JPH02284887A - Control method for multi-freedom degree joint - Google Patents

Control method for multi-freedom degree joint

Info

Publication number
JPH02284887A
JPH02284887A JP10464889A JP10464889A JPH02284887A JP H02284887 A JPH02284887 A JP H02284887A JP 10464889 A JP10464889 A JP 10464889A JP 10464889 A JP10464889 A JP 10464889A JP H02284887 A JPH02284887 A JP H02284887A
Authority
JP
Japan
Prior art keywords
mckibben
signal
muscles
pressure fluid
muscle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10464889A
Other languages
Japanese (ja)
Inventor
Tatsunori Suwa
諏訪 達徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10464889A priority Critical patent/JPH02284887A/en
Publication of JPH02284887A publication Critical patent/JPH02284887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To improve position controllability by providing an electrode in both ends of each artificial rubber muscle, using a difference of internal resistance, between both the artificial rubber muscles with extension and contraction opposite to each other in each freedom degree, serving as a sensor signal and using a signal, in which this sensor signal is added by aligning the polarity in accordance with a driving direc tion of each joint, serving as a position feedback signal. CONSTITUTION:An actuator uses a plurality of artificial rubber muscles A to H while connecting their pressure fluid action part to the same pressure fluid source through each pressure control valve 8a to 8d. Here this pressure fluid uses conductive fluid. Each artificial rubber muscle A to H provides in its both ends an electrode detecting internal resistance of the pressure fluid by a change of length in each artificial rubber muscle A to H, and a difference of internal resistance, between both the artificial rubber muscles with extension and contraction opposite to each other in each freedom degree, serves as a sensor signal. A signal, adding each sensor signal by aligning the polarity in accordance with a driving direction of each joint, serves as a position feedback signal, and by comparing this signal with a command signal to the control valves 8a to 8d, a position is controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ロボットのマニプレータ等に用いる関節装置
で、特にアクチュエータにマッキベン筋(ゴム人工筋)
を用いた多自由度関節の制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a joint device used in a robot manipulator, etc., and in particular, the actuator includes McKibben muscles (rubber artificial muscles).
This paper relates to a method for controlling multi-degree-of-freedom joints using

〔従来の技術〕[Conventional technology]

第1図は複数本のマッキベン筋を用いた多自由度関節の
一例を示すもので、各マッキベン筋が伸縮することによ
り、第1アーム1に対して第2アーム2が東西、南北方
向に揺動し、また左右方向に回転運動するようになって
いる。そしてこの多自由度関節の上記第1、第2アーム
1.2は中間部材3に設けた球面継手4を介して中間部
材3に対して互いに屈曲及び回転自在に連結されている
。上記両アーム1,2には、中間部材3からそれぞれ等
距離位置に支持部材5.6が固着してあり、この各支持
部材5,6と中間部材3との間にマッキベン筋が2本づ
つ連結されている。
Figure 1 shows an example of a multi-degree-of-freedom joint using multiple McKibben muscles. As each McKibben muscle expands and contracts, the second arm 2 swings in the east-west and north-south directions relative to the first arm 1. It also rotates from side to side. The first and second arms 1.2 of this multi-degree-of-freedom joint are connected to the intermediate member 3 via a spherical joint 4 provided on the intermediate member 3 so as to be able to bend and rotate freely. Support members 5 and 6 are fixed to both arms 1 and 2 at positions equidistant from the intermediate member 3, and two McKibben muscles are formed between each of the support members 5 and 6 and the intermediate member 3. connected.

すなわち、第1アーム1側の支持部材5の南側端部に2
本のマッキベン筋ASBの端部が、また北側端部に2本
のマッキベン筋C,Dの端部がそれぞれ連結されている
。そして上記一方の2本のマッキベン筋ASBの他端部
は中間部材3の南側の東西位置に、また他方の2本のマ
ッキベン筋CSDの他端部は中間部材3の北側の東西位
置にそれぞれ連結しである。
That is, 2 parts are attached to the south end of the support member 5 on the first arm 1 side.
The end of the main McKibben muscle ASB is connected to the north end, and the ends of the two McKibben muscles C and D are connected to the north end. The other ends of one of the two McKibben bars ASB are connected to the east-west positions on the south side of the intermediate member 3, and the other ends of the other two McKibben bars CSD are connected to the north east-west positions of the intermediate member 3. It is.

