していく。
On the other hand, each gas constituting the group adsorbed in the first porous particle-filled tube 29 is separated into single components due to the distribution effect due to adsorption and desorption in the @1 porous particle-filled tube 29, and the desorption time from the particles is reduced. Depending on the difference, the particles pass through the first porous particle filling tube 29 in order, but at this stage, there is not enough separation to distinguish each component, but the particles enter the next second porous particle filling tube 3o. Due to the separation effect caused by adsorption and desorption of internal particles, each component is separated more clearly than in the first porous particle-filled tube 29, and flows out one after another due to the difference in desorption time.

第3多孔質粒子充填チューブ31から順次流出した単一
成分ガスは次の可燃性ガス検出装置7に送られここで検
出される。第3多孔質粒子充填チューブ31から流出さ
れる成分の数と流出終了時間は既知であるから、この時
間を経過したとき切換弁32を操作し、第2多孔質粒子
充填チューブ30から直接可燃性ガス検出装置7に至る
回路を形成する。これにより第2多孔質粒子充填チュー
ブ30から順次流出される成分は、第3多孔質粒子充填
チューブ31を通過することなく可燃性ガス検出装W1
7へ送られ、ここで検出される。第6図は可燃性ガス検
出装置7の検出素子−構成を示す図であって1.検出素
子は半導体を焼結したフィラメントで構成された抵抗ブ
リッジ回路からなり、回路の2辺の抵抗35a、35b
に試料ガスが接触するよう検出素子セル34が配設され
ている。
The single component gas that sequentially flows out from the third porous particle-filled tube 31 is sent to the next combustible gas detection device 7 and detected there. Since the number of components flowing out from the third porous particle filling tube 31 and the time at which the outflow ends are known, when this time has elapsed, the switching valve 32 is operated, and the combustible components are directly discharged from the second porous particle filling tube 30. A circuit leading to the gas detection device 7 is formed. As a result, the components sequentially flowing out from the second porous particle-filled tube 30 can be transferred to the combustible gas detection device W1 without passing through the third porous particle-filled tube 31.
7, where it is detected. FIG. 6 is a diagram showing the configuration of the detection element of the combustible gas detection device 7. The detection element consists of a resistor bridge circuit composed of a filament made of sintered semiconductor, and resistors 35a and 35b on two sides of the circuit
The detection element cell 34 is arranged so that the sample gas comes into contact with the sample gas.

可燃性ガス分離表a6から順次送られる成分は、可燃性
ガス導入口33から検出素子セル34に入る。検出用抵
抗35a、35bは、検出ガスと接触することにより電
気伝導度が変化し、抵抗ブリッジ回路の平衡状態が崩れ
端子37間の電圧が変化する。炭酸ガス検出装置5で生
じた電気信号と、可燃性ガス検出装置7で生じた電気信
号は発生の都度、表示記録手段すなわち本実施例の検出
装置出力記録装置10に送られ信号の示す値を表示記録
する。上記の過程を経由することによって、試料2に溶
解していたガス成分と量を一連の連続操作により計測す
ることができる。
The components sequentially sent from the combustible gas separation table a6 enter the detection element cell 34 through the combustible gas inlet 33. The electrical conductivity of the detection resistors 35a and 35b changes when they come into contact with the detection gas, and the balanced state of the resistance bridge circuit is disrupted, causing a change in the voltage between the terminals 37. The electric signals generated by the carbon dioxide gas detection device 5 and the electric signals generated by the combustible gas detection device 7 are sent to the display/recording means, that is, the detection device output recording device 10 of this embodiment, each time they occur, and the values indicated by the signals are recorded. Display and record. By going through the above process, the gas components and amounts dissolved in the sample 2 can be measured by a series of continuous operations.

