JPH02284985A - Cold storing material and method for storing cold - Google Patents
Cold storing material and method for storing coldInfo
- Publication number
- JPH02284985A JPH02284985A JP1106844A JP10684489A JPH02284985A JP H02284985 A JPH02284985 A JP H02284985A JP 1106844 A JP1106844 A JP 1106844A JP 10684489 A JP10684489 A JP 10684489A JP H02284985 A JPH02284985 A JP H02284985A
- Authority
- JP
- Japan
- Prior art keywords
- cold storage
- melting point
- oxygen
- containing organic
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 35
- 239000000463 material Substances 0.000 title abstract description 15
- 238000003860 storage Methods 0.000 claims abstract description 70
- 238000002844 melting Methods 0.000 claims abstract description 67
- 230000008018 melting Effects 0.000 claims abstract description 65
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 47
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 47
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims abstract description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000003350 kerosene Substances 0.000 claims abstract description 3
- 239000003208 petroleum Substances 0.000 claims abstract description 3
- 239000011232 storage material Substances 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 23
- 239000007787 solid Substances 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 239000002826 coolant Substances 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 32
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 18
- 239000002002 slurry Substances 0.000 abstract description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 abstract description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 abstract description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 13
- 230000004927 fusion Effects 0.000 description 11
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 8
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 8
- 239000003949 liquefied natural gas Substances 0.000 description 8
- 239000003507 refrigerant Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000005338 heat storage Methods 0.000 description 6
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- RQVVKAPRJIKZBK-UHFFFAOYSA-N 2-methylbutane;propan-2-one Chemical compound CC(C)=O.CCC(C)C RQVVKAPRJIKZBK-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229950005499 carbon tetrachloride Drugs 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000004817 pentamethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- -1 propylene-1 Chemical compound 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は一50℃以下の冷熱を蓄熱するための蓄冷材、
蓄冷装置、蓄冷方法並びにこれらを応用する蓄冷冷却方
法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a cold storage material for storing cold heat of 150°C or less,
The present invention relates to a cold storage device, a cold storage method, and a cold storage cooling method that applies these devices.
0℃附近での蓄熱材としては水(氷)あるいはこれに有
機化合物あるいは塩類を添加したもの、有機化合物ある
いは無機塩類の水和物など多数知られており、主として
建築物の冷暖房への応用が図られている。There are many known heat storage materials at temperatures around 0°C, including water (ice), organic compounds or salts added to it, and hydrates of organic compounds or inorganic salts. It is planned.
O′C未満の蓄冷法としては空気液化分離装置などに用
いられている塔状の容器に金属光てん物を詰めた蓄熱器
を用いる方法がある。しかしこの方法は蓄熱器に用いら
れている金属充填物の比熱が小さいために蓄冷量が少い
ことが欠点となっている。As a method for storing heat below O'C, there is a method using a heat storage device, which is a tower-shaped container filled with metal fibers, which is used in air liquefaction separation equipment and the like. However, this method has a drawback in that the amount of cold storage is small because the specific heat of the metal filling used in the heat storage device is small.
特許公開公報昭62−62192号にはO′C未満で凝
結するプロセス冷媒の固−液温熱を蓄熱する蓄冷方法が
記載されている。この方法においてプロセス冷媒として
は■ハロゲン化炭化水素、■炭素数2〜10のアルコー
ル、ケトン、エーテル、■無機塩類の水溶液、■低級ア
ルコール、エーテル、あるいはアセトン水溶液が示され
ている。しかし上記■、■においては冷熱は氷の融解熱
として蓄冷されるために一50℃以下のごとき極低温に
おいては利用できない。また上記■は一般に融解潜熱が
小さいうえに長期安定性、人畜に対する毒性および地球
環境の汚染の観点からも蓄冷材としては好ましくない。Japanese Patent Publication No. 62-62192 describes a cold storage method for storing the solid-liquid heat of a process refrigerant that condenses below O'C. In this method, the process refrigerants include (1) halogenated hydrocarbons, (2) alcohols, ketones, and ethers having 2 to 10 carbon atoms, (2) aqueous solutions of inorganic salts, and (2) aqueous solutions of lower alcohols, ethers, or acetone. However, in the cases (1) and (2) above, the cold heat is stored as heat of melting ice, so it cannot be used at extremely low temperatures such as 150°C or lower. In addition, the above-mentioned material (2) generally has a low latent heat of fusion and is not preferred as a cold storage material from the viewpoints of long-term stability, toxicity to humans and animals, and pollution of the global environment.
上記■は比較的好ましい蓄冷材と思われるが、発明の詳
細な説明によると融点が−31,2〜−6,5”Cの高
融点のアルコール、ケトン、エーテルが例示されている
に過ぎず、−50℃以下の極低温での蓄冷材としての利
用に関しては何も示されていない。The above item (■) seems to be a relatively preferable cold storage material, but according to the detailed description of the invention, only alcohols, ketones, and ethers with high melting points of -31.2 to -6.5"C are exemplified. , nothing has been disclosed regarding its use as a cold storage material at extremely low temperatures below -50°C.
特許公開公報昭63−202687号には連続相として
の油と、核油中の固−層変化をともなう分散相と、乳化
剤および/または乳化安定剤からなる液−液分散系から
なる蓄熱剤が記載されており、LNG(液化天然ガス)
沸点の約−160℃の低温から室温以上での巾広い温度
範囲での利用が示されている。この蓄熱剤による冷熱の
蓄冷においては蓄熱剤をスラリー状態で輸送・貯蔵する
ことが可能であり、大規模蓄冷に好適であるが、乳化剤
および/または乳化安定剤の使用に伴うコストの上昇お
よび一50℃以下での取扱上の難しさを回避することが
できない。Patent Publication No. 63-202687 describes a heat storage agent consisting of a liquid-liquid dispersion system consisting of oil as a continuous phase, a dispersed phase with a solid phase change in kernel oil, and an emulsifier and/or an emulsion stabilizer. LNG (liquefied natural gas)
It has been shown that it can be used in a wide temperature range from the boiling point of about -160°C to room temperature or higher. When storing cold heat using a heat storage agent, it is possible to transport and store the heat storage agent in a slurry state, and it is suitable for large-scale cold storage. However, the use of emulsifiers and/or emulsion stabilizers increases costs and Difficulties in handling at temperatures below 50°C cannot be avoided.