また第2アーム2側の支持部材6の東側端部に2本のマ
ッキベン筋ESFの端部が、また西側端部に2本のマッ
キベン筋GSHの端部がそれぞれ連結されている。そし
て上記一方の2本のマッキベン筋E、Fの他端部は中間
部材3の東側の南北位置に、また他方の2本のマッキベ
ン筋G、Hの他端部は中間部材3の西側の南北位置にそ
れぞれ連結されている。
Furthermore, the ends of two McKibben muscles ESF are connected to the east end of the support member 6 on the second arm 2 side, and the ends of two McKibben muscles GSH are connected to the west end. The other ends of the two McKibben lines E and F are located north and south on the east side of the intermediate member 3, and the other ends of the other two McKibben lines G and H are located north and south on the west side of the intermediate member 3. connected to each location.

上記の各マッキベン筋は、内部圧力が高くなることによ
り太くなって長さが短くなり、内部圧力が低くなること
により細くなって長さが長くなるようになっている。
Each of the McKibben muscles described above becomes thicker and shorter in length as the internal pressure increases, and becomes thinner and longer in length as the internal pressure decreases.

上記各マッキベン筋のうち、中間部材3を介して連結さ
れる位置にある2本づつのマッキベン筋、すなわち(A
、E)、(BSG)   (C。
Among the above-mentioned McKibben muscles, two McKibben muscles are connected via the intermediate member 3, that is, (A
, E), (BSG) (C.

F)、(DSH)がそれぞれペアとなってそれぞれ同一
の液圧源に連結されており、それぞれのペアのマッキベ
ン筋内の液圧を制御することにより同期して伸縮動する
ようになっている。
F) and (DSH) are each connected to the same hydraulic pressure source in pairs, and by controlling the hydraulic pressure within the McKibben muscles of each pair, they extend and contract in synchronization. .

そして上記4組のペアのマッキベン筋を選択的に伸縮動
することにより、第1アーム1に対して第2アーム2が
東西、南北方向に揺動し、また左右方向に回転する。
By selectively expanding and contracting the four pairs of McKibben muscles, the second arm 2 swings in the east-west and north-south directions with respect to the first arm 1, and also rotates in the left-right direction.

上記したような多自由度関節では角度(位置)検出器を
コンパクトに取付けることが不可能であったため、位置
フィードバックを行なうことができず、各マッキベン筋
の内圧のみをフィードバックして各マッキベン筋への供
給液圧を制御するようになっていた。
In the multi-degree-of-freedom joints described above, it was impossible to mount an angle (position) detector compactly, so position feedback could not be performed, and only the internal pressure of each McKibben muscle was fed back to each McKibben muscle. The supply liquid pressure was controlled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の制御方法では各マッキベン筋の伸縮を正確に
制御することができず、位置制御性が悪かった。
In the conventional control method described above, it was not possible to accurately control the expansion and contraction of each McKibben muscle, and the position controllability was poor.

本発明は上記のことにがんがみなされたもので、外部セ
ンサなしで位置のフィードバックができ、これにより位
置制御性の向上と、低コスト、コンパクト化を図ること
ができ、さらにマッキベン筋に作用する温度変化にょる
外乱を補償でき、位置センサの再現性を良くすることが
できるようにした多自由度関節の制御方法を提供しよう
とするものである。
The present invention has been developed based on the above-mentioned problems, and it is possible to provide position feedback without an external sensor, thereby improving position controllability, reducing cost, and making it more compact. The present invention aims to provide a control method for a multi-degree-of-freedom joint that can compensate for disturbances caused by acting temperature changes and improve the reproducibility of a position sensor.

