JPH02284640A - Production of sintered fine ceramics powder - Google Patents

Production of sintered fine ceramics powder

Info

Publication number
JPH02284640A
JPH02284640A JP1106834A JP10683489A JPH02284640A JP H02284640 A JPH02284640 A JP H02284640A JP 1106834 A JP1106834 A JP 1106834A JP 10683489 A JP10683489 A JP 10683489A JP H02284640 A JPH02284640 A JP H02284640A
Authority
JP
Japan
Prior art keywords
fluidized bed
bed furnace
laser beam
furnace
fine ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1106834A
Other languages
Japanese (ja)
Inventor
Nariyuki Furuta
古田 成之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1106834A priority Critical patent/JPH02284640A/en
Publication of JPH02284640A publication Critical patent/JPH02284640A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously produce sintered fine ceramics powder at low cost by floating a green fine ceramics powdery raw material in a fluidized bed furnace and irradiating this powdery ray material with the CO2 laser beams. CONSTITUTION:A green fine ceramics powdery raw material is injected to the upper layer part 1 in a fluidized bed furnace through an injection port 4 and floated therein. Thereby when this floated raw material descends through a thermal reaction furnace 3, the raw material is irradiated with the laser beams 15 which are emitted from an KWCO2 laser beam generator 10 set to the outside of a lower layer 2 and passed through a plane lens 12 of a bottom opening part 8. The fine powdery particles are completely trapped and instantaneously made to sintered fine ceramics powder, which is transferred to a cyclone 6 via an introduction pipe 7. In such a way, a large amount of the sintered fine ceramics powder is continuously produced at low cost.

Description

【発明の詳細な説明】 産T:、1−の利用分野 本発明は、焼結セラミックス微粉末の製造方法に関する
ものであって高品質の製品が低コスト・で人1へIr産
されため、研磨材f1分野、窯業製造分野に置いて、そ
の利用さオ]る効果は大である81正米の1支抹l 現在の焼結セラミックス微粉末の製造方法は、未焼結の
セラミックス原料を用途に合せて、焼成炉により低温、
又は、高温度で焼成溶融してその焼結塊を造り、人々の
各段階の粒子の大きさに合ゼた粉砕機に掛けて細粒し、
その細粒を更に@粉砕機に掛けてミツ021位の微粒子
の粉本とする、最後にその微粉末を分級機により、振る
い分けて製酌されるのが通例である、そのL程は多大の
装置技術と労力を必要とする割合に58!逍頃が僅少で
ありコスト高となる。
[Detailed Description of the Invention] Field of Application of Industrial Technology: 1- The present invention relates to a method for producing fine sintered ceramic powder, and since a high-quality product can be produced by a single person at a low cost, Its use in the abrasive field and ceramic manufacturing field is very effective.The current manufacturing method of sintered ceramic fine powder uses unsintered ceramic raw materials. Depending on the application, low temperature or
Or, create a sintered lump by firing and melting it at high temperature, and then grind it into fine particles by using a grinder that matches the particle size of each stage.
The fine particles are further passed through a crusher to produce a fine powder with a size of 021.Finally, the fine powder is sorted using a classifier and then made into a cup. 58% of equipment technology and labor required! The amount of time available is small and the cost is high.

発明の目的 本発明により、未焼結のセラミックス微粉末は流動層炉
内に置いて、触媒ガスの反応とcotしレーザー光線の
照射されるレーザー光線の集束焦点面のり変により、研
磨材料の超高温帯2.500℃より、窯業用フリット等
の低温帯500℃まで自由に操作が出来るため、H’P
−に焼結セラミックス微捨末となり、流動的にその微粉
末を連hc製造することが出来る、発明の目的である低
コストで大看生産が可能である。
Purpose of the Invention According to the present invention, unsintered ceramic fine powder is placed in a fluidized bed furnace, and the ultra-high temperature zone of the abrasive material is heated by the reaction of the catalyst gas and the change in the focal plane of the laser beam. 2. H'P
- The sintered ceramic is finely pulverized, and the fine powder can be continuously produced in a fluidized manner, which is the object of the invention, and large-scale production at low cost is possible.

