JPH02285106A - Constructing underground continuous wall - Google Patents

Constructing underground continuous wall

Info

Publication number
JPH02285106A
JPH02285106A JP10578189A JP10578189A JPH02285106A JP H02285106 A JPH02285106 A JP H02285106A JP 10578189 A JP10578189 A JP 10578189A JP 10578189 A JP10578189 A JP 10578189A JP H02285106 A JPH02285106 A JP H02285106A
Authority
JP
Japan
Prior art keywords
underground continuous
column bodies
columns
continuous wall
stress material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10578189A
Other languages
Japanese (ja)
Other versions
JPH0448893B2 (en
Inventor
Seikichi Yamamoto
山本 盛吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10578189A priority Critical patent/JPH02285106A/en
Publication of JPH02285106A publication Critical patent/JPH02285106A/en
Publication of JPH0448893B2 publication Critical patent/JPH0448893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PURPOSE:To construct a thick-bodied underground continuous wall by forming adjoining column bodies with a plurality of excavating shafts equipped with churning blades rotating respectively in the opposite directions, and by burying stressing materials into each of overlapping column bodies that are formed spanning spaces between each of the adjoining column bodies formed continuously in a row. CONSTITUTION:Excavation is made into the earth with two excavating shafts rotating respectively in the opposite directions, and two column bodies 26a and 27a are adjoiningly made thereby in series being formed of consolidating agent injected thereto, and forming operations I1, I2... continue therewith. Then the forming operations II1, II2... proceed with making of the column bodies 26b and 27b so that they fill spaces provided between each pair of the column bodies 26a and 27a. The forming operations III1, III2... are further made to make the column bodies 26c and 27c that equally span spaces between the adjoining column bodies 26a nd 27a, and between 27a and 26b, and after making these overlapping column bodies 26c and 27c, stressing materials 19 and 20 are buried into the center of the column bodies 26c and 27c and an underground continuous wall is constructed therewith. Thereby improvement is made available for work efficiency as well as for balancing at the execution, and the degree of overlaps in each of the column bodies can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、土留壁等として利用する地中連続壁の造成工
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a construction method for an underground continuous wall used as an earth retaining wall or the like.

従来の技術 従来、地中連続壁を造成する工法としては、柱体を一本
ずつ形成する工法と、複数本ずつ形成する工法とが知ら
れいている。
BACKGROUND OF THE INVENTION Conventionally, as methods for constructing underground continuous walls, there are two known methods: a method in which columns are formed one by one, and a method in which a plurality of columns are formed.

前者の造成工法について説明すると、まず、攪拌用の翼
を有する掘削軸を回転させながら固結剤を噴出させ、こ
の固結剤を土砂と攪拌混合して柱体を形成し、この柱体
にH型鋼からなる応力材を埋設する。次に上記既設の柱
体と一部が重複するように上記と同様にして柱体を形成
し、この柱体に上記と同様の応力材を埋設する′。以下
、上記と同様の動作を繰返すことにより、地中連続壁を
造成することができる。なお、応力材は要求される強度
に応じて各柱体毎に埋設する場合と、柱体の所望本数毎
に埋設する場合とがある。
To explain the former construction method, first, a solidification agent is spouted out while rotating an excavation shaft with stirring blades, and this solidification agent is stirred and mixed with earth and sand to form a column. Bury stress material made of H-shaped steel. Next, a column is formed in the same manner as above so as to partially overlap the existing column, and the same stress material as above is embedded in this column. Thereafter, by repeating the same operations as above, an underground continuous wall can be constructed. Note that the stress material may be buried for each column depending on the required strength, or it may be buried for each desired number of columns.

後者の造成工法について説明すると、この造成工法は多
軸掘削機を用いるものであり、例えば、攪拌用の翼を有
する3本の掘削軸を回転させながら固結剤を噴出させ、
この固結剤を土砂と攪拌混合して互いに一部が重複する
柱体を形成し、所望の柱体に応力材を埋設する。以下、
動作を連続的に行って地中連続壁を造成し、若しくは上
記動作を所望間隔毎に行い、その後、既設の複数本の連
続した柱体間を埋めるように上記動作を行って地中連続
壁を造成することができる。
To explain the latter construction method, this construction method uses a multi-shaft excavator, for example, by spouting a consolidation agent while rotating three excavation shafts with stirring blades.
This solidifying agent is stirred and mixed with earth and sand to form pillars that partially overlap each other, and the stress material is buried in the desired pillars. below,
The operation can be performed continuously to create an underground continuous wall, or the above operation can be performed at desired intervals, and then the above operation can be performed to fill in the spaces between the existing multiple consecutive columns to create an underground continuous wall. can be created.