〔課題を解決するための手段及び作用〕上記目的を達成
するため本発明は、アクチュエータに複数個のマッキベ
ン筋を用いると共に、この各マッキベン筋の圧液作用部
をそれぞれ圧力制御弁を介して同一の圧液源に接続し、
さらにその圧液に導電性液を用いた多自由度関節におい
て、各マッキベン筋の両端に電極を設けて、各マッキベ
ン筋の長さの変化にょる圧液の内部抵抗を検出し、各自
由度における伸縮の相反する双方のマッキベン筋の内部
抵抗の差をセンサ信号とし、この各センサ信号を、各関
節の駆動方向に応じて極性を合わせ加算したものを位置
フィードバック信号とし、この各位置フィードバック信
号と各圧力制御弁への指令信号と比較させるようになっ
ている。
[Means and operations for solving the problem] In order to achieve the above object, the present invention uses a plurality of McKibben muscles as an actuator, and connects the same pressure fluid acting portion of each McKibben muscle through a pressure control valve. connected to a pressure fluid source,
Furthermore, in multi-degree-of-freedom joints that use conductive fluid as the pressure fluid, electrodes are installed at both ends of each McKibben muscle to detect the internal resistance of the pressure fluid due to changes in the length of each McKibben muscle, and The difference in the internal resistance of both McKibben muscles, which stretch and contract in opposition to each other, is used as a sensor signal, and the polarity of each sensor signal is adjusted and added according to the drive direction of each joint, and the resultant sum is used as a position feedback signal. and the command signals sent to each pressure control valve.

〔実 施 例〕〔Example〕

本発明の実施例を第1図に示した多自由度関節の場合に
ついて、第2図がら第4図を参照して説明する。
An embodiment of the present invention will be described with reference to FIGS. 2 to 4 for the multi-degree-of-freedom joint shown in FIG.

第2図はマッキベン筋を模式的に示すもので、このマッ
キベン筋の両端部はそれぞれ電極となっており、この画
電極は、内部の液体に接触するようになっている。マッ
キベン筋に作用する圧液には導電性液が用いられるよう
になっている。このため、マッキベン筋の両mtMは内
部の圧液を介して電気的に導通されることになるが、こ
のときの圧液による内部抵抗Rはマッキベン筋の長さに
よって変化する。各マッキベン筋の一方の電極に、抵抗
値Roの固定抵抗器8が接続してあり、これの両端にそ
れぞれ+bV。
FIG. 2 schematically shows a McKibben stripe. Both ends of the McKibben stripe serve as electrodes, and these electrodes come into contact with the liquid inside. Conductive fluid is now used as the pressure fluid that acts on the McKibben muscles. Therefore, both mtM of the McKibben muscle are electrically connected via the internal pressure fluid, but the internal resistance R due to the pressure fluid at this time changes depending on the length of the McKibben muscle. A fixed resistor 8 having a resistance value Ro is connected to one electrode of each McKibben muscle, and +bV is applied to both ends of the resistor 8, respectively.

bvを印加している。このとき、上記マツキベン筋と固
定抵抗器8との間に設けている端子7の電圧iは となり、上記マッキベン筋の電極間の内部抵抗の変化が
端子7の電圧iにより取出されるようになっている。
bv is being applied. At this time, the voltage i at the terminal 7 provided between the Matsukiben strip and the fixed resistor 8 becomes, and the change in internal resistance between the electrodes of the McKibben strip is extracted by the voltage i at the terminal 7. ing.

第3図は第1図に示す多自由度関節の本発明に係る制御
系の例を示すもので、各ペアとなるマッキベン筋(C,
F)、(ASE)、(B。
FIG. 3 shows an example of the control system according to the present invention for the multi-degree-of-freedom joint shown in FIG. 1, and shows each pair of McKibben muscles (C,
F), (ASE), (B.

G)、(D、H)の圧液作用部はそれぞれ圧力制御弁8
a、8b、8c、8dを介して同一の圧液源9に接続さ
れている。そしてこの各圧力制御弁8a〜8dの制御部
には、中立時圧力設定器9a、9b、9c、9ds圧カ
フイードバツク用比較器10a、10b、10c、10
d。
G), (D, H) are each pressure control valve 8.
They are connected to the same pressure liquid source 9 via a, 8b, 8c, and 8d. The control section of each of the pressure control valves 8a to 8d includes neutral pressure setting devices 9a, 9b, 9c, 9ds pressure cuff feed back comparators 10a, 10b, 10c, 10.
d.

位置フィードバック用比較器11a、llb。Position feedback comparators 11a and llb.