発明の構成 発明の目的を達成するための手段として、本発明の未焼
結のセラミックス微粉末の製造方法の基本的な構造を説
明する。高温に耐える炉材を使用して流動層炉を造る、
流動層炉は上層、下層の層とし、その中間接続部にCO
2レーザー光線の集束焦点面の径に合せた、径の熱反応
炉を造る、下層の炉底部外側にレーザー光線の発振器を
設置する、その出射するレーザー光線を透過させるため
下層の炉底部を間口し、尚Iつ、その部位に流動層炉を
密閉状態にするためとレーザー光線の透過度が良く、高
温にも耐久力がある、アルミナ川結晶の゛ド面レンズを
可動装着し払拭除塵な可能とする、次にサイクロンへの
導入管に微粉末の流れを#幣するため流速計をセットし
てセンサーにより排風機を稼動i#I御することにより
、微粉末の熱反応炉を一定の速度で通過させ、又下層炉
内に浮遊する焼結された微粉末はレーザー光線を阻害し
、微粉末の品質に悪影響を及ぼすためその透過度を維持
する、尚■つ、炉底外側に送風機を設置して排風機を稼
動制御するセンサーと連動して、炉底内の反応ガス層に
ガスを送り、その上面に多数の穴を開は必13のガスを
送出して下層炉内をより一層透明にする、従って下層内
に浮遊する微粉末は導入管を通ってサイクロンへ順次蓄
積される上記の製造装置に基いて、未焼結のセラミック
ス微粉末を触媒反応ガスと一緒に噴射口より流動層炉の
下層炉内へ噴Hfp、Hさせる、COzレーザー光線発
振器より出射されるレーザー光線は、上層、下層間の熱
反応炉において集束焦点面の可変により、高温2・50
0℃より、低温500’Cの設定が自由に操作出来る、
その狭窄された熱反応炉を通過する未焼結のセラミック
ス微粒子は瞬時に、低温又は高温焼結され、尚触媒反応
を起して、焼結されたセラミックス微粒子粉末は流動的
に下層に浮遊する、その浮遊する微粉末は、排風機の吸
引力によりサイクロンへ順次移送され連続製造すること
を可能とした、発明の構成である。
Structure of the Invention As a means for achieving the object of the invention, the basic structure of the method for producing fine unsintered ceramic powder of the present invention will be explained. Build a fluidized bed furnace using furnace materials that can withstand high temperatures.
A fluidized bed furnace has an upper layer and a lower layer, and CO is added to the intermediate connection.
2. Build a thermal reactor with a diameter that matches the diameter of the focal plane of the laser beam, install a laser beam oscillator outside the bottom of the bottom of the furnace, open the bottom of the bottom of the bottom of the furnace to allow the emitted laser beam to pass through, and First, in order to keep the fluidized bed furnace in a sealed state, an alumina river crystal double-sided lens, which has good laser beam penetration and is durable against high temperatures, is movably attached to the area, making it possible to wipe and remove dust. Next, a current meter is set to direct the flow of fine powder into the inlet pipe to the cyclone, and the sensor controls the operation of the exhaust fan, allowing the fine powder to pass through the thermal reactor at a constant speed. In addition, the sintered fine powder floating in the lower furnace obstructs the laser beam and has a negative effect on the quality of the fine powder, so it is necessary to maintain its transparency and exhaust it by installing a blower outside the bottom of the furnace. In conjunction with the sensor that controls the operation of the wind fan, gas is sent to the reactive gas layer in the bottom of the furnace, and numerous holes must be opened on the top surface to send out 13 gases, making the inside of the lower furnace even more transparent. Therefore, the fine powder suspended in the lower layer passes through the inlet pipe and is accumulated in the cyclone. Based on the above manufacturing equipment, the unsintered ceramic fine powder is sent together with the catalytic reaction gas from the injection port into the lower layer of the fluidized bed furnace. The laser beam emitted from the COz laser beam oscillator, which injects Hfp and H into the furnace, has a high temperature of 2.5
You can freely set the temperature from 0℃ to 500'C.
Unsintered ceramic particles passing through the constricted thermal reactor are instantaneously sintered at low or high temperatures, and a catalytic reaction occurs, causing the sintered ceramic particles to float fluidly in the lower layer. This is the structure of the invention that allows the floating fine powder to be sequentially transferred to a cyclone by the suction force of an exhaust fan, making continuous production possible.