従来の蓄冷材は比熱の小さい金属を用いるために蓄冷容
量がきわめて小さいか、高融点化合物の融解潜熱を用い
るために一50℃以下の極低温において利用することが
できない。また固液分散系の場合においては乳化剤およ
び/または乳化安定剤を使用するためにコストが高くな
り、かつ−50℃以下で安定な固液分散系を形成するこ
とが困難であった。Conventional cold storage materials have extremely small cold storage capacity because they use metals with low specific heat, or cannot be used at extremely low temperatures below -50° C. because they use the latent heat of fusion of high melting point compounds. Furthermore, in the case of a solid-liquid dispersion system, the use of an emulsifier and/or an emulsion stabilizer increases costs, and it is difficult to form a solid-liquid dispersion system that is stable at -50°C or lower.
現在、−50℃以下、約−190℃までの極低温域で安
全かつ安価に利用することの可能な、蓄冷密度が太き(
、かつ蓄冷容量の大きい蓄冷材、蓄冷装置、蓄冷方法あ
るいは蓄冷冷却法に対する需要が年々大きくなっている
。これらの需要の例としては一50℃以下の冷却が必要
とされる極低温倉庫、真空排気装置、各種超伝導応用機
器などの冷熱源あるいは冷凍機のバックアップ用冷熱源
が挙げられる。さらに大規模な需要としては、LNGの
需要増加に伴いLNGの冷熱の蓄冷および蓄冷材または
蓄冷装置を用いた輸送などがある。At present, the cold storage density is large (
Demand for cold storage materials, cold storage devices, cold storage methods, or cold storage cooling methods that have a large cold storage capacity is increasing year by year. Examples of these demands include cold sources for cryogenic warehouses that require cooling below -50° C., vacuum pumping equipment, various superconducting applied equipment, and backup cold sources for refrigerators. Further large-scale demand includes the storage of LNG's cold heat and its transportation using cold storage materials or cold storage devices, as the demand for LNG increases.
本発明は、上記のようにその開発等が要望されている特
に−50〜−190℃の極低温域での蓄冷材、蓄冷装置
、蓄冷方法及び蓄冷冷却法を提供することを目的とする
。An object of the present invention is to provide a cold storage material, a cold storage device, a cold storage method, and a cold storage cooling method particularly in the extremely low temperature range of -50 to -190°C, the development of which is desired as described above.
本発明によれば、各々の融点が一50℃以下であり、炭
素数が3〜12の低級炭化水素と炭素数が1〜6の含酸
素有機化合物との混合物からなることを特徴とする蓄冷
材が提供され、また、前記蓄冷材混合物の高融点成分の
融点以下で低融点成分の融点以上の温度に冷却して、前
記高融点成分を低融点成分に固化分散させることを特徴
とする蓄冷方法が提供される。According to the present invention, the cold storage is made of a mixture of a lower hydrocarbon having 3 to 12 carbon atoms and an oxygen-containing organic compound having 1 to 6 carbon atoms, each having a melting point of 150°C or less. A cold storage material is provided, and the cold storage material mixture is cooled to a temperature below the melting point of the high melting point component and above the melting point of the low melting point component to solidify and disperse the high melting point component into the low melting point component. A method is provided.
さらに、各々の融点が一50℃以下であり、炭素数が3
〜12の低級炭化水素及び/または炭素数が1〜6の含
酸素有機化合物から選ばれる一種または二種以上を密閉
容器に封入したことを特徴とする蓄冷装置及びその装置
を用いた蓄冷方法が提供される。Furthermore, each has a melting point of 150°C or less and a carbon number of 3.
A cold storage device and a cold storage method using the device, characterized in that one or more selected from ~12 lower hydrocarbons and/or oxygen-containing organic compounds having 1 to 6 carbon atoms are sealed in a closed container. provided.
以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.
本発明で用いられる融点が一50℃以下の炭素数3〜1
2の低級炭化水素(以下、単に炭化水素とする。)は、
飽和、不飽和のいずれでもよい。The melting point used in the present invention is 150°C or less and the number of carbon atoms is 3 to 1.
The lower hydrocarbons (hereinafter simply referred to as hydrocarbons) in No. 2 are:
It can be either saturated or unsaturated.
好ましくは、融点が低く、融解熱の大きい炭化水素がよ
く、低融点の前記炭化水素としては分枝パラフィンある
いはオレフィンなどが選らばれる。Preferably, a hydrocarbon with a low melting point and a large heat of fusion is used, and the hydrocarbon with a low melting point is selected from branched paraffins, olefins, and the like.
本発明においては、炭素数5〜8の炭化水素がさらに好
ましい。これらは蒸気圧が低くて安全に取扱うことが出
来、さらに低融点または大きな融解熱を有するために、
本発明における炭化水素として好適である。In the present invention, hydrocarbons having 5 to 8 carbon atoms are more preferred. These have a low vapor pressure and can be handled safely, and also have a low melting point or large heat of fusion, so
It is suitable as a hydrocarbon in the present invention.
具体的にはn−ペンタン、n−ヘキサン、n −ヘプタ
ン、シスおよびトランスペンテン−2,2メチルブテン
−1,2−メチルブテン−2、ヘキセン−1、シスおよ
びトランスヘキセン−2、シスおよびトランスヘキセン
−3等が挙げられる。Specifically, n-pentane, n-hexane, n-heptane, cis- and trans-pentene-2,2-methylbutene-1,2-methylbutene-2, hexene-1, cis- and trans-hexene-2, cis- and trans-hexene-2. 3rd prize is mentioned.