本発明において、第1の検出手段とは、例えば炭酸ガス
検出装置5、第2の分離手段とは、例えば可燃性ガス分
離装置6、第2の検出手段とは、例えば可燃性ガス検出
装置7がそれぞれに対応するものであるが、キャリア用
空気送気ポンプ8、電源装置111.@度調節器9ほか
周辺機器を含む制御系をも含み、また、分析結果を表示
し記録する手段とは、検出装置出力記録装置1oおよび
その制御系を包含している。
In the present invention, the first detection means is, for example, the carbon dioxide gas detection device 5, the second separation means is, for example, the combustible gas separation device 6, and the second detection means is, for example, the combustible gas detection device 7. correspond to each other, carrier air pump 8, power supply device 111. It also includes a control system including the degree adjuster 9 and other peripheral devices, and the means for displaying and recording analysis results includes the detection device output recording device 1o and its control system.

(発明の効果) 本発明の実施により、変圧器の絶縁油の内部診断に際し
、絶縁油中に溶解しているガスの分析が一連の連続操作
で単一成分ごとに容易に実施でき、しかも取扱操作に熟
練を必要とせず短時間に分析結果が得られる小型で簡便
なガス分析装置を提供することができる。
(Effects of the Invention) By carrying out the present invention, when diagnosing the inside of the insulating oil of a transformer, the analysis of gas dissolved in the insulating oil can be easily performed for each single component in a series of continuous operations, and it is easy to handle. It is possible to provide a small and simple gas analyzer that does not require any skill to operate and can obtain analysis results in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るガス分析装置の一実施例を示すブ
ロック図、第2図は本実施例の機能を示す装置構成図、
第3図(A)、(B)は流路切換弁の流路形成説明図、
第4図は炭酸ガス検出装置の内部構造を示す図、第5図
は可燃性ガス分離装置の内部構造を示す図、第6図は可
燃性ガス検出装置の検出素子の構成図、第7図(A)は
油中ガス抽出装置、同図(B)はガスクロマトグラフの
構造の概略を示す図である。 1・・・油中ガス抽出容器 2・・・絶縁油3・・・流
路切換弁    4・・・検量管S・・・炭酸ガス検出
装置 6・・・可燃性ガス分離装置 7・・・可燃性ガス検出装置8・・・キャリア用空気送
気ポンプ 9・・・温度調節器   10・・・検出装置出力記録
装置 11・・・電源装置     12.14・・・流量調
節弁13・・送気ポンプ   15・・・試料油容器1
6・・試料採取弁   24・・・赤外線光源25・・
・試料ガス導入口 26・・・赤外線受光器28・・・
試料ガス排出口 29.30.31・・・多孔質粒子充填チューブ32・
・流路切換弁   34・・・検出素子セル35a、3
5b・・・検出用抵抗
FIG. 1 is a block diagram showing an embodiment of the gas analyzer according to the present invention, FIG. 2 is a device configuration diagram showing the functions of this embodiment,
FIGS. 3(A) and 3(B) are explanatory views of the flow path formation of the flow path switching valve;
Fig. 4 is a diagram showing the internal structure of the carbon dioxide gas detection device, Fig. 5 is a diagram showing the internal structure of the flammable gas separation device, Fig. 6 is a configuration diagram of the detection element of the combustible gas detection device, and Fig. 7 (A) is a diagram schematically showing the structure of a gas-in-oil extraction device, and (B) is a diagram schematically showing the structure of a gas chromatograph. 1... Gas in oil extraction container 2... Insulating oil 3... Flow path switching valve 4... Calibration tube S... Carbon dioxide gas detection device 6... Flammable gas separation device 7... Combustible gas detection device 8... Carrier air supply pump 9... Temperature controller 10... Detection device output recording device 11... Power supply device 12.14... Flow rate control valve 13... Supply Air pump 15...Sample oil container 1
6... Sample collection valve 24... Infrared light source 25...
・Sample gas inlet 26...Infrared receiver 28...
Sample gas outlet 29.30.31...Porous particle filling tube 32.
・Flow path switching valve 34...detection element cell 35a, 3
5b...detection resistor

Claims (1)