発明の効果 従来、焼結セラミックス微粉末の製造方法は、多大の装
置技術と労力を必要としたが、本発明により、未焼結の
セラミックス微粉末原料を流動層炉内に浮遊させ、CO
tレーザー光線の照射により微α子は瞬時に焼結され、
流動的に焼結セラミックス微粉末が連続製造されるので
、低コストで大型生産が出来る、窯業・研磨業界におい
て大いに活用される発明である。
Effects of the Invention Conventionally, the method for producing sintered ceramic fine powder required a great deal of equipment technology and labor, but with the present invention, unsintered ceramic fine powder raw material is suspended in a fluidized bed furnace, and CO
Micro alpha particles are instantly sintered by irradiation with laser beam,
Since sintered ceramic fine powder is continuously manufactured in a fluid manner, large-scale production can be performed at low cost, and this invention is widely used in the ceramics and polishing industries.

実施例 本発明の焼結セラミックス微粉末の58!遣方法の実施
例を、図面の第1図の流動層炉を9照しながら説明する
Example 58 of the sintered ceramic fine powder of the present invention! An embodiment of the method will be described with reference to the fluidized bed furnace shown in FIG. 1 of the drawings.

本発明の焼結セラミックス微粉末の512造装置である
、流#j層炉に未焼結フリット粉本原料(粒度30ミク
ロン以下)を空気圧により毎分300gを噴射口4を通
して炉内上層部lへ噴射c7遊せしめる、その浮遊した
未焼結フリット微粉末原料は熱反応炉3を降下する時点
で、下層2の外側に2K W CO*レーザー光線発振
器10をセットして炉底部【」部8のf面しンズ!2を
透過して、レーザー光線15の集束焦点面16の径50
..に合わせて直径506.の熱反応炉3に対してレザ
ー光線15を照射する、その面の設定温度14はフリッ
ト溶融温度l・300℃とした、レーザー光線に粉末の
微粒子側々は完全に捕捉されて瞬時に焼結フリ・lト微
扮本となり、下層部2に降下浮遊する、その微粉末の滞
留濃度が高く成ると、レーザー光線15の透過度悪化し
、又原料粉本の熱反応炉3の降下速度も不安定となるた
め導入管7に流速計5をセー/トシて炉内の流速が一定
に成るように排風n9稼動制膚する、尚Hつ下層2内の
透過度をより一層高めるために炉底の送風機13を11
風磯9の稼動制御するセンサーに連動させて、反応ガス
層11へ清浄空気を炉内へ送入することより、)’I[
2内に浮遊する微粉末は導入管7を絆で流動的にサイク
ロン6へ移送蓄積され、焼結セラミックス微8)木を連
続製造することが出来た。
The unsintered frit powder main raw material (particle size of 30 microns or less) is fed into the flow #j bed furnace, which is the sintered ceramic fine powder manufacturing device of the present invention, at a rate of 300 g per minute by air pressure through the injection port 4 into the upper layer l of the furnace. When the floating unsintered frit fine powder raw material which is injected into C7 floats down the thermal reactor 3, a 2K W CO* laser beam oscillator 10 is set outside of the lower layer 2 and F-face Shins! 2, the diameter 50 of the focal plane 16 of the laser beam 15
.. .. Diameter 506. A laser beam 15 is irradiated onto the thermal reactor 3, and the set temperature 14 on that surface is set to the frit melting temperature l·300°C.The laser beam completely captures the fine particles of the powder and instantly sinters the frit.・If the concentration of the fine powder that remains in the lower layer 2 becomes high, the transmittance of the laser beam 15 will deteriorate, and the rate of descent of the raw material powder in the thermal reactor 3 will become unstable. Therefore, a current meter 5 is installed in the inlet pipe 7 to control the operation of the exhaust air n9 so that the flow velocity inside the furnace is constant. blower 13 to 11
)'I[
The fine powder floating in 2 was fluidly transferred to the cyclone 6 through the introduction pipe 7 and accumulated therein, making it possible to continuously produce sintered ceramic fine 8) wood.

【図面の簡単な説明】[Brief explanation of drawings]

第一図は本発明の実施例を示−f焼結セラミックス微粉
末の製造装置である。 l−流動層炉の上層、2−流vj層炉のF層、3・−熱
反応炉、4−原料微粉末噴射(j、5−・流速計、6・
−サイクロン、7・−導入管、8・−炉底開口部、9・
−排風機、10−レイザー光線9.振器、11−・反応
ガス層、12−’F−曲レンズ、13・−送風機、■4
−温度計、15・−レイザー光線、16−レイザー光線
集束焦点面、 第二図は流動層炉の下層炉底部を1−より見た゛「面図
である。 1・−炉底間[1部、2・−送風管、3−反応ガス層か
らF層内の噴出口54−下層炉壁、 第3図はアルミナ単結晶7面レンズの平面図である。 [−l<面レンズ、2−炉底開口部の位置、3−レンズ
のシャフト穴。 第4図はアルミナ単結晶7面レンズの側面図である。 l・−ゝY、而レ面ズ、2−炉底開口部の位置、3−レ
1ンズのシャフト、4−プーリー15−・レーザー光線
、 出  願  人    古  1)   成  2才2
1力 [ +31附
FIG. 1 shows an embodiment of the present invention - an apparatus for producing fine sintered ceramic powder. 1- Upper layer of fluidized bed furnace, 2-F layer of flow vj bed furnace, 3--thermal reactor, 4- raw material fine powder injection (j, 5- current meter, 6-
-Cyclone, 7.-Introduction pipe, 8.-Furnace bottom opening, 9.
- Exhaust fan, 10- Laser beam9. Shaker, 11--Reactive gas layer, 12-'F-curved lens, 13--Blower, ■4
- Thermometer, 15 - Laser beam, 16 - Laser beam focusing focal plane, Figure 2 is a plan view of the lower furnace bottom of the fluidized bed reactor as viewed from 1. , 2.-Blast pipe, 3. Ejection port 54 in F layer from reaction gas layer-Lower furnace wall, FIG. 3 is a plan view of an alumina single crystal seven-sided lens. [-l<plane lens, 2- The position of the furnace bottom opening, 3- The shaft hole of the lens. Figure 4 is a side view of the alumina single crystal seven-sided lens. 3- Lens shaft, 4- Pulley 15- Laser beam, Applicant Old 1) Age 2 years old 2
1 power [ +31 attached

Claims (1)

【特許請求の範囲】 1)流動層炉を使用して、低温又は、高温触媒反応ガス
雰囲気内に置いて、流動的に未焼結のセラミックス微粉
末を焼結することを特徴とした焼結セラミックス微粉末
の製造方法。 2)流動層炉の未焼結のセラミックス微粉末の焼成する
熱源は、CO_2レーザー光線を照射することを特徴と
した、焼結セラミックス微粉末の製造方法。 3)流動層炉内の高温雰囲気をつくる、CO_2レーザ
ー光線の照射は、流動層炉底外側に、レーザー光発振器
を設置し、その出射するレーザー光線を炉内に透過させ
るため開孔し、その部位にアルミナ準結晶の平面レンズ
を可動装着して流動層炉を密閉状態することを特徴とし
た、流動層炉である。 4)流動層炉内に噴霧浮遊している、未焼結のセラミッ
クス微粉末をCO_2レーザー光線で完全捕捉して照射
するために、流動層炉を上層、下層の二層とし、その中
間にCO_2レーザー光線の集束焦点面の径に合せた、
径の熱反応層を設置することを特徴とした、流動層炉で
ある。
[Claims] 1) Sintering characterized by sintering unsintered fine ceramic powder fluidly by using a fluidized bed furnace and placing it in a low-temperature or high-temperature catalytic reaction gas atmosphere. A method for producing ceramic fine powder. 2) A method for producing sintered ceramic fine powder, characterized in that the heat source for firing the unsintered ceramic fine powder in a fluidized bed furnace is irradiation with a CO_2 laser beam. 3) To irradiate the CO_2 laser beam that creates a high-temperature atmosphere inside the fluidized bed furnace, a laser beam oscillator is installed outside the bottom of the fluidized bed furnace, and a hole is opened to transmit the emitted laser beam into the furnace. This fluidized bed furnace is characterized by a movable alumina quasicrystal plane lens that seals the fluidized bed furnace. 4) In order to completely capture and irradiate the unsintered fine ceramic powder sprayed and suspended in the fluidized bed furnace with the CO_2 laser beam, the fluidized bed furnace has two layers, an upper layer and a lower layer, and the CO_2 laser beam is placed in the middle. Matched to the diameter of the focal plane of
This is a fluidized bed furnace characterized by the installation of a thermal reaction bed of approximately 300 mm in diameter.
JP1106834A 1989-04-26 1989-04-26 Production of sintered fine ceramics powder Pending JPH02284640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1106834A JPH02284640A (en) 1989-04-26 1989-04-26 Production of sintered fine ceramics powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1106834A JPH02284640A (en) 1989-04-26 1989-04-26 Production of sintered fine ceramics powder

Publications (1)

Publication Number Publication Date
JPH02284640A true JPH02284640A (en) 1990-11-22

Family

ID=14443756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1106834A Pending JPH02284640A (en) 1989-04-26 1989-04-26 Production of sintered fine ceramics powder

Country Status (1)

Country Link
JP (1) JPH02284640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092470A1 (en) * 1999-10-11 2001-04-18 Foseco International Limited Sintering of powder particles into granules
WO2011147866A1 (en) * 2010-05-27 2011-12-01 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass granules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092470A1 (en) * 1999-10-11 2001-04-18 Foseco International Limited Sintering of powder particles into granules
WO2001026795A1 (en) * 1999-10-11 2001-04-19 Foseco International Limited Sintering of powder particles into granules
WO2011147866A1 (en) * 2010-05-27 2011-12-01 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass granules

Similar Documents

Publication Publication Date Title
Alonso et al. Review of experimental investigation on directly irradiated particles solar reactors
JP3364684B2 (en) Sorting fly ash by carbon combustion in a dry boiling fluidized bed
FI85954B (en) Method and arrangement for drying and calcining powdered material
BE1005902A3 (en) Spherulization FURNACE AND METHOD OF MAKING BEADS IN VITREOUS.
JPS6114147A (en) Method and device for manufacturing glass hollow microspheres
DE3469512D1 (en) Process and installation for burning fine-grained material for the production of cement clinker
MX2007004788A (en) Calcining plant and method.
SE8603419L (en) DEVICE FOR COMBUSTION PLANT WITH CIRCULATING FLUID BED
US2945326A (en) Apparatus for manufacturing glass beads
JPH02284640A (en) Production of sintered fine ceramics powder
CN111971259A (en) Modification method of fly ash
CN106086282B (en) A kind of COREX fused reduction iron-smeltings equipment and iron smelting method
JP2007292379A (en) Manufacturing method and device of heat treated particle
EP0076704B1 (en) A method of disposing of combustible material
YU3897A (en) Formation of a refractory repair mass
FR2718655A1 (en) Process for the treatment of solid residues from the combustion of a fuel containing sulfur, and heat treatment device for carrying out the process
Berbner et al. Pulse jet cleaning of rigid filter elements at high temperatures
SE8101701L (en) SET AND DEVICE FOR THERMAL DESTRUCTION OF RESPONSEABLE SUBSTANCES
US4389332A (en) Apparatus and a process for heating material
US4496477A (en) Apparatus and a process for heating a material
CN107990719A (en) A kind of half shower furnace of desiliconization flyash sintering and its application method
US4094630A (en) Welding flux curing apparatus
US2026370A (en) Furnace for sintering and fusing quartz
US3488043A (en) Apparatus for manufacturing high strength,lightweight aggregates for lightweight concrete and the like
ES397802A1 (en) Method and furnace for heat treating materials