さらに好ましくは、天然ガソリン、ガソリン、石油エー
テル、軽質および重質ナフサ、灯油、軽油、あるいはこ
れらからの分離製品、またはこれらの変成品をそのまま
あるいは組合せて用いてもよい。More preferably, natural gasoline, gasoline, petroleum ether, light and heavy naphtha, kerosene, gas oil, or separated products thereof, or modified products thereof may be used as they are or in combination.
本発明で用いる含酸素有機化合物としては、融点が一5
0℃以下であり、炭素数が1〜6の含酸素有機化合物か
ら選らばれる。特にアルコール、エーテル、ケトンおよ
びエステル類が好ましい。The oxygen-containing organic compound used in the present invention has a melting point of
It is selected from oxygen-containing organic compounds having a temperature of 0° C. or lower and having 1 to 6 carbon atoms. Particularly preferred are alcohols, ethers, ketones and esters.
具体的には、メタノール、エタノール、イソプロパツー
ル、アセトン、メチルエチルケトンおよびジエチルエー
テルが挙げられる。Specific examples include methanol, ethanol, isopropanol, acetone, methyl ethyl ketone and diethyl ether.
本発明においては、上記炭化水素と含酸素有機化合物と
を各一種以上を組み合わせて混合物として用いる。In the present invention, one or more of the above hydrocarbons and oxygen-containing organic compounds are used in combination as a mixture.
炭化水素と含酸素有機化合物との混合物からなる蓄冷材
を得るには、炭化水素と含酸素有機化合物相互の物理的
性状によって好適な組合せが決められる。即ちLNG等
の冷熱源の冷熱を蓄熱するため、これらの混合物を冷却
した際に、炭化水素あるいは含酸素有機化合物を主成分
とする固体が析出するような組合せで選らばれる。In order to obtain a regenerator material made of a mixture of a hydrocarbon and an oxygen-containing organic compound, a suitable combination is determined depending on the mutual physical properties of the hydrocarbon and the oxygen-containing organic compound. That is, in order to store the cold heat of a cold heat source such as LNG, the combination is selected such that when the mixture is cooled, a solid mainly composed of hydrocarbons or oxygen-containing organic compounds is precipitated.
炭素数1〜6の含酸素有機化合物は、室温において炭素
数3〜12の低級炭化水素に溶解するが、一般に一50
℃以下の極低温においては溶解度が著しく低下すること
が認められる。同様に、炭素数3〜12の低級炭化水素
の炭素数1〜6の含酸素有機化合物に対する溶解度も、
極低温において著しく低下する。Oxygen-containing organic compounds having 1 to 6 carbon atoms dissolve in lower hydrocarbons having 3 to 12 carbon atoms at room temperature, but generally
It is recognized that the solubility decreases significantly at extremely low temperatures below ℃. Similarly, the solubility of lower hydrocarbons having 3 to 12 carbon atoms in oxygen-containing organic compounds having 1 to 6 carbon atoms is
Decreases significantly at extremely low temperatures.
本発明における蓄冷材の特徴は、室温では相互に溶解す
る上記炭化水素と含酸素有機化合物からなる混合物蓄冷
材において、高融点成分の低融点成分に対する溶解度が
極低温において低減し、固体析出するような高融点成分
と低融点成分との組合せからなることである。The feature of the regenerator material of the present invention is that in the regenerator material, which is a mixture of the hydrocarbon and oxygen-containing organic compound that are mutually soluble at room temperature, the solubility of the high melting point component with respect to the low melting point component decreases at extremely low temperatures, causing solid precipitation. It consists of a combination of a high melting point component and a low melting point component.
この場合、高融点成分と低融点成分との融点差が小さい
と、両成分が共析するため融点差が大きいほど好ましく
、通常15℃以上の融点差を有するように組合せるのが
よい。In this case, if the melting point difference between the high melting point component and the low melting point component is small, both components will eutectoid, so the larger the melting point difference, the better, and it is usually best to combine them so that they have a melting point difference of 15° C. or more.
本発明における炭化水素及び含酸素有機化合物のいずれ
かが、高融点成分または低融点成分を構成し、蓄冷材は
蓄冷状態において主成分が含酸素有機化合物または該炭
化水素からなる固体粒子が各々炭化水素または含酸素有
機化合物からなる液体に分散した固液分散系を形成する
。Either the hydrocarbon or the oxygen-containing organic compound in the present invention constitutes a high-melting point component or a low-melting point component, and in the cold storage state, the main component of the regenerator material is an oxygen-containing organic compound or solid particles consisting of the hydrocarbon are carbonized, respectively. Forms a solid-liquid dispersion system in which hydrogen or an oxygen-containing organic compound is dispersed in a liquid.
具体的には炭化水素としてのn−ヘキサンと含酸素有機
化合物としてのエタノールの混合物が挙げられる。この
系ではn−ヘキサンの融点 (95℃)がエタノールの
融点(−115℃)よりも高いので蓄冷時に液体エタノ
ール中に固体ヘキサンが分散したスラリーが得られる。Specifically, a mixture of n-hexane as a hydrocarbon and ethanol as an oxygen-containing organic compound can be mentioned. In this system, since the melting point of n-hexane (95°C) is higher than the melting point of ethanol (-115°C), a slurry in which solid hexane is dispersed in liquid ethanol is obtained during cold storage.
これと逆にn−ペンタン(融点−130℃)とメタノー
ル(融点−98℃)の組合せにおいては蓄冷時に炭化水
素である液体ペンタン中に含酸素有機化合物である固体
メタノールが分散したスラリーが得られる。Conversely, when combining n-pentane (melting point -130°C) and methanol (melting point -98°C), a slurry in which solid methanol, an oxygen-containing organic compound, is dispersed in liquid pentane, a hydrocarbon, is obtained during cold storage. .