]1c、lidが圧液源9に対してそれぞれ下流側から
順に接続してあり、さらに各位置フィードバック用比較
器11a〜11dに加算回路12a、12b、12c、
12dを介して、東西方向用制御器13a、南北方向用
制御器13b左右回転用制御器13Cが接続されている
。この各制御器13a〜13cは第4図に示すジョイス
ティックレバー装@14のレバーにて制御されるように
なっている。
] 1c and lid are connected to the pressure liquid source 9 in order from the downstream side, and addition circuits 12a, 12b, 12c,
A controller 13a for east-west direction, a controller 13b for north-south direction, and a controller 13C for left-right rotation are connected via 12d. Each of the controllers 13a to 13c is controlled by a lever of a joystick lever assembly @14 shown in FIG.

上記各圧力フィードバック用比較器108〜10dのそ
れぞれには、各ペアのマツキベン筋の圧力を検出する圧
力センサ16a、16b。
Each of the pressure feedback comparators 108 to 10d is provided with a pressure sensor 16a, 16b for detecting the pressure of each pair of Matsukiben muscles.

16c、16dから圧力信号が入力されるようになって
いる。また位置フィードバック用比較器11a〜lid
のそれぞれには、各ペアのマッキベン筋の内部抵抗の変
化信号が入力されるようになっている。
Pressure signals are input from 16c and 16d. Also, position feedback comparators 11a to lid
A change signal in the internal resistance of each pair of McKibben muscles is input to each of the McKibben muscles.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

(1)東西方向への揺動(Yaw) ジョイスティックレバー15を東あるいは西方向に操作
する。今ジョイスティックレバーI5を東方向へ操作す
ると、東西方向用制御器13aが東方向に制御され、そ
の制御量に応じた東西方向制御信号v1が各制御回路に
入力され、これにより各マッキベン筋のうち、東側に位
置する(A、E)、(CSF)が短縮動じ、西側に位置
する(BSG)、(DSH)が伸長動するように各圧力
制御弁88〜8dが作動される。
(1) Oscillation in the east-west direction (Yaw) Operate the joystick lever 15 in the east or west direction. When the joystick lever I5 is now operated in the east direction, the east-west direction controller 13a is controlled in the east direction, and the east-west direction control signal v1 corresponding to the control amount is inputted to each control circuit. , the pressure control valves 88 to 8d are operated so that (A, E), and (CSF) located on the east side are shortened, and (BSG) and (DSH) located on the west side are extended.

ジョイスティックレバー15を西方向へ操作した場合に
は上記とは逆の動作となる。
When the joystick lever 15 is operated in the west direction, the operation is opposite to the above.

(2)南北方向への揺動(Pitch)ジョイスティッ
クレバー15を南方向へ操作すると、このときの南北方
向用制御器13bの制御信号V2により、南側に位置す
るマッキベン筋(A、、E)、(B、G)が短縮動じ、
北側に位置するマッキベン筋(CSF)、(D、H)が
伸長動するように各圧力制御弁8a〜8dが作動される
(2) Swinging in the north-south direction (Pitch) When the joystick lever 15 is operated in the south direction, the control signal V2 of the north-south direction controller 13b at this time causes the McKibben curve (A, , E) located on the south side, (B, G) are shortened,
Each of the pressure control valves 8a to 8d is operated so that the McKibben muscles (CSF) and (D, H) located on the north side extend and move.

ジョイスティックレバー15を北方向へ操作した場合に
はこれと逆の動作となる。
When the joystick lever 15 is operated northward, the operation is the opposite.

(3)左右方向回転(Roll) ジョイスティックレバー15を右方向へ回転すると、こ
のときの左右回転用制御器13cの制御信号V3により
、回転方向上流側のマッキベン筋(C,F)、(BSG
)が伸長動し、下流側のマッキベン筋(ASE)、(D
、H)が短縮動するように各圧力制御弁8a〜8dが作
動される。
(3) Left-right rotation (Roll) When the joystick lever 15 is rotated to the right, the control signal V3 of the left-right rotation controller 13c at this time causes McKibben muscles (C, F), (BSG) on the upstream side of the rotation direction.
) stretches, and the downstream McKibben muscle (ASE), (D
, H) are operated to shorten the pressure control valves 8a to 8d.