【特許請求の範囲】[Claims] 1、液体中から気体を分離する第1の分離手段と、第1
の分離手段により分離された気体から不燃性ガスを検出
する第1の検出手段と、第1の分離手段により分離され
た気体中の可燃性ガスを単一成分に分離する第2の分離
手段と、第2の分離手段により単一成分に分離された可
燃性ガスを検出する第2の検出手段と、第1の検出手段
および第2の検出手段の出力を表示および記録する表示
記録手段を備えて連続処理することを特徴とするガス分
析装置。
1. A first separation means for separating gas from a liquid;
a first detection means for detecting nonflammable gas from the gas separated by the separation means; and a second separation means for separating the combustible gas in the gas separated by the first separation means into single components. , comprising a second detection means for detecting the combustible gas separated into single components by the second separation means, and a display recording means for displaying and recording the outputs of the first detection means and the second detection means. A gas analyzer characterized by continuous processing.
JP10591989A 1989-04-27 1989-04-27 Gas analyser Pending JPH02285257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10591989A JPH02285257A (en) 1989-04-27 1989-04-27 Gas analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10591989A JPH02285257A (en) 1989-04-27 1989-04-27 Gas analyser

Publications (1)

Publication Number Publication Date
JPH02285257A true JPH02285257A (en) 1990-11-22

Family

ID=14420274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10591989A Pending JPH02285257A (en) 1989-04-27 1989-04-27 Gas analyser

Country Status (1)

Country Link
JP (1) JPH02285257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180259451A1 (en) * 2017-03-13 2018-09-13 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods
US10585036B2 (en) 2017-03-13 2020-03-10 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180259451A1 (en) * 2017-03-13 2018-09-13 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods
US10586649B2 (en) * 2017-03-13 2020-03-10 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods
US10585036B2 (en) 2017-03-13 2020-03-10 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods
US10832854B2 (en) 2017-03-13 2020-11-10 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods
US11796455B2 (en) 2017-03-13 2023-10-24 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods
US11860148B2 (en) 2017-03-13 2024-01-02 Abb Schweiz Ag Dissolved gas analysis devices, systems, and methods

Similar Documents

Publication Publication Date Title
US11467135B2 (en) Online measuring system, method and application for semi-volatile organic compound in gas phase
CN101629936B (en) Pulse helium ionized gas phase chromatographic instrument
CN106461592B (en) Gas component concentration measuring apparatus and method for measuring gas component concentration
CN105572250B (en) It is a kind of to be used to analyze hydrogen isotope and the gas-chromatography detection system and method for trace impurity component in He
US6042634A (en) Moisture extractor system for gas sampling
CN204389458U (en) A kind of gas chromatographicanalyzer for analyzing sulfur hexafluoride decomposition product
CN107045033A (en) A kind of benzene in air system thing on-line monitoring gas chromatograph
US20040151622A1 (en) Ultra-trace automatic mercury species analyzer
JPH02285257A (en) Gas analyser
KR19990023535A (en) Ultra High Purity Gas Analysis Method and Apparatus Using Atmospheric Pressure Ionization Mass Spectroscopy
JP2858143B2 (en) Concentration analysis method and apparatus therefor
JP3103985B2 (en) Concentration analysis method and equipment
CN115561379A (en) Atmospheric organic matter detection device and detection method
CN112986447A (en) Gas chromatography device
CN111617515B (en) Gas-liquid-solid three-phase separation device and separation method based on array sensor
CN206960422U (en) A kind of benzene in air system thing on-line monitoring gas chromatograph
CN209894763U (en) Detection apparatus for non-methane total hydrocarbon
JPH0247549A (en) Analyzing apparatus of trace gas component
JP3215243B2 (en) Gas in oil analyzer
JP2777304B2 (en) Abnormality diagnosis apparatus and diagnosis method for perfluorocarbon input device
CN213689496U (en) Gas sampling and detecting system
CN214845037U (en) Online gas chromatograph with pre-concentration function
CN216955000U (en) Detection equipment for leakage of electric power high-voltage equipment
CN215066384U (en) Gas chromatograph for on-line monitoring of non-methane total hydrocarbons
CN113156008A (en) Analysis device for dissolved gas in insulating oil