JPH02284485A - Forming method of organic piezoelectric pyroelectric film - Google Patents

Forming method of organic piezoelectric pyroelectric film

Info

Publication number
JPH02284485A
JPH02284485A JP1104562A JP10456289A JPH02284485A JP H02284485 A JPH02284485 A JP H02284485A JP 1104562 A JP1104562 A JP 1104562A JP 10456289 A JP10456289 A JP 10456289A JP H02284485 A JPH02284485 A JP H02284485A
Authority
JP
Japan
Prior art keywords
film
substrate
pyroelectric
raw material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1104562A
Other languages
Japanese (ja)
Other versions
JP2782528B2 (en
Inventor
Yoshikazu Takahashi
善和 高橋
Masayuki Iijima
正行 飯島
Eiichi Fukada
栄一 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP10456289A priority Critical patent/JP2782528B2/en
Publication of JPH02284485A publication Critical patent/JPH02284485A/en
Application granted granted Critical
Publication of JP2782528B2 publication Critical patent/JP2782528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE:To improve orientation property and increase heat resistance by forming an organic piezoelectric pyroelectric film directly on a substrate in a vacuum. CONSTITUTION:In a processing chamber 1, a substrate 3 on which a deposition film of piezoelectric pyroelectric material is formed is retained on a holder 4; the thickness of a film formed on the substrate 3 is measured by a film thickness monitor 5. Facing the substrate 3, a vessel 6 is arranged which is used for evaporating diamine as pyroelectric raw material monomer (a) and di-isocyanate as raw material monomer (b); by an evaporation monitor 7 and a heater 8, the temperature of the vessel 6 is controlled to be a specified value to keep the evaporation of the monomer (a) and (b) always constant. The substrate 3 on which a polyurea film is formed is taken out and heated; electric field is applied to the polyurea film; heating is stopped; the film is gradually cooled and subjected to boring process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えばマイクロホン、スピーカー用の振動板等
の音響機器、各種熱センサー、圧力センサー、赤外線検
出器等の測定機器等にその圧電性や焦電性を利用して用
いる有機圧電焦電体膜の形成方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to audio equipment such as microphones and diaphragms for speakers, measurement equipment such as various heat sensors, pressure sensors, infrared detectors, etc. The present invention relates to a method of forming an organic piezoelectric pyroelectric film using pyroelectricity.

(従来の技術) 従来、有機圧電焦電体膜としてポーリング処理されたポ
リビニリデンフロライドフィルム(以下PVDFフィル
ムという)等が用いられている。
(Prior Art) Conventionally, a poling-treated polyvinylidene fluoride film (hereinafter referred to as PVDF film) has been used as an organic piezoelectric pyroelectric film.

これら有機圧電焦電体膜はほとんど同様の方法で形成さ
れるか、例えばPVDFフィルムの形成の場合について
示せば次の通りである。
These organic piezoelectric pyroelectric films are formed by almost the same method, for example, in the case of forming a PVDF film, as follows.

先ず、例えば原料モノマーとしてフッ化ビニリデンを蒸
留水とペンゾイルパーオキザイF等の過酸化物触媒と共
に温度60〜80 ’Cで、圧カフ90〜950の加圧
下で反応させてIH3られた重合体を、フィルム形成法
でシート状のフィルムに形成する。この形成されたフィ
ルムに延伸処理を施して配向性(フィルムの結晶性)を
高めた後、該フィルムを温度室温〜70 ℃で、電場5
0〜250 M V / mの条件下でポーリング処理
(双極子を電場の方向に配向させる)を行って圧電焦電
体のPVDFフィルムを形成する。
First, for example, a polymer obtained by reacting vinylidene fluoride as a raw material monomer with distilled water and a peroxide catalyst such as Pennzoyl Peroxai F at a temperature of 60 to 80'C under a pressure of 90 to 950C and subjected to IH3. is formed into a sheet-like film using a film forming method. After stretching the formed film to increase its orientation (crystallinity of the film), the film was stretched at room temperature to 70°C in an electric field of 5°C.
A poling treatment (orienting dipoles in the direction of the electric field) is performed under conditions of 0 to 250 M V/m to form a piezoelectric pyroelectric PVDF film.

ここでポーリング処理を行うのは、PVDFフィルムは
分子鎖内に双極子モーメントの人きy)CF 2原子団
を含んでいるため、ポーリング処理によって該原子団の
有する双極子モーメントを分子鎖に沿って同一方向に配
列し、高分子鎖の集合体である高分子フィルムに残留分
極を生じさせ、該フィルムに圧電性ないし焦電性を与え
るためである。
The reason for performing the poling process here is that the PVDF film contains a CF2 atomic group with a dipole moment in its molecular chain, so the poling process changes the dipole moment of the atomic group along the molecular chain. This is because the polymer chains are arranged in the same direction to cause residual polarization in the polymer film, which is an aggregate of polymer chains, and to impart piezoelectricity or pyroelectricity to the film.

尚、PVDFフィルムはフィルムに成形しただけでは、
ジグサグ(β型)分子と、へりクス(α型)分子とか混
じっている状態なので、延伸によって高分子鎖をジグザ
グ の形(βフオーム)にしてからポーリング処理を行って
いる。
In addition, PVDF film can only be formed into a film.
Since it is a mixture of zig-sag (β-type) molecules and helix (α-type) molecules, the polymer chain is stretched into a zigzag shape (β form) before the poling process is performed.

(発明が解決しようとする手段) 前記PVDFフィルム等の有機圧電焦電体の形成方法は
、フィルムに圧電性、焦電性を付与するまでには、原料
モノマーの重合工程、フィルム形成工程、延伸工程、ポ
ーリング工程等のように数多くの工程を必要とするため
作業性が悪く、しかもフィルム形成後に延伸処理を施さ
なければ配向性が得られないので、圧電焦電体としては
フィルム状のものしか得られないため、圧電焦電体膜と
して基板上にコーテングすることが出来ない等の問題か
ある。
(Means to be Solved by the Invention) The method for forming an organic piezoelectric pyroelectric material such as the PVDF film requires a polymerization step of raw material monomers, a film forming step, and a stretching step before imparting piezoelectricity and pyroelectricity to the film. The workability is poor as it requires numerous steps such as process and poling process, and orientation cannot be obtained unless the film is stretched after film formation. Therefore, there are problems such as the inability to coat a substrate as a piezoelectric pyroelectric film.

また、PVDFフィルムの場合は耐熱性に乏しいため、
フィルム温度が数十度に達すると次第に軟化か起こって
残留分極が減少し、該温度が100°C付近ではフィル
ムの弾性率の低下、誘電率の上昇と共に圧電率、焦電率
か減少して音響デバイスセンサー等に使用することか困
難である等の問題かある。
In addition, since PVDF film has poor heat resistance,
When the film temperature reaches several tens of degrees, it gradually softens and the residual polarization decreases, and when the temperature is around 100 degrees Celsius, the elastic modulus of the film decreases, and as the dielectric constant increases, the piezoelectric constant and pyroelectric constant decrease. There are problems such as difficulty in using it for acoustic device sensors and the like.

また、芳香族系フィルムの場合は耐熱性を備えているが
、構成高分子中にベンゼン環を含有しているためPVD
Fフィルムのように直接フィルムに高電界を加える通常
のポーリング処理ではフィルム内で分子鎖内の双極子の
反転か極めて困難であるので、十分な残留分極が得られ
ず、その結果圧電率はPVDFフィルムの1/200程
度のレベルしか得られないという問題がある。
In addition, aromatic films have heat resistance, but because they contain benzene rings in their constituent polymers, PV
In the normal poling process, which applies a high electric field directly to the film like F film, it is extremely difficult to reverse the dipoles in the molecular chains within the film, so sufficient remanent polarization cannot be obtained, and as a result, the piezoelectric constant is lower than that of PVDF. There is a problem in that the level is only about 1/200 of that of film.

本発明は、前記問題点を解消した有機圧電焦電体膜の形
成方法を提供することを目的とする。
An object of the present invention is to provide a method for forming an organic piezoelectric pyroelectric film that eliminates the above-mentioned problems.

(課題を解決するための手段) 有機圧電焦電体膜の圧電率、焦電率は、大きな双極子モ
ーメントを有する原子団が重要な役割を果たしており、
その原子団としてはF。
(Means for solving the problem) The piezoelectric constant and pyroelectric constant of an organic piezoelectric pyroelectric film are determined by atomic groups having a large dipole moment, which play an important role.
The atomic group is F.

CN、CΩたけではなく、〉C−0基やNH基も大きな
双極子モーメントを有しており、これ等>C=O基やN
H基を含む高分子膜は優れた圧電率、焦電率を備える。
Not only CN and CΩ, but also 〉C-0 and NH groups have large dipole moments, and these 〉C=O and N
A polymer film containing H groups has excellent piezoelectric constant and pyroelectric constant.

そこで本発明者らは、〉C=0基やNH基を含む高分子
に着目し、鋭意検討の結果、原料モノマーを真空中で基
板上に蒸着重合させることによって配向性の優れたポリ
ユリア膜を形成し得ることを知見した。
Therefore, the present inventors focused on polymers containing 〉C=0 groups and NH groups, and as a result of intensive studies, they created a polyurea film with excellent orientation by vapor-depositing and polymerizing raw material monomers on a substrate in vacuum. We found that it is possible to form

本発明の有機圧電焦電体