れる。It will be done.
さらに本発明においては、炭化水素がn−へキサン、n
−へブタン、およびn−オクタンから選らばれた1つ以
上からなり、含酸素有機化合物がこれより融点の低いメ
タノール、エタノール、イソプロパツール、アセトン、
メチルエチルケトンおよびジエチルエーテルからなる組
合せによる混合物は、炭化水素の融解熱が大きく、かつ
含酸素有機化合物に対する溶解度が小さいので蓄冷密度
が大きく、安定なスラリー蓄冷材を形成できるので特に
好適である。同様の理由で、上記含酸素有機化合物と、
これらよりも融点の低い炭素数5〜7の炭化水素の組合
せによる混合物も、上記の含酸素有機化合物の融解熱が
大きく、かつ炭化水素に対する溶解度が小さいので蓄冷
密度が大きく安定なスラリー蓄冷材を形成することがで
きる。Furthermore, in the present invention, the hydrocarbon is n-hexane, n
- one or more selected from hebutane and n-octane, and the oxygen-containing organic compound has a lower melting point than methanol, ethanol, isopropanol, acetone,
A mixture consisting of methyl ethyl ketone and diethyl ether is particularly suitable because the heat of fusion of the hydrocarbon is large and the solubility for oxygen-containing organic compounds is low, so the cold storage density is high and a stable slurry cold storage material can be formed. For the same reason, the above oxygen-containing organic compound and
A mixture of hydrocarbons having a lower melting point of 5 to 7 carbon atoms than these also has a large heat of fusion of the oxygen-containing organic compound and has a low solubility in hydrocarbons, so it can be used as a stable slurry regenerator material with a large regenerator density. can be formed.
本発明における炭化水素と含酸素有機化合物との2成分
系混合物からなる蓄冷材においては、蓄冷時の過冷却を
防止し、あるいは固体粒子サイズを調節するために、析
出固体成分と融点および溶解度の異る過冷却防止剤ある
いは結晶サイズ調節剤を添加してもよい。In the cold storage material made of the binary mixture of hydrocarbon and oxygen-containing organic compound according to the present invention, in order to prevent overcooling during cold storage or to adjust the solid particle size, it is necessary to Different supercooling inhibitors or crystal size regulators may be added.
上記したように、本発明の蓄冷材を用いて蓄冷する場合
には、蓄冷材を冷熱源を用いて冷却せしめることによっ
て炭化水素あるいは含酸素有機化合物のいずれかを主成
分とする固体を析出せしめ、他方の液体中に分散させれ
ばよい。As described above, when storing cold using the cold storage material of the present invention, a solid mainly composed of either hydrocarbons or oxygen-containing organic compounds is precipitated by cooling the cold storage material using a cold heat source. , may be dispersed in the other liquid.
本発明の混合物蓄冷材の蓄冷方法とし2ては、蓄冷材に
用いる炭化水素と含酸素有機化合物とは、室温において
は少くとも部分的に相互に溶解するので、混合物蓄冷材
の均一相溶液を急速に冷却させることによって高融点成
分を固化析出させることができる。As the second cold storage method of the mixture cold storage material of the present invention, since the hydrocarbon and oxygen-containing organic compound used in the cold storage material are at least partially dissolved in each other at room temperature, a homogeneous phase solution of the mixture cold storage material is used. Rapid cooling allows the high melting point components to solidify and precipitate.
また、飽和溶解度以上に高融点成分を分散させたエマル
ジョンの場合には、冷却伝熱面への固体析出を防ぐため
に激しくかくはん混合しながら急速に冷却させればよい
。Furthermore, in the case of an emulsion in which a high melting point component is dispersed above the saturation solubility, rapid cooling may be performed while vigorously stirring and mixing in order to prevent solid precipitation on the cooling heat transfer surface.
さらに、高濃度スラリーとして蓄冷する場合は、上記と
同様にした均一相の冷却によって固化した高融点成分を
、比重差あるいはフィルター等の公知の方法で分離濃縮
した後、回収した低融点成分にさらに高融点成分を溶解
せしめ、再び冷却・固体析出工程に循環せしめる方法が
よい。この方法によれば、冷却伝熱面への固体の析出を
少くすることができ、好ましい。Furthermore, when storing cold as a high concentration slurry, the high melting point components solidified by cooling the homogeneous phase in the same manner as above are separated and concentrated using a known method such as specific gravity difference or filtering, and then further added to the recovered low melting point components. A preferred method is to dissolve the high melting point components and recirculate the solution to the cooling/solid precipitation step. According to this method, precipitation of solids on the cooling heat transfer surface can be reduced, which is preferable.
また、本発明の混合物蓄冷材の蓄冷方法においては、冷
却伝熱面への固体の析出を少くする他の方法として、混
合物蓄冷材の低融点成分のみを予め高融点成分の融点以
下に充分に冷却し、融点以上に保たれた高融点成分と急
速混合し、高融点成分を固体析出した後固液分離して、
低融点成分を冷却工程に循環使用してもよい。In addition, in the cold storage method of the mixture cold storage material of the present invention, as another method for reducing the precipitation of solids on the cooling heat transfer surface, only the low melting point components of the mixture cold storage material are sufficiently heated to below the melting point of the high melting point components in advance. It is cooled and rapidly mixed with a high melting point component maintained above the melting point, the high melting point component is precipitated as a solid, and then solid-liquid separation is carried out.
The low melting point component may be recycled to the cooling step.
本発明においては、上記のようにして蓄冷した冷熱を断
熱容器中に保持して、冷熱需要先に供給してもよいし、
また断熱保冷配管等番こより需要先にスラリー状で送入
することもできる。In the present invention, the cold heat stored as described above may be held in a heat insulating container and supplied to a cold heat demander,
It can also be sent in the form of slurry to demand customers through insulated cold storage piping, etc.
この場合の蓄冷熱の利用は、固液分散のスラリー蓄冷材
と被冷却体とを、直接または間接的に熱交換して被冷却
体を冷却することができる。間接的熱交換は、冷却材ま
たは冷媒等の熱媒体を用いて行うことができる。In this case, the stored cold heat can be used to directly or indirectly exchange heat between the solid-liquid dispersed slurry cold storage material and the object to be cooled to cool the object. Indirect heat exchange can be performed using a heat carrier such as a coolant or refrigerant.
本発明の蓄冷装置は、上記の炭化水素あるいは/および
含酸素有機化合物を密閉容器に封入してなることを特徴
とする。The cold storage device of the present invention is characterized in that the above-mentioned hydrocarbon or/and oxygen-containing organic compound is sealed in a closed container.
この場合、炭化水素あるいは/および含酸素有機化合物
は上記の混合物系蓄冷材において用いられたものと同一
範囲の化合物であるが、蓄冷装置の使用温度よりも融点
の低い化合物が選ばれる。In this case, the hydrocarbon or/and oxygen-containing organic compound is a compound within the same range as that used in the above-mentioned mixture type regenerator material, but a compound having a melting point lower than the operating temperature of the regenerator is selected.
具体的には融点が低く、融解熱の大きいものが好ましく
、実用的には蒸気圧の低いものが製造および使用上にお
いて取扱い易く、n−ペンタン、n−ヘキサン、n−ヘ
プタン、シスおよびトランスペンテン−2,2−メチル
ブテン−112−メチルブテン−2、ヘキセン−1、シ
スおよびトランスヘキセン−2、シスおよびトランスヘ
キセンー3、メタノール、エタノール、アセトンが好適
である。Specifically, those with a low melting point and high heat of fusion are preferred, and in practical terms, those with a low vapor pressure are easy to handle in production and use, and include n-pentane, n-hexane, n-heptane, cis and trans pentenes. -2,2-Methylbutene-112-Methylbutene-2, hexene-1, cis and transhexene-2, cis and transhexene-3, methanol, ethanol, acetone are preferred.
これらの各化合物の主要性状を表−1に示す。Table 1 shows the main properties of each of these compounds.
これらの融点は一151℃以上であるが、いずれも同一
融点レベルの他の化合物に比較して融解熱が大きいこと
が特徴である。The melting points of these compounds are -151° C. or higher, and they are all characterized by a higher heat of fusion than other compounds with the same melting point level.
(以下、余白)
表−1蓄冷装置への封入物の主な性状
本発明の装置において、密閉容器の形状、大きさ、材質
は任意でよい。しかし封入物が容器外に漏れないような
構造と材質からなり、また冷却時にすみやかに固化する
ための充分な伝熱面積を有することが必要とされる。具
体的にはスチールあるいはアルミニウム製のパイプまた
球であって、上記の炭化水素及び/あるいは含酸素有機
化合物を封入し、外部から冷却するようにしたものでよ
い。(Hereinafter, blank spaces) Table 1: Main properties of materials enclosed in the cold storage device In the device of the present invention, the shape, size, and material of the airtight container may be arbitrary. However, it is necessary to have a structure and material that prevents the contents from leaking out of the container, and to have a sufficient heat transfer area to quickly solidify upon cooling. Specifically, it may be a pipe or a sphere made of steel or aluminum, in which the above-mentioned hydrocarbon and/or oxygen-containing organic compound is sealed and cooled from the outside.
あるいはまた、容器の外部が、外気と充分に断熱されて
おり、内部に封入する上記炭化水素等の封入物を冷却固
化させるために冷却材あるいはプロセス冷媒等の熱媒体
を通じるための管路と充分な伝熱面を有するものでもよ
い。このような蓄冷装置は大量の冷熱の蓄冷および輸送
に便利である。Alternatively, the outside of the container is sufficiently insulated from the outside air, and has a conduit for passing a heat medium such as a coolant or a process refrigerant in order to cool and solidify the contents sealed inside, such as the above-mentioned hydrocarbons. It may have a sufficient heat transfer surface. Such a cold storage device is convenient for storing and transporting a large amount of cold heat.
この場合、装置において用いられる冷却材あるいはプロ
セス冷媒としての熱媒体は、テトラクロロメタン、フレ
オン−12、フレオン−22、ブテン1、プロパン、プ
ロピレン1、エタン、エチレン、およびメタンから選ら
ばれた1つ以上を用いることができる。In this case, the heat carrier used as a coolant or process coolant in the apparatus is one selected from tetrachloromethane, Freon-12, Freon-22, butene-1, propane, propylene-1, ethane, ethylene, and methane. The above can be used.
本発明による蓄冷装置は蒸気圧の高い化合物であっても
、容器に封入す″るこができ、プロパン、プロピレンあ
るいはブテン−1を封入して用いることによって、−1
88〜−185’Cの冷熱の蓄冷に応用することもでき
る。The cold storage device according to the present invention is capable of enclosing even a compound with a high vapor pressure in a container, and by enclosing propane, propylene or butene-1, -1
It can also be applied to cold storage of 88 to -185'C.
また、炭化水素として、天然ガソリン、ガソリン、ナフ
サ等の脱水素化物はオレフィンに富むため、融点が低く
なり、融解熱も大きいので、本発明による蓄冷装置への
封入物として好ましい。またナフサのリフォーミングで
得られる生成物から、融点が高(、融解熱の小さい芳香
族成分を除去した留分は分枝パラフィンに富むために融
点が低く、超低温において使用するための蓄冷装置用の
封入物として好適である。In addition, as hydrocarbons, dehydrogenated products such as natural gasoline, gasoline, and naphtha are rich in olefins, have a low melting point, and have a large heat of fusion, and are therefore preferable as fillers in the regenerator according to the present invention. In addition, the product obtained from naphtha reforming has a high melting point (the distillate from which aromatic components with a low heat of fusion have been removed has a low melting point because it is rich in branched paraffins, and is suitable for use in cold storage devices for use at ultra-low temperatures). Suitable as an enclosure.
本発明の上記装置を用いた冷熱の蓄冷およびその利用は
次のように行なうことができる。即ち、本発明の炭化水
素あるいは含酸素有機化合物をパイプ等に封入した蓄冷
装置の場合には、LNG等の冷熱源を用いてこれを直接
または間接冷却し、封入物を固化して蓄冷する。Cold storage and utilization of cold heat using the above-mentioned device of the present invention can be carried out as follows. That is, in the case of a cold storage device in which the hydrocarbon or oxygen-containing organic compound of the present invention is sealed in a pipe or the like, it is directly or indirectly cooled using a cold heat source such as LNG, and the filled material is solidified to store cold.
蓄冷冷熱を利用する場合には蓄冷済の蓄冷装置を利用サ
イトに運搬し、蓄冷操作と逆に間接あるいは直接に被冷
却体を冷却すればよい。When using stored cold heat, it is sufficient to transport the cold storage device that has already stored cold to the usage site, and cool the object to be cooled indirectly or directly, contrary to the cold storage operation.
また、密閉容器内部に冷却材あるいはプロセス冷媒を通
じるための管路と伝熱面を有する蓄冷装置による冷熱の
蓄冷およびその利用も、基本的には上述の簡易型装置に
よる場合上同様に行われる。In addition, the storage and utilization of cold energy by a cold storage device that has a heat transfer surface and a conduit for passing a coolant or process refrigerant inside a sealed container is basically performed in the same manner as above when using the simple device described above. .
即ち、蓄冷時においては冷熱源を用いてプロセス冷媒を
介して封入物を冷却・固化せしめ、蓄冷冷熱の利用にお
いては蓄冷装置をプロセス冷媒を介して被冷却体と連結
して、これを冷却すればよい。That is, during cold storage, a cold heat source is used to cool and solidify the enclosed material through a process refrigerant, and when cold storage cold heat is used, the cold storage device is connected to the object to be cooled through a process refrigerant to cool it. Bye.
以下に、本発明について実施例によりさらに詳しく説明
する。但し、本発明は、本実施例に限定されるものでな
い。EXAMPLES Below, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to this example.
実施例−1
低級炭化水素としてn−へブタンを、含酸素有機化合物
として無水エタノールを用いて、蓄冷状態において主と
してヘプタンからなる固体粒子が液体エタノールに分散
してなる固液分散系を製造した。Example 1 Using n-hebutane as a lower hydrocarbon and anhydrous ethanol as an oxygen-containing organic compound, a solid-liquid dispersion system in which solid particles mainly consisting of heptane were dispersed in liquid ethanol in a cold storage state was produced.
まず室温において無水エタノール1(10部に対してn
−へブタン30部を溶解させた。このn−へブタンのエ
タノール溶液を用いて蓄冷を、次のように行った。即ち
、この溶液を激しく撹拌しながら約−1(10℃まで冷
却すると溶液中に雪状の主としてn−へブタンからなる
固体粒子が析出した。固体析出中においては溶液温度が
一90〜95℃に上昇し、はぼ一定温度に保たれた。エ
タノール中のn−へブタンの析出が終了すると溶液の温
度が再び下降するので固体析出工程の終点を知ることが
出来た。First, at room temperature, 1 part of absolute ethanol (n for 10 parts)
- 30 parts of hebutane were dissolved. Using this n-hebutane ethanol solution, cold storage was performed as follows. That is, when this solution was cooled to about -1 (10°C) while stirring vigorously, snow-like solid particles mainly consisting of n-hebutane were precipitated in the solution. The temperature of the solution rose to 100.degree. C. and was maintained at a constant temperature.When the precipitation of n-hebutane in ethanol was completed, the temperature of the solution decreased again, which indicated the end point of the solid precipitation process.
上記の方法で得られた固液分散系からなる蓄冷体を、そ
のまま被冷却体の冷却に用いてもよい。The cool storage body made of a solid-liquid dispersion obtained by the above method may be used as it is for cooling an object to be cooled.
しかし、蓄冷体の蓄冷密度(蓄冷材1gあたりの蓄熱量
、本実施例の場合は融解潜熱量)を大きくするために上
記の固液分散系を静置しておくことによって固体へブタ
ン粒子を浮上分離するか、あるいは濾過分離して、固形
分を濃縮したスラリー蓄冷体の蓄冷密度は10〜20k
cal/kgにも達することが認められた。However, in order to increase the cold storage density (the amount of heat stored per 1 g of cold storage material, the amount of latent heat of fusion in the case of this example) of the cold storage material, the solid hebutane particles are The cold storage density of a slurry cold storage body that is concentrated by flotation or filtration is 10 to 20K.
It was observed that the amount reached up to cal/kg.
また、本実施例によって得られた蓄冷体は流動性が大き
いため、大量に輸送、貯蔵することが可能であり、−9
0℃以下の冷熱源に用いることが容易であることが認め
られた。In addition, since the cold storage body obtained in this example has high fluidity, it can be transported and stored in large quantities, and -9
It was found that it is easy to use as a cold heat source at temperatures below 0°C.
実施例−2
低級炭化水素としてイソペンクンを、含酸素有機化合物
としてアセトンを用いて、蓄冷状態において主としてア
セトンからなる固体粒子が、液体イソペンタンに分散し
てなる固液分散系を製造した。Example 2 Using isopencune as the lower hydrocarbon and acetone as the oxygen-containing organic compound, a solid-liquid dispersion system was produced in which solid particles mainly consisting of acetone were dispersed in liquid isopentane in a cold storage state.
まずイソペンクンを約−160℃に冷却し、これを−9
5゛Cに冷却しておいたアセトンと激しく攪拌しながら
急速混合した。混合と同時に主としてアセトンからなる
スラリー状の固体粒子が析出するのでこれを固液分離し
た。分離した主にイソペンタンからなる液体部分を、再
び約−160”Cに冷却しアセトンとの混合工程に用い
た。First, isopenkune is cooled to about -160℃, and then it is heated to -9
The mixture was rapidly mixed with acetone, which had been cooled to 5°C, with vigorous stirring. At the same time as the mixing, slurry-like solid particles mainly consisting of acetone precipitated, and these were separated into solid and liquid. The separated liquid portion, consisting primarily of isopentane, was again cooled to about -160''C and used in the mixing step with acetone.
このようにしてアセトンを約50%含むスラリー状のア
セトン−イソペンタン固液分散系からなる蓄冷体が得ら
れた。In this way, a regenerator consisting of a slurry-like acetone-isopentane solid-liquid dispersion containing about 50% acetone was obtained.
実施例−3
外径35mmφ、内径31mmφ、長さ50cmのアル
ミニウム製パイプを加工して得られた容器にペンテン−
2(シス、トランス混合物)を約2(10g入れて密閉
、封入し、本発明による極低温用蓄冷装置を得た。 本
装置を用いて蓄冷した。Example 3 Penten was placed in a container obtained by processing an aluminum pipe with an outer diameter of 35 mmφ, an inner diameter of 31 mmφ, and a length of 50 cm.
Approximately 2 (10 g) of 2 (cis, trans mixture) was added and sealed and sealed to obtain a cryogenic cold storage device according to the present invention. Cold storage was performed using this device.
先ず、本装置を−160〜−150“Cに冷却し、封入
物(ペンテン−2)を固化せしめた。この固化工程(蓄
冷工程)の終了はこの蓄冷装置外壁温度の低下(冷却温
度付近まで低下する)ことによって知ることが出来た。First, this device was cooled to -160 to -150"C to solidify the inclusion (pentene-2). This solidification process (cold storage process) was completed when the temperature of the outer wall of this cold storage device decreased (to around the cooling temperature). (decreasing).
本蓄冷装置の冷却はLNG等の冷却材に直接接触させて
実施することもできるし、あるいはこれらの冷熱源を用
い、プロパン、フレオン等のプロセス冷媒を介して行う
ことも可能である。Cooling of this cold storage device can be carried out by direct contact with a coolant such as LNG, or by using these cold heat sources via a process coolant such as propane or freon.
上記のようにした本蓄冷装置における蓄冷は、蓄冷密度
が20 k c a 1 / k g以上と大きいので
140℃以下の冷熱源として、そのままで各種ガスおよ
び低融点液体の脱水乾燥用、あるいは魚獲物の象、速冷
却用などの各種の用途に利用することが可能である。The cold storage in this cold storage device as described above has a large cold storage density of 20 k a 1 / kg or more, so it can be used as a cold heat source of 140 ° C or less for dehydration and drying of various gases and low melting point liquids, or for fish. It can be used for various purposes such as elephant prey, rapid cooling, etc.
本実施例のようなパイプ内部に低級炭化水素等を封入す
る代わりに、外気から充分に断熱した槽あるいはタンク
内に低級炭化水素等を封入し、さらに冷却材あるいはプ
ロセス冷媒を通じるための配管と、封入物を固化析出さ
せるための充分大きい伝熱面をその内部に配置した装置
を用いることによって、冷熱をその装置内に蓄冷せしめ
ることが可能であることは本実施例から容易に理解され
る。Instead of sealing low-grade hydrocarbons etc. inside the pipe as in this embodiment, low-grade hydrocarbons etc. are sealed inside a tank or tank that is sufficiently insulated from the outside air, and a pipe for passing the coolant or process refrigerant is also installed. It is easily understood from this example that by using a device in which a heat transfer surface large enough to solidify and precipitate the inclusions is used, it is possible to store cold heat in the device. .
本発明による蓄冷材、蓄冷装置およびこれらによる蓄冷
方法は冷熱源のパンクアップのみならず、LNG冷熱の
ごとき利用されずに廃棄されていた冷熱源の蓄冷・輸送
による有効利用の拡大にも応用することができ、エネル
ギー節約のうえにも大きな効果が期待できる。The cold storage material, the cold storage device, and the cold storage method using these according to the present invention can be applied not only to blowing up cold heat sources, but also to expanding the effective use of cold heat sources that have been discarded without being used, such as LNG cold heat, by storing and transporting cold heat. This can be expected to have a significant effect in terms of energy savings.
Claims (10)
12の低級炭化水素と炭素数が1〜6の含酸素有機化合
物との混合物からなることを特徴とする蓄冷材。(1) Each melting point is -50℃ or less and the number of carbon atoms is 3 to
A cold storage material comprising a mixture of 12 lower hydrocarbons and an oxygen-containing organic compound having 1 to 6 carbon atoms.
化合物のいずれか一方が固体粒子で、他方が液体であっ
て、固液分散系を形成する請求項(1)記載の蓄冷材。(2) The cold storage material according to claim 1, wherein in a cold storage state, one of the hydrocarbon and the oxygen-containing organic compound is a solid particle and the other is a liquid, forming a solid-liquid dispersion system.
ーテル、軽質および重質ナフサ、灯油、軽油またはこれ
らからの分離製品、またはこれらの変成品である請求項
(1)または(2)記載の蓄冷材。(3) The hydrocarbon according to claim (1) or (2), wherein the hydrocarbon is natural gasoline, gasoline, petroleum ether, light and heavy naphtha, kerosene, light oil, products separated from these, or modified products thereof. Cold storage material.
水素、該含酸素有機化合物のうち高融点の成分を固化せ
しめて他方を主成分とする液体中に分散せしめることを
特徴とする蓄冷方法。(4) Cooling the cold storage material according to claim (1), solidifying a component with a high melting point among the hydrocarbon and the oxygen-containing organic compound and dispersing the other in a liquid containing the other as the main component. A cold storage method.
溶液を冷却せしめることによって高融点成分を固化せし
めたのちこれを分離濃縮し、回収した低融点成分に高融
点成分を溶解せしめて再び冷却・固体析出工程に循環せ
しめる請求項(4)記載の蓄冷方法。(5) After solidifying the high melting point component by cooling the homogeneous phase solution consisting of the hydrocarbon and the oxygen-containing organic compound, this is separated and concentrated, the high melting point component is dissolved in the recovered low melting point component, and the high melting point component is dissolved again. The cold storage method according to claim (4), wherein the coolant is circulated to a cooling/solid precipitation step.
分を高融点成分の融点以下に冷却せしめたのち、融点以
上に保たれた高融点成分と急速混合せしめる請求項(4
)記載の蓄冷方法。(6) Claim (4) wherein a low melting point component of the hydrocarbon or oxygen-containing organic compound is cooled to below the melting point of the high melting point component and then rapidly mixed with the high melting point component maintained above the melting point.
) The cold storage method described.
級炭化水素あるいは/および融点が−50℃以下であり
炭素数が1〜6の含酸素有機化合物を密閉容器に封入し
てなることを特徴とする蓄冷装置。(7) Lower hydrocarbons with a melting point of -50°C or lower and a carbon number of 3 to 12 or/and oxygen-containing organic compounds with a melting point of -50°C or lower and a carbon number of 1 to 6 are sealed in a sealed container. A cold storage device characterized by:
に封入物を冷却固化させるために熱媒体を通じるための
管路と充分な伝熱面とを有する請求項(7)記載の蓄冷
装置。(8) The container according to claim (7), wherein the outside of the container is sufficiently insulated from the outside air, and the container has a conduit for passing a heat medium and a sufficient heat transfer surface to cool and solidify the contents inside. Cold storage device.
熱媒体を介して内部から冷却することによって、封入さ
れている該炭化水素あるいは/および該含酸素有機化合
物を固化せしめることを特徴とする蓄冷方法。(9) The apparatus according to claim (7), characterized in that the sealed hydrocarbon and/or oxygen-containing organic compound are solidified by cooling the container from the outside or from the inside via a heat medium. A cold storage method.
熱を用いて直接あるいは熱媒体を介して被冷却物を冷却
せしめることを特徴とする蓄冷冷却方法。(10) A cold storage cooling method characterized in that the cold heat stored according to claim (4) or (9) is used to cool an object to be cooled directly or via a heat medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1106844A JP2850247B2 (en) | 1989-04-26 | 1989-04-26 | Cold storage material and cold storage method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1106844A JP2850247B2 (en) | 1989-04-26 | 1989-04-26 | Cold storage material and cold storage method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02284985A true JPH02284985A (en) | 1990-11-22 |
JP2850247B2 JP2850247B2 (en) | 1999-01-27 |
Family
ID=14443970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1106844A Expired - Lifetime JP2850247B2 (en) | 1989-04-26 | 1989-04-26 | Cold storage material and cold storage method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2850247B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04117480A (en) * | 1990-09-06 | 1992-04-17 | Tokyo Gas Co Ltd | Cold-energy storage material for cryogenic use and cold-energy storage device using the same for reserving cold |
-
1989
- 1989-04-26 JP JP1106844A patent/JP2850247B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04117480A (en) * | 1990-09-06 | 1992-04-17 | Tokyo Gas Co Ltd | Cold-energy storage material for cryogenic use and cold-energy storage device using the same for reserving cold |
Also Published As
Publication number | Publication date |
---|---|
JP2850247B2 (en) | 1999-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2513749A (en) | Insulated container and method of insulating the same | |
US5536893A (en) | Method for production of gas hydrates for transportation and storage | |
JP3664862B2 (en) | LNG cold heat storage method and apparatus, and BOG reliquefaction method using cold storage heat and apparatus thereof | |
CA2113071C (en) | Method for production of gas hydrates for transportation and storage | |
CN101377265B (en) | Methods for stabilizing gas hydrates and compositions | |
US3393152A (en) | Composition of matter and methods of making same | |
US5038571A (en) | Production and use of coolant in cryogenic devices | |
JP2011025201A (en) | Method for absorbing carbon dioxide, and method for manufacturing clathrate hydrate using the same absorption method | |
CA2589604C (en) | Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents | |
AU2008351793B2 (en) | Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat stored of clathrate hydrate | |
JPH0559378A (en) | Transportation of untreated petroleum gas | |
JP2004170007A (en) | Binary refrigerating system with ammonia and carbon dioxide combined | |
CN104004389B (en) | A kind of method of freezen protective two-dimensional nano powder dispersion | |
JP3810310B2 (en) | Gas hydrate handling method and apparatus | |
JPH02284985A (en) | Cold storing material and method for storing cold | |
Jouhara et al. | Low-temperature heat transfer mediums for cryogenic applications | |
RU2224192C2 (en) | Method of production of methane-rich liquid | |
US20200370710A1 (en) | Thermal Cascade for Cryogenic Storage and Transport of Volatile Gases | |
PT1364153E (en) | Method and substance for refrigerated natural gas transport | |
WO2020214522A1 (en) | Subcooled cryogenic storage and transport of volatile gases | |
JP2011237100A (en) | Hydrogen gas liquefaction method, and hydrogen gas liquefaction plant | |
US20240247759A1 (en) | System and method for controlling boil-off gas from liquefied hydrogen | |
JP3656128B2 (en) | Method and apparatus for storing and effectively utilizing LNG cold energy | |
JP3983910B2 (en) | Method for producing gas hydrate | |
JP5489150B2 (en) | Production method of clathrate hydrate |