ジョイスティックレバー15を左方向へ操作したときに
はこれと逆の動作となる。
When the joystick lever 15 is operated to the left, the operation is opposite to this.

上記各動作において、圧力フィードバックが各圧力フィ
ードバック用比較器10a〜10dに、また位置フィー
ドバックが位置フィードバック用比較器11a〜11d
にそれぞれフィードバックされる。
In each of the above operations, pressure feedback is provided to each pressure feedback comparator 10a to 10d, and position feedback is provided to each position feedback comparator 11a to 11d.
feedback will be provided to each.

次に上記位置フィードバック信号について説明する。Next, the position feedback signal will be explained.

まず各自由度における伸縮の相反する双方のマッキベン
筋の内部抵抗の変化による電圧信号の差をセンサ信号と
する。
First, the difference in voltage signals due to changes in internal resistance of both McKibben muscles that stretch and contract in each degree of freedom is used as a sensor signal.

すなわち、この実施例におけるセンサ信号は、(1)東
西方向(Y a w ) (東に位置するマッキベン筋C,F、A、Eの電圧信号
)−(西に位置するマッキベン筋B。
That is, the sensor signal in this example is (1) east-west direction (Y aw ) (voltage signals of McKibben lines C, F, A, and E located on the east) - (McKibben line B located on the west).

G、D、Hの電圧信号)−Y (2)南北方向(Pitch) (北に位置するマッキベン筋C,F、D、Hの電圧信号
)−(南に位置するマッキベン筋A。
G, D, H voltage signals) - Y (2) North-south direction (Pitch) (Voltage signals of McKibben muscles C, F, D, H located in the north) - (McKibben muscles A located in the south.

E、、B、Gの電圧信号)−p (3)左右方向回転(Ro l l) (左に位置するマッキベン筋C,F、B、Gの電圧信号
)−(右に位置するマッキベン筋AE、D、Hの電圧信
号)−R となる。そして上記各マッキベン筋の電圧信号をA1−
Hlにて示した場合の上記各計算式は以下のようになる
E, , B, G voltage signals) - p (3) Lateral rotation (Ro l l) (Voltage signals of McKibben muscles C, F, B, G located on the left) - (McKibben muscles AE located on the right) , D, H voltage signals) -R. Then, the voltage signal of each McKibben muscle mentioned above is A1-
The above calculation formulas when expressed by Hl are as follows.

(1)′東西方向(Y a w) (Ci+F i+Ai+Ei)−(Bi+Gi+Di+
Hi)−Y (2)′南北方向(Pitch) (Ci+Fi+Di+Hi)−(Ai+Ei+Bi+G
i)−P (3)′左右方向回転(Ro l 1)(Ci+Fi+
Bi+Gi)  −(Ai+Ei+D  i  +Hi
)  −R 次に位置フィードバックについて説明する。
(1)' East-west direction (Y a w) (Ci+F i+Ai+Ei)-(Bi+Gi+Di+
Hi)-Y (2)' North-south direction (Pitch) (Ci+Fi+Di+Hi)-(Ai+Ei+Bi+G
i)-P (3)'Left-right rotation (Ro l 1) (Ci+Fi+
Bi+Gi) −(Ai+Ei+D i +Hi
) -R Next, position feedback will be explained.

上記各自由度からのセンサ信号(YSP、R)を各関節
の駆動方向に応じて極性をあわせ加算したものを位置フ
ィードバック信号とする。この実施例では次のようにな
る。
A position feedback signal is obtained by adding the sensor signals (YSP, R) from each degree of freedom with their polarities adjusted according to the driving direction of each joint. In this example, it is as follows.

(1)マッキベン筋CSFは東、北、左に位置するため
、その位置フィードバック信号S1はS + −Y +
 P + R −3(Ci+Fi)−(Ai+Ei) (Bi+Gi)−(Di+Hi) (2)マッキベン筋ASEは東、南、右に位置するため
、その位置フィードバック信号S、は52−y+ (−
1)P+ (−1)R=−(Ci+Fi)+3 (Ai
+Ei)(B i+Gi)−(Di+Hi) (3)マッキベン筋B、Gは西、南、左に位置するため
、その位置フィードバック信号S3はS3− (−1)
Y+ (−1)P+R= −(Ci+F  i)−(A
i+Ei)+3  (Bi+Gi)−(Di+H1)(
4)マッキベン筋り、Hは西、北、右に位置するため、
その位置フィードバック信号s4はS4 = (1)y
+p十(−1) R=−(Ci+Fi)−(Ai+Ei
) (Bi+Gi)−3(Di+Hi) とナリ、各信号S1、S2、s3、s4が各位置フィー
ドバック用比較器11a〜lidへ入力される。
(1) Since the McKibben muscle CSF is located to the east, north, and left, its position feedback signal S1 is S + −Y +
P + R −3(Ci+Fi)−(Ai+Ei) (Bi+Gi)−(Di+Hi) (2) Since McKibben muscle ASE is located to the east, south, and right, its position feedback signal S, is 52−y+ (−
1) P+ (-1) R=-(Ci+Fi)+3 (Ai
+Ei) (B i+Gi) - (Di+Hi) (3) Since McKibben muscles B and G are located to the west, south, and left, their position feedback signal S3 is S3- (-1)
Y+ (-1)P+R=-(Ci+F i)-(A
i+Ei)+3 (Bi+Gi)-(Di+H1)(
4) McKibben Line, H is located to the west, north, and right, so
The position feedback signal s4 is S4 = (1)y
+p ten (-1) R=-(Ci+Fi)-(Ai+Ei
) (Bi+Gi)-3(Di+Hi), and each signal S1, S2, s3, s4 is input to each position feedback comparator 11a to lid.

なおセンサ信号は伸縮の相反するマッキベン筋の内部抵
抗の変化による電圧の差であるから、どちらから引き算
してもよく、このことがら上記各計算式は以下のように
書き替えることができる。
Note that since the sensor signal is the voltage difference due to the change in internal resistance of the McKibben muscle, which stretches and contracts in opposition to each other, it may be subtracted from either of them. Therefore, each of the above calculation formulas can be rewritten as follows.

すなわち、センサ信号は (1)′東西方向(Y a w ) (Bi+Gi+Di+Hi) −(Ci+Fi十Ai+
Ei)暉Y (2)′南北方向(Pitch) (Ai+Ei+Bi+Gi)  −(Ci+F  i+
D  i  +Hi)  −P (3)′左右方向回転(Ro l 1)(Ai+Ei+
Di+Hi)−(Ci+Fi+Bi+Gi)−R また上記のようにセンサ信号の引き算の仕方が逆になる
と位置フィードバック信号は下記のようになる。
That is, the sensor signal is (1)′ east-west direction (Y aw ) (Bi+Gi+Di+Hi) −(Ci+Fi×Ai+
Ei) 暉Y (2)'North-south direction (Pitch) (Ai+Ei+Bi+Gi) -(Ci+F i+
D i +Hi) -P (3)' Left-right rotation (Ro l 1) (Ai+Ei+
Di+Hi)-(Ci+Fi+Bi+Gi)-R If the subtraction method of the sensor signal is reversed as described above, the position feedback signal will be as follows.

(1)′マッキベン筋CSFの位置フィードバック信号
S′1は S/ 1匍−3(Ci+Fi)+ (Ai十Ei)+ 
(B t+Gi) +(Di+Hi)(2)′マッキベ
ン筋A、Hの位置フィードバック信号S/ 2は S’ 2− (Ci+Fi)−3(Ai+Ei)+ (
Bi+GE) +(Di+Hi)(3)′マッキベン筋
BSGの位置フィードバック信号S′3は S’ 3− (Ci+Fi)+ (Ai+Ei)−3(
B i+G i) + (D i +Hi)(4)′マ
ッキベン筋り、Hの位置フィードバック信号S/4は S’ 4− (Ci+Fi)+ (Ai+Ei)+ (
Bi+Gi)+3 (Di+Hi)以上のように各マッ
キベン筋は同一作動するベアごとに伸縮動作されて第1
アーム1に対して第2アーム2が東西方向、南北方向さ
らに左右方向回転の動作がなされる。そして、このとき
の各ペアのマッキベン筋の動作は圧力センサからの圧力
フィードバック信号と、各ペアのマッキベン筋の内部抵
抗による位置フィードバック信号によりフィードバック
作動される。
(1) The position feedback signal S'1 of the McKibben muscle CSF is S/1 - 3 (Ci + Fi) + (Ai + Ei) +
(B t+Gi) + (Di+Hi) (2)' The position feedback signal S/2 of McKibben muscles A and H is S' 2- (Ci+Fi)-3(Ai+Ei)+ (
Bi+GE) +(Di+Hi)(3)'The position feedback signal S'3 of McKibben muscle BSG is S'3- (Ci+Fi)+(Ai+Ei)-3(
B i + G i) + (D i +Hi) (4)' McKibben line, the position feedback signal S/4 of H is S' 4- (Ci + Fi) + (Ai + Ei) + (
Bi+Gi)+3 (Di+Hi) As mentioned above, each McKibben muscle is expanded and contracted for each bear that operates the same way, and the first
The second arm 2 rotates relative to the arm 1 in east-west directions, north-south directions, and left-right directions. The motion of each pair of McKibben muscles at this time is feedback-operated by a pressure feedback signal from a pressure sensor and a position feedback signal based on the internal resistance of each pair of McKibben muscles.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、外部センサなしで各ベアのマッキベン
筋の位置のフィードバックができ、これにより、位置制
御性の向上と、低コスト、コンパクト化を図ることがで
きる。さらに各自由度における伸縮の相反する双方のマ
ッキベン筋の内部抵抗の変化による電圧信号の差を位置
フィードバック信号のセンサ信号としたことにより、作
動圧液の温度変化による外乱を補償でき、この点におい
ても位置制御性の向上を図ることができる。
According to the present invention, the position of the McKibben muscle of each bear can be fed back without an external sensor, thereby improving position controllability and achieving low cost and compactness. Furthermore, by using the difference in voltage signals due to changes in the internal resistance of both McKibben muscles, which expand and contract in each degree of freedom, as the sensor signal for the position feedback signal, it is possible to compensate for disturbances caused by temperature changes in the working pressure fluid. It is also possible to improve position controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多自由度関節の一例を示す斜視図、第2図はマ
ッキベン筋の内部抵抗の変化を示す模式図、第3図は制
御系を示すブロック線図、第4図はジョイスティックレ
バーを示す斜視図である。 A〜Hはマッキベン筋、1.2はアーム、3は中間部材
、8a〜8dは圧力制御弁、lla〜lidは位置フィ
ードバック用比較器。 特許出願人  工 業 技 術 院 長第2図 第4図
Figure 1 is a perspective view showing an example of a multi-degree-of-freedom joint, Figure 2 is a schematic diagram showing changes in the internal resistance of the McKibben muscle, Figure 3 is a block diagram showing the control system, and Figure 4 shows the joystick lever. FIG. A to H are McKibben muscles, 1.2 is an arm, 3 is an intermediate member, 8a to 8d are pressure control valves, and lla to lid are position feedback comparators. Patent applicant Director of the Institute of Industrial Technology Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] アクチュエータに複数個のマッキベン筋A〜Hを用いる
と共に、この各マッキベン筋A〜Hの圧液作用部をそれ
ぞれ圧力制御弁8a〜8dを介して同一の圧液源に接続
し、さらにその圧液に導電性液を用いた多自由度関節に
おいて、各マッキベン筋A〜Hの両端に電極を設けて各
マッキベン筋A〜Hの長さの変化による圧液の内部抵抗
を検出し、各自由度における伸縮の相反する双方のマッ
キベン筋の内部抵抗の差をセンサ信号とし、この各セン
サ信号を、各関節の駆動方向に応じて極性を合わせ加算
したものを位置フィードバック信号とし、この各位置フ
ィードバック信号と各圧力制御弁8a〜8dへの指令信
号と比較させるようにしたことを特徴とする多自由度関
節の制御方法。
A plurality of McKibben muscles A to H are used as actuators, and the pressure fluid acting portions of each of these McKibben muscles A to H are connected to the same pressure fluid source via pressure control valves 8a to 8d, respectively, and the pressure fluid is In a multi-degree-of-freedom joint using conductive fluid, electrodes are provided at both ends of each McKibben muscle A to H to detect the internal resistance of the pressure fluid due to changes in the length of each McKibben muscle A to H. The difference in the internal resistance of both McKibben muscles, which stretch and contract in opposition to each other, is used as a sensor signal, and the polarity of each sensor signal is adjusted and added according to the drive direction of each joint, and the resultant sum is used as a position feedback signal. A method for controlling a multi-degree-of-freedom joint, characterized in that the information is compared with a command signal sent to each of the pressure control valves 8a to 8d.
JP10464889A 1989-04-26 1989-04-26 Control method for multi-freedom degree joint Pending JPH02284887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10464889A JPH02284887A (en) 1989-04-26 1989-04-26 Control method for multi-freedom degree joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10464889A JPH02284887A (en) 1989-04-26 1989-04-26 Control method for multi-freedom degree joint

Publications (1)

Publication Number Publication Date
JPH02284887A true JPH02284887A (en) 1990-11-22

Family

ID=14386286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10464889A Pending JPH02284887A (en) 1989-04-26 1989-04-26 Control method for multi-freedom degree joint

Country Status (1)

Country Link
JP (1) JPH02284887A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000294A (en) * 2004-06-16 2006-01-05 Toshirou Noritsugi Mounting type power assist device
JP2008121783A (en) * 2006-11-13 2008-05-29 Japan Science & Technology Agency Joint system
CN105269591A (en) * 2015-11-19 2016-01-27 中国计量学院 Two-freedom-degree large-angle motion bionic elbow joint
WO2018078347A1 (en) * 2016-10-24 2018-05-03 University Of Dundee Soft actuators

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105897A (en) * 1986-10-23 1988-05-11 工業技術院長 Joint mechanism
JPS63212488A (en) * 1987-02-24 1988-09-05 工業技術院長 Joint device
JPS63216691A (en) * 1987-03-03 1988-09-08 工業技術院長 Joint device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105897A (en) * 1986-10-23 1988-05-11 工業技術院長 Joint mechanism
JPS63212488A (en) * 1987-02-24 1988-09-05 工業技術院長 Joint device
JPS63216691A (en) * 1987-03-03 1988-09-08 工業技術院長 Joint device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000294A (en) * 2004-06-16 2006-01-05 Toshirou Noritsugi Mounting type power assist device
JP2008121783A (en) * 2006-11-13 2008-05-29 Japan Science & Technology Agency Joint system
CN105269591A (en) * 2015-11-19 2016-01-27 中国计量学院 Two-freedom-degree large-angle motion bionic elbow joint
WO2018078347A1 (en) * 2016-10-24 2018-05-03 University Of Dundee Soft actuators
US11034017B2 (en) 2016-10-24 2021-06-15 University Of Dundee Soft actuators

Similar Documents

Publication Publication Date Title
JPS6056893A (en) Active follow-up type joint device
JPH1110575A (en) Parallel link mechanism
JPH02284887A (en) Control method for multi-freedom degree joint
JP3928878B2 (en) Wheel initial alignment system and method for vehicle steer-by-wire system
JPH0511822A (en) Cooperative operation system for robot
JPH05345291A (en) Working area limitation for robot
JP4301154B2 (en) Articulated robot
JPH0317632B2 (en)
JP2740277B2 (en) Articulated robot
JP2583272B2 (en) Robot control device
WO1984004722A1 (en) Articulated robot
JPH05146980A (en) Parallel manipulator
CN114770459B (en) Main control arm motion control method
JPH01312203A (en) Synchronously operated actuator
JPS63237887A (en) Joint device
JPH10202572A (en) Robot device
Popa A multi-link kinematics model for microrobots with artificial muscle structure
JPH04119203A (en) Drive controller for actuator
JPS6240508A (en) Hybrid control method for force and position of manipulator
JP2712653B2 (en) Manipulator control method
Christensen et al. Optimal image processing architecture for active vision systems
JPS597594A (en) Drive for joint of robot
JPS62184201A (en) Actuator control device
CN117863221A (en) Wearable rigid-flexible coupling knee joint parallel type power-assisted robot
JPH0367782A (en) Four-wheel steering device for vehicle