発明が解決しようとする課題 しかしながら、上記従来例のうち、柱体を1本ずつ形成
する造成工法では、作業能率に劣り、また、1本の掘削
軸では一方向のみの回転であるので、掘削の際のバラン
スが悪く、掘削の際の芯がずれやすく、直線状の地中連
続壁を造成しにくい。また、隣同士の柱体は応力材を避
けるようにして互いに重複させる必要があり、重複量が
少なく、地中連続壁における重複部の肉厚が薄いため、
確実な上水効果が得られない場合が生じる。更に、H型
鋼からなる応力材を単独で使用しているため、所定の強
度を得るには、肉厚で大型のものを用いる必要があり、
高価となるばかりでなく、地中連続壁の肉厚が大きくな
る。
Problems to be Solved by the Invention However, among the above-mentioned conventional methods, the construction method in which columns are formed one by one is inferior in work efficiency, and since one excavation shaft rotates only in one direction, it is difficult to excavate. The balance during excavation is poor, the core is easily misaligned during excavation, and it is difficult to create a straight underground continuous wall. In addition, adjacent columns need to be overlapped with each other while avoiding stressed materials, and since the amount of overlap is small and the wall thickness of the overlapped part of the underground continuous wall is thin,
There may be cases where a reliable water supply effect cannot be obtained. Furthermore, since a stress material made of H-shaped steel is used alone, it is necessary to use a thick and large material in order to obtain the specified strength.
Not only is it expensive, but the thickness of the underground continuous wall becomes large.

一方、柱体を複数本づつ形成する造成工法では、作業能
率を向上させることができる利点を有するが、掘削軸は
奇数本を用いるため、回転方向を異にする掘削軸同士の
本数が異なり、掘削の際のバランスが悪<、掘削の際の
芯がずれやすく、直線状の地中連続壁を造成しにくい。
On the other hand, the construction method of forming multiple columns at a time has the advantage of improving work efficiency, but since an odd number of excavation shafts are used, the number of excavation shafts with different rotation directions is different. Poor balance during excavation, the core tends to shift during excavation, making it difficult to create a straight underground continuous wall.

また、各掘削軸上の攪拌用の翼は隣接する掘削軸を避け
る必要があるため、−度に形成する柱体同士の重複量が
少なく、しかも、既設の柱体に対する後続の柱体の重複
量も応力材を避けるために少なく、地中連続壁における
重複部の肉厚が狭いため、確実な止水効果が得られない
場合が生じる。更に、上記従来例と同様にH型鋼からな
る応力材を単独で使用しているため、所定の強度を得る
には、大型のものを用いる必要があり、高価となるばか
りでなく、地中連続壁の肉厚が厚くなる。
In addition, since the stirring blades on each excavation shaft need to avoid adjacent excavation shafts, the amount of overlap between the columns formed at the same time is small, and the overlap of subsequent columns with respect to the existing column is small. The amount is also small to avoid stressed materials, and the thickness of the overlapping part of the diaphragm wall is narrow, so a reliable water-stopping effect may not be obtained. Furthermore, as in the conventional example above, since a stress material made of H-shaped steel is used alone, it is necessary to use a large material in order to obtain the specified strength, which is not only expensive, but also requires continuous underground construction. The wall becomes thicker.

本発明は、上記のような従来技術の課題を解決するもの
であり、作業能率を向上させることができることは勿論
のこと、掘削の際のバランスを向上させて直線状の地中
連続壁を造成することができ、また、柱体同士の重複量
を多くし、全体がほぼ均等な肉厚の地中連続壁を造成す
ることができ、確実な止水効果を得ることができるよう
にした地中連続壁の造成工法を提供し、また、応力材の
強度を向上させると共に、応力を向上させ、所定の強度
を得るには、小型で肉薄の応力材を用いればよく、コス
トの低下を図ることができ、地中連続壁の肉厚を薄(す
ることができるようにした地中連続壁の造成工法を提供
することを目的とするものである。
The present invention solves the problems of the prior art as described above, and not only improves work efficiency, but also improves the balance during excavation and creates a straight underground continuous wall. In addition, by increasing the amount of overlap between the pillars, it is possible to create a continuous underground wall with an almost uniform thickness throughout, and it is possible to obtain a reliable water-stopping effect. Provides a method for constructing a medium continuous wall, and also improves the strength of stress materials, as well as improving stress and obtaining a specified strength by using small and thin stress materials, thereby reducing costs. The purpose of the present invention is to provide a construction method for an underground continuous wall that allows the wall thickness of the underground continuous wall to be reduced.

課題を解決するための手段 上記課題を解決するための本発明の技術的手段は、攪拌
用の翼を有する偶数本の掘削軸を互いに逆方向に回転さ
せながら固結剤を噴出させ、この固結剤を土砂と攪拌し
て互いに隣接する柱体を形成し、この動作を繰返して隣
接する柱体を列設し、この順次隣接する2個ずつの柱体
間にほぼ均等に跨って上記動作を順次行い、重複用の柱
体を形成して柱体を連続させると共に、所望の柱体に応
力材を埋設するようにしたものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to eject a solidifying agent while rotating an even number of excavation shafts having stirring blades in mutually opposite directions. Stir the binder with earth and sand to form columns adjacent to each other, repeat this operation to install adjacent columns in a row, and then repeat the above operation approximately equally between each two adjacent columns. This process is performed sequentially to form overlapping columns to make the columns continuous, and to embed the stress material in the desired column.

また、上記応力材が複数本の応力材本体と、これらの応
力材本体間を連結した連結板とからなるユニット状に構
成され、このユニット状の応力材を各組の重複用の柱体
に跨って埋設するようにしたものである。
Further, the above-mentioned stress material is configured in a unit shape consisting of a plurality of stress material bodies and a connecting plate connecting these stress material bodies, and this unit-shaped stress material is formed into each set of overlapping columns. It was designed to be buried astride.

そして、上記応力材本体が対向する長尺板の長平方向の
中央部を直角方向の長尺板で連結し、また、上記連続板
が上記応力材本体における対向する長尺板と直角方向の
長尺板との連結部間を斜め方向交叉するように連結し、
上記連結板の交叉部がほぼ重複用の柱体の中心軸を結ぶ
線上の中央部に位置するように埋設するのが好ましい。
The stress material main body connects the central portions in the longitudinal direction of the opposing elongated plates with a perpendicular elongate plate, and the continuous plate has a length in the perpendicular direction to the opposing elongate plates in the stress material main body. Connect the connection part with the shaku plate in a diagonal direction,
It is preferable to bury the connecting plate so that the intersecting part of the connecting plate is located approximately at the center of the line connecting the central axes of the overlapping columns.

また、上記連結板が応力材本体間を長手方向の複数箇所
で連結するのが好ましい。
Further, it is preferable that the connecting plate connects the stress material bodies at a plurality of locations in the longitudinal direction.

作用 上記技術的手段による作用は次のようになる。action The effects of the above technical means are as follows.

攪拌用の翼を有する偶数本の掘削軸を互いに逆方向に回
転させながら固結剤を噴出させるので、掘削の際のバラ
ンスを向上させることができる。また、隣接する柱体を
列設した後、この順次隣接する2個づつの柱体間にほぼ
均等に跨って上記と同様にして重複用の柱体を形成して
柱体を連続させ、しかも、重複用の柱体同士は重複させ
ないので、埋設した応力材の影響を受けるおそれがなく
、柱体同士の重複量を多くし、重複部の肉厚を厚(して
全体がほぼ均等な肉厚の地中連続壁を造成することがで
きる。
Since the solidifying agent is ejected while rotating an even number of excavation shafts having stirring blades in opposite directions, the balance during excavation can be improved. Moreover, after arranging the adjacent columns, overlapping columns are formed in the same manner as above to almost evenly straddle between each two adjacent columns, and the columns are continuous. Since the overlapping columns do not overlap each other, there is no risk of being affected by buried stressed materials, and the overlapping amount of the columns is increased and the wall thickness of the overlapping part is thickened (so that the entire wall is almost uniform). It is possible to create thick underground continuous walls.

また、応力材は複数本の応力材本体間を連結板により連
結し、ユニット化して使用することにより、その強度を
向上させると共に、応力を向上させ、所定の強度を得る
には、従来の応力材に比べて小型で閃薄のものを用いる
ことができる。
In addition, the strength of stressed materials can be improved by connecting multiple stressed material bodies with a connecting plate and using them as a unit. It is possible to use one that is smaller and thinner than wood.

実施例 以下、本実施例について図面を参照しながら説明する。Example The present embodiment will be described below with reference to the drawings.

まず、本発明の造成工法に用いる造成装置にについて説
明する。第1図Aは造成装置の概略側面図、第1図Bは
その要部概略正面図、第2図Aは第1図Bの要部拡大図
、第2図Bはその底面図、第2図Cは第2図Aのl1c
−IIc矢視断面図である。
First, the construction equipment used in the construction method of the present invention will be explained. Figure 1A is a schematic side view of the creation device, Figure 1B is a schematic front view of its main parts, Figure 2A is an enlarged view of the main parts of Figure 1B, Figure 2B is its bottom view, Figure C is l1c of Figure 2 A.
-IIc is a sectional view taken along the arrow.

第1図A、Bおよび第2図AないしCに示すように走行
体1上に旋回体2が旋回可能に搭載されている。旋回体
2の前側部には垂直方向のリーダ3が装着され、リーダ
3はバックステー4により支持されている。リーダ3の
前側部に垂直方向に沿ってガイド5が設けられ、ガイド
5には駆動装置6が上下動可能に支持され、駆動装置6
はワイヤ7により吊支されている。駆動装置6の下側に
はこの駆動装置6に連係された多軸装置8がガイド5に
上下動可能に支持され、多軸装置8に偶数本(図示例で
は2本)の中空の掘削軸9が互いに逆方向に回転し得る
ように並列に下垂されて支持され、各掘削軸9の下端に
は固結剤等の噴出口10が形成されている。各掘削軸9
には地盤を掘削して攪拌するために螺旋状の揺動翼11
と板状の攪拌X12が垂直方向で交互に取付けられてい
る。すなわち、隣接する螺旋状の揺動翼11同士が互い
に逆向きに旋回し、隣接する攪拌翼12同士が互いに逆
向きに傾斜し、隣接する螺旋状の揺動翼11同士が交互
に旋回数、すなわち長さを少し異にし、隣接する攪拌翼
12同士が互いに垂直方向でややずれるように取付けら
れている。各掘削軸9の先端にはオーがヘッド13が取
付けられている。そして、隣接する揺動翼11同士、攪
拌翼12同士およびオーガヘッド13同士はその外側縁
の回転軌跡が平面において重ならず、わずかに離れるよ
うに設定されている。
As shown in FIGS. 1A and B and FIGS. 2A to C, a rotating body 2 is mounted on a traveling body 1 so as to be able to rotate. A vertical leader 3 is attached to the front side of the revolving structure 2, and the leader 3 is supported by a backstay 4. A guide 5 is provided along the vertical direction on the front side of the leader 3, and a drive device 6 is supported on the guide 5 so as to be movable up and down.
is suspended by a wire 7. A multi-axis device 8 linked to the drive device 6 is supported on the lower side of the drive device 6 so as to be movable up and down on the guide 5, and the multi-axis device 8 has an even number (two in the illustrated example) of hollow excavation shafts. The excavating shafts 9 are suspended and supported in parallel so that they can rotate in opposite directions, and each excavating shaft 9 has a spout 10 formed at its lower end for solidifying agent or the like. Each drilling axis 9
A spiral rocking blade 11 is used to excavate and stir the ground.
and plate-shaped stirrers X12 are installed alternately in the vertical direction. That is, the adjacent spiral rocking blades 11 rotate in opposite directions, the adjacent stirring blades 12 tilt in opposite directions, and the adjacent spiral rocking blades 11 alternately rotate the number of turns, In other words, the lengths of the stirring blades 12 are slightly different, and adjacent stirring blades 12 are installed so as to be slightly offset from each other in the vertical direction. An O-head 13 is attached to the tip of each excavation shaft 9. Adjacent rocking blades 11, stirring blades 12, and auger heads 13 are set so that the rotation loci of their outer edges do not overlap in a plane and are slightly separated from each other.

隣接する掘削軸9同士はその垂直方向の複数箇所で連結
部材14の軸受部15に回転可能に挿通されて掘削軸9
の間隔が一定に保持されるようになっている。軸受部1
5は板状部16により連結されて後述のように地盤を掘
削する際の邪魔にならないようになっている。軸受部1
5の外方は板状の突出部17が上記オーガヘッド13等
の外側縁の回転軌跡内に納まる長さでなるべ(長くなる
ように形成され、後述のように地盤を掘削する際のねじ
れ防止に利用される。
Adjacent excavation shafts 9 are rotatably inserted into the bearing portions 15 of the connecting member 14 at multiple locations in the vertical direction, and the excavation shafts 9
The spacing is kept constant. Bearing part 1
5 are connected by a plate-shaped portion 16 so as not to get in the way when excavating the ground as described later. Bearing part 1
The plate-shaped protrusion 17 is formed on the outside of the auger head 13 to fit within the rotation locus of the outer edge of the auger head 13, etc. Used for prevention.

リーダ3の下端部には振止め装置18が取付けられ、こ
の振止め装置18により各掘削軸9が回転可能に、かつ
上下動可能に支持されている。
A steadying device 18 is attached to the lower end of the leader 3, and each excavation shaft 9 is supported by this steadying device 18 so as to be rotatable and movable up and down.

次に応力材(芯材)について説明する。Next, the stress material (core material) will be explained.

第3図および第4図は応力材の一例を示し、第3図は斜
視図、第4図は拡大平面図である。
3 and 4 show an example of the stress material, with FIG. 3 being a perspective view and FIG. 4 being an enlarged plan view.

第3図および第4図に示すように応力材19は鋼製であ
り、複数本(図示例では2本)の応力材本体20と、こ
れら応力材本体20の間を連結する連結板21とからユ
ニット状に構成されている。応力材本体20は対向する
長尺板22の長手方向中央部が直角方向の長尺板23で
連結されて!型、若しくはH型に構成され、これら応力
材本体20における対向する長尺板22と直角方向の長
尺板23との連結部間が長手方向の複数箇所で連結板2
1により斜め方向に交叉するように溶接により連結され
ている。この連結板21は予め応力材本体20に溶接し
て施工現場へ搬入してもよく、または施工現場で溶接し
てもよい。
As shown in FIGS. 3 and 4, the stress material 19 is made of steel, and includes a plurality of (two in the illustrated example) stress material bodies 20 and a connecting plate 21 that connects these stress material bodies 20. It is constructed in a unit form. The stress material main body 20 has opposing elongated plates 22 whose central portions in the longitudinal direction are connected by an elongated plate 23 in a perpendicular direction! or H-shape, and the connecting portions between the opposing elongated plates 22 and the elongated plates 23 in the perpendicular direction in the stress material main body 20 are connected at multiple points in the longitudinal direction.
1, they are connected by welding so as to intersect in a diagonal direction. This connecting plate 21 may be welded to the stress material main body 20 in advance and transported to the construction site, or may be welded at the construction site.

第5図は応力材の他の例を示す拡大平面図である。本例
においては各連結板21の端部の折曲部21aが長尺板
23における長尺板22側寄りの連結部でボルト24、
ナツト25により連結されたものであり、その他の構成
は上記実施例と同様である。
FIG. 5 is an enlarged plan view showing another example of the stress material. In this example, the bent portion 21a at the end of each connecting plate 21 is a connecting portion of the long plate 23 closer to the long plate 22, and the bolt 24,
They are connected by a nut 25, and the other structure is the same as that of the above embodiment.

なお、上記第3図、第4図または第5図に示す応力材1
9は上記形状に限定されるものではなく、例えば1本の
連結板を長尺板22.23間に直線状に連結し、または
2本の連結板を長尺板22.23間に平行に連結するな
ど、種々設計変更することができる。
Note that the stress material 1 shown in FIG. 3, FIG. 4, or FIG. 5 above
9 is not limited to the above shape, for example, one connecting plate may be connected linearly between the long plates 22 and 23, or two connecting plates may be connected in parallel between the long plates 22 and 23. Various design changes can be made, such as by connecting them.

次に、上記造成装置および応力材19を用いた本発明の
地中連続壁の造成工法について説明する。
Next, a method for constructing an underground continuous wall according to the present invention using the above-mentioned construction device and stress material 19 will be explained.

第6図AないしCは本発明の第1の実施例における地中
連続壁の造成工法を示す説明用平面図である。
FIGS. 6A to 6C are explanatory plan views showing a construction method for an underground continuous wall in the first embodiment of the present invention.

第1図および第2図において、駆動装置6を作動させる
と共に、ガイド5に沿って下降させながら、多軸装e8
により2本の掘削軸9、移動′x11、攪拌X12およ
びオーガヘッド13を互いに逆方向に回転させ、地面を
掘削する。
1 and 2, while operating the drive device 6 and lowering the multi-axis device e8 along the guide 5,
The two excavation shafts 9, the movement 'x11, the stirring X12, and the auger head 13 are rotated in opposite directions to excavate the ground.

このとき、固い地盤では掘削軸9の噴出口10からベン
トナイト等を噴出させることにより掘削を容易に行うこ
とができる。そして、掘削に伴い、掘削土砂を螺旋状の
移動翼11により上方へ移動させ、ここで、攪拌翼12
により掘削土砂を均一に攪拌することができる。この掘
削に際し、上記のように2本の掘削軸9、移動翼11、
攪拌翼12およびオーガヘッド13を互いに逆方向に回
転させるので、バランスを向上させて芯ずれを防止する
ことができる。所定の深さまで掘削すると、掘削軸9の
噴出口10からベントナイト等に替えて固結剤を噴出さ
せ、掘削軸9を回転と共に、上下動させながら引き上げ
る。この間、掘削土砂は螺旋状の移動翼11により固結
剤と共に上方へ移動され、攪拌翼12により攪拌混合さ
れる。このようにして第6図Aに示すように固結剤を掘
削土砂と攪拌混合した2個の柱体26a、27aを隣接
して形成する。次に、上記動作を所定間隔毎に操返して
2個ずつの柱体26a、27aを形成する。
At this time, in hard ground, excavation can be easily performed by spouting bentonite or the like from the spout 10 of the excavation shaft 9. Then, along with the excavation, the excavated soil is moved upward by the spiral moving blades 11, and here, the stirring blades 12
The excavated earth and sand can be stirred uniformly. During this excavation, as mentioned above, the two excavation shafts 9, the movable blades 11,
Since the stirring blades 12 and the auger head 13 are rotated in opposite directions, balance can be improved and misalignment can be prevented. When excavating to a predetermined depth, a solidifying agent instead of bentonite or the like is ejected from the spout 10 of the excavation shaft 9, and the excavation shaft 9 is pulled up while rotating and moving up and down. During this time, the excavated earth and sand are moved upward together with the solidifying agent by the spiral moving blades 11, and are stirred and mixed by the stirring blades 12. In this way, as shown in FIG. 6A, two columns 26a and 27a are formed adjacent to each other, in which the solidifying agent is stirred and mixed with the excavated earth and sand. Next, the above operation is repeated at predetermined intervals to form two columns 26a and 27a.

このようにして第1回目の柱体26a、27aの形成作
業工1、工2、工3、・・・を終了すると、第6図Bに
示すように上記と同様の動作により第1回目の既設柱体
26a、27a間を埋めるように第2回目の柱体26b
、27bの形成作業Ill、 II2、■3、・・・を
行う。このようにして隣接する柱体26a、27a、2
6b、27b1・・・を列設する。次に、第6図Cに示
すように順次隣接する2個の柱体26a、27a間と2
72.26b間にほぼ均等に跨って上記動作を行い、重
複用の柱体26c、27cを形成し、形成後、重複用の
柱体26c、27cに上記第3図および第4図に示す応
力材19を埋設する。このとき、重複用の柱体26c、
27cの中央部に応力材本体2oを埋設するが、連結板
21はその中央部の交叉部がほぼ重複用の柱体26c、
27cの中心軸を結ぶ線上の中央部に位置するように埋
設する。そして、重複用の柱体26c、27cの中心軸
を結ぶ線上の中央部は柱体26c、27cの間隔が最も
狭く、はとんど接近させているので、掘削の際に崩壊し
易く、容易に埋設することができる。この重複用の柱体
26c、27cの形成と応力材19の埋設作業は、上記
と同様に■1、■2、■3、・・・のように所定間隔毎
に順次行った後、これらの既設の重複用の柱体26c、
27c間をIVt。
After completing the first forming steps 1, 2, 3, etc. of the column bodies 26a and 27a in this way, the same operation as above is performed as shown in FIG. 6B. A second column 26b is installed to fill the space between the existing columns 26a and 27a.
, 27b are formed by forming operations Ill, II2, ■3, . In this way, the adjacent columns 26a, 27a, 2
6b, 27b1... are arranged in a row. Next, as shown in FIG. 6C, between the two adjacent columns 26a and 27a,
72. Perform the above operation almost evenly across the space between 26b to form the overlapping columns 26c and 27c. After forming the overlapping columns 26c and 27c, the stresses shown in FIGS. 3 and 4 are applied to the overlapping columns 26c and 27c. Bury material 19. At this time, the duplication column 26c,
The stress material main body 2o is buried in the center of the connecting plate 27c, and the connecting plate 21 has a pillar body 26c whose intersection part at the center almost overlaps.
27c so that it is located in the center on the line connecting the central axes of the 27c. In the central part on the line connecting the central axes of the overlapping columns 26c and 27c, the distance between the columns 26c and 27c is the narrowest, and because they are brought close to each other, they are easy to collapse during excavation. It can be buried in The formation of the overlapping columns 26c, 27c and the embedding of the stress material 19 are performed sequentially at predetermined intervals like (1), (2), (3), etc. in the same way as above, and then these Existing duplication column 26c,
IVt between 27c.

IVz、・・・と埋めるように行う。したがって、柱体
26.27同士をほぼ中心軸付近まで重複させて重複量
を多くし、この重複部の肉厚を厚くし、はぼ等しい肉厚
の地中連続壁を造成することができ、止水効果を向上さ
せることができる。そして、上記のように応力材本体2
0を連結板21により連結したユニット状の応力材19
を用いることにより隣接の柱体形成時の土庄等の影響を
受けに<<、安定した埋設状態に維持することができる
。また、強度にも優れているので、所定の強度を得るに
は、従来例に比べて肉薄の材料を用、いることができ、
または小型化を図ることができて地中連続壁の肉厚を薄
く形成することができる。
Fill it in with IVz,... Therefore, it is possible to increase the amount of overlap by overlapping the columns 26 and 27 almost to the vicinity of the central axis, and increase the thickness of this overlapping part, thereby creating an underground continuous wall with approximately the same thickness. The water stopping effect can be improved. Then, as described above, the stress material body 2
0 connected by a connecting plate 21
By using this method, it is possible to maintain a stable buried condition without being affected by the soil ridges etc. during the formation of adjacent pillars. It also has excellent strength, so in order to obtain the desired strength, thinner materials can be used compared to conventional examples.
Alternatively, it is possible to achieve miniaturization, and the thickness of the underground continuous wall can be formed thin.

次に本発明の造成工法の第2の実施例を説明する。Next, a second embodiment of the construction method of the present invention will be described.

第7図は本発明の造成工法の第2の実施例を示す説明用
平面図である。
FIG. 7 is an explanatory plan view showing a second embodiment of the construction method of the present invention.

本実施例においては、重複用の柱体26c127cにお
ける一本置き、すなわち、各柱体26cに従来例と同様
にI型W4(若しくはH型w4)の単体からなる応力材
28を埋設するようにしたものであり、その他について
は上記第1の実施例と同様である。
In this embodiment, stress material 28 made of a single I-type W4 (or H-type W4) is buried in every other column 26c127c for duplication, that is, in each column 26c, as in the conventional example. The other aspects are the same as those of the first embodiment.

次に本発明の造成工法の第3の実施例を説明する。Next, a third embodiment of the construction method of the present invention will be described.

第8図は本発明の造成工法の第3の実施例を示す説明用
平面図である。
FIG. 8 is an explanatory plan view showing a third embodiment of the construction method of the present invention.

本実施例においては、重複用の26c、27Cの一本置
きに2本ずつ従来例と同様に!型鋼(若しくはH型′i
A)の単体からなる応力材28を埋設するようにしたも
のであり、その他については上記第1の実施例と同様で
ある。
In this embodiment, every other 26c and 27C is used for duplication, and 2 pieces are used in the same way as in the conventional example! Type steel (or H type'i
In this embodiment, the stress material 28 consisting of a single element of A) is buried, and the other features are the same as in the first embodiment.

なお、上記実施例に用いた造成装置では、攪拌用の翼と
して螺旋状の揺動翼11と板状の攪拌112を組合わせ
て用いた場合について説明したが、これに限定されるも
のではなく、対象地盤により螺旋状の揺動翼11のみを
連続して設け、または板状の攪拌X12のみを設けても
よい。また、上記実施例では、柱体26.27を2木ず
つ形成する場合について説明したが、それ以上の偶数本
づつ形成するようにしてもよく、要するに互いに回転方
向を異にする掘削軸9を両側に対称的に備えて掘削等の
際のバランスを向上させることができるようにすればよ
い。このとき、第3図、第4図に示す応力材19を用い
る場合には、その本数に合わせて応力材本体2oを増や
して連結板21により連結すればよい。また、上記実施
例では、2本づつの柱体26.27を所定間隔毎に形成
し、その後、既設の柱体間を埋めるように柱体を形成し
、形成しつつある2本の柱体の両側の硬度をほぼ等しく
するように配慮しているが、隣接する柱体の列設作業お
よび重複用柱体の形成作業のいずれにおいてもその作業
における柱体同士は重複部させないので、上記順序に限
定されるものではなく、連続的等、種々の形成順序を選
択することができる。
In addition, in the creation apparatus used in the above embodiment, a case has been described in which a combination of spiral rocking blades 11 and plate-shaped stirring blades 112 are used as stirring blades, but the invention is not limited to this. Depending on the target ground, only the spiral swing blades 11 may be continuously provided, or only the plate-shaped stirring blades X12 may be provided. Further, in the above embodiment, the case where the columns 26 and 27 are formed every two columns has been explained, but an even number of columns 26 and 27 may be formed. It is sufficient to provide them symmetrically on both sides to improve balance during excavation, etc. At this time, when using the stress materials 19 shown in FIGS. 3 and 4, the number of stress material bodies 2o may be increased in accordance with the number of stress materials 19 and the stress materials 2o may be connected by the connection plate 21. Further, in the above embodiment, two pillars 26 and 27 are formed at predetermined intervals, and then the pillars are formed to fill in the spaces between the existing pillars, and the two pillars 26 and 27 that are being formed are Although consideration has been given to making the hardness on both sides approximately equal, in both the work of arranging adjacent pillars and the work of forming overlapping pillars, the columns in that work do not overlap each other, so the above order is correct. The formation order is not limited to, and various formation orders can be selected, such as sequentially.

発明の効果 以上述べたように本発明によれば、柱体を偶数本ずつ形
成するので、作業能率を向上させることができる。また
、攪拌用の翼を有する偶数本の掘削軸を互いに逆方向に
回転させながら固結剤を噴出させるので、掘削の際のバ
ランスを向上させることができる。また、隣接する柱体
を列設した後、この順次隣接する2傑づつの柱体間にほ
ぼ均等に跨って上記と同様にして重複用の柱体を形成し
て柱体を連続させ、しかも、重複用の柱体同士は重複さ
せないので、埋設した応力材の形容を受けるおそれがな
(、柱体同士の重複量を多くし、重複部の肉厚を厚くし
て全体がほぼ均等な肉厚の地中連続壁を造成することが
でき、確実な止水効果を得ることができる。
Effects of the Invention As described above, according to the present invention, since an even number of columns are formed, work efficiency can be improved. In addition, since the solidifying agent is jetted out while rotating an even number of excavation shafts having stirring blades in mutually opposite directions, the balance during excavation can be improved. Moreover, after arranging the adjacent columns, overlapping columns are formed in the same manner as above, spanning almost evenly between each two adjacent columns in order, so that the columns are continuous. , Since the overlapping columns do not overlap each other, there is no risk of being influenced by the buried stress material. It is possible to create a thick underground continuous wall and obtain a reliable water-stopping effect.

また、応力材は複数本の応力材本体間を連結板により連
結し、ユニット化して使用することにより、その強度を
向上させると共に、応力を向上させ、所定の強度を得る
には、従来の応力材に比べて小型で肉薄のものを用いる
ことができ、したがって、コストの低下を図ることがで
き、地中連続壁の肉厚を小さくすることができる。
In addition, the strength of stressed materials can be improved by connecting multiple stressed material bodies with a connecting plate and using them as a unit. It is possible to use a smaller size and thinner wall compared to other materials, so it is possible to reduce costs and reduce the thickness of the underground continuous wall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bおよび第2図AないしCは本発明の造成工
法に用いる造成装置を示し、第1図Aは造成装置の概略
側面図、第1図Bはその要部概略正面図、第2図Aは第
1図Bの要部拡大図、第2図Bはその底面閃、第2図C
は第2図Aのl1c−IIc矢視断面図、第3図Bおよ
び第4図は本発明の造成工法に用いる応力材の一例を示
し、第3図は斜視図、第4図は拡大平面図、第5図は本
発明の造成工法に用いる応力材材の他の例を示す拡大平
面図、第6図AないしCは本発明の第1の実施例におけ
る地中連続壁の造成工法を示す説明用平面図、第7図、
第8図はそれぞれ本発明の第2、第3の実施例における
地中連続壁の造成工法を示す説明用平面図である。 9・・・掘削軸、11・・・移動具、12・・・攪拌翼
、13・・・オーガヘッド、14・・・連結部材、19
・・・応力材、20・・・応力材本体、21・・・連結
板、26.27・・・柱体、28・・・応力材。 第1図A 第1図B 第3図
Figures 1A and B and Figures 2A to C show the construction equipment used in the construction method of the present invention, Figure 1A is a schematic side view of the construction equipment, Figure 1B is a schematic front view of the main parts, Figure 2A is an enlarged view of the main part of Figure 1B, Figure 2B is its bottom flash, Figure 2C
is a sectional view taken along the line l1c-IIc in Fig. 2A, Figs. 3B and 4 show examples of stress materials used in the construction method of the present invention, Fig. 3 is a perspective view, and Fig. 4 is an enlarged plan view. Figures 5 and 5 are enlarged plan views showing other examples of stress materials used in the construction method of the present invention, and Figures 6A to C show the construction method of underground continuous walls in the first embodiment of the present invention. An explanatory plan view shown in FIG. 7,
FIG. 8 is an explanatory plan view showing the construction method of the underground continuous wall in the second and third embodiments of the present invention, respectively. 9... Excavation shaft, 11... Moving tool, 12... Stirring blade, 13... Auger head, 14... Connecting member, 19
... Stressed material, 20... Stressed material body, 21... Connecting plate, 26.27... Column body, 28... Stressed material. Figure 1A Figure 1B Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)攪拌用の翼を有する偶数本の掘削軸を互いに逆方
向に回転させながら固結剤を噴出させ、この固結剤を土
砂と攪拌混合して互いに隣接する柱体を形成し、この動
作を繰返して隣接する柱体を列設し、この順次隣接する
2個ずつの柱体間にほぼ均等に跨って上記動作を順次行
い、重複用の柱体を形成して柱体を連続させると共に、
所望の柱体に応力材を埋設することを特徴とする地中連
続壁の造成工法。
(1) An even number of excavation shafts with stirring blades are rotated in opposite directions to eject a consolidation agent, and the consolidation agent is stirred and mixed with earth and sand to form adjacent pillars. Repeat the operation to arrange adjacent columns in a row, and then perform the above operation sequentially across each two adjacent columns almost evenly to form an overlapping column and connect the columns. With,
A construction method for underground continuous walls that is characterized by burying stressed materials in desired columns.
(2)応力材が複数本の応力材本体と、これらの応力材
本体間を連結した連結板とからなるユニット状に構成さ
れ、このユニット状の応力材を各組の重複用の柱体に跨
って埋設する請求項1記載の地中連続壁の造成工法。
(2) The stress material is constructed in a unit shape consisting of a plurality of stress material bodies and a connecting plate connecting these stress material bodies, and this unit-shaped stress material is formed into each set of overlapping columns. 2. The method for constructing an underground continuous wall according to claim 1, wherein the underground continuous wall is buried across the wall.
(3)応力材本体が対向する長尺板の長手方向中央部を
直角方向の長尺板で連結した請求項2記載の地中連続壁
の造成工法。
(3) The method for constructing an underground continuous wall according to claim 2, wherein the central portions in the longitudinal direction of the long plates facing each other with the stressed material bodies are connected by a long plate in a perpendicular direction.
(4)連結板が応力材本体における対向する長尺板と直
角方向の長尺板との連結部間を斜め方向に交叉するよう
に連結し、連結板の交叉部がほぼ重複用の柱体の中心軸
を結ぶ線上の中央部に位置するように埋設する請求項2
または3記載の地中連続壁の造成工法。
(4) A column in which the connecting plate connects the opposing long plates in the stress material main body so as to diagonally intersect between the connecting parts of the opposing long plates and the long plates in the perpendicular direction, and the intersecting parts of the connecting plates almost overlap each other. Claim 2: The burial site is located at the center of the line connecting the central axes of the
Or the method for constructing an underground continuous wall as described in 3.
(5)連結板が応力材本体間を長手方向の複数箇所で連
結してある請求項2ないし4のいずれかに記載の地中連
続壁の造成工法。
(5) The method for constructing an underground continuous wall according to any one of claims 2 to 4, wherein the connecting plate connects the stressed material bodies at a plurality of locations in the longitudinal direction.
JP10578189A 1989-04-27 1989-04-27 Constructing underground continuous wall Granted JPH02285106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10578189A JPH02285106A (en) 1989-04-27 1989-04-27 Constructing underground continuous wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10578189A JPH02285106A (en) 1989-04-27 1989-04-27 Constructing underground continuous wall

Publications (2)

Publication Number Publication Date
JPH02285106A true JPH02285106A (en) 1990-11-22
JPH0448893B2 JPH0448893B2 (en) 1992-08-10

Family

ID=14416692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10578189A Granted JPH02285106A (en) 1989-04-27 1989-04-27 Constructing underground continuous wall

Country Status (1)

Country Link
JP (1) JPH02285106A (en)

Also Published As

Publication number Publication date
JPH0448893B2 (en) 1992-08-10

Similar Documents

Publication Publication Date Title
JPH07113214B2 (en) Excavation device for underground wall and construction method using the device
CN1333138C (en) Underground continuous wall construction method and excavating machine for underground continuous wall
US6925736B2 (en) In situ mixing apparatus and methods for creating underground wall
JP4550792B2 (en) Construction method of underground wall
JPH02285106A (en) Constructing underground continuous wall
JP6729902B1 (en) Construction method of soil cement continuous wall
JP2014177827A (en) Core material and soil cement continuous wall construction method using the same
JP2819025B2 (en) Soft ground improvement method
JPH09119131A (en) Construction method of column row type underground continuous wall and guide plate structure of multishaft auger machine used therefor
JP3644137B2 (en) Method for creating liquefaction resistant ground
JP3584416B2 (en) Tunnel and its construction method
JP3224435B2 (en) Construction method of underground continuous wall
JP2005307675A (en) Ground improving construction method and ground improving machine
JP2929981B2 (en) Excavation and stirrer for ground
JPH06193045A (en) Ground improvement method by multishaft type forced stirring device
JPH10306437A (en) Widened wing running type ground improving equipment and ground improving method using the equipment
JP2943675B2 (en) Construction method of retaining wall
JP2020143467A (en) Construction method of earth retaining wall
JPH0734451A (en) Structure of underground wall
JPH0347366B2 (en)
JPH10273918A (en) Earthquake resistant bearing pile
JPH0712450Y2 (en) Simple excavator for excavation of hard holes for retaining walls or construction of walls such as retaining walls
JPS59145821A (en) Method and apparatus for construction of pillar-row pile
JP2004019162A (en) Underground continuous wall construction device
JP3058135U (en) Continuous underground wall construction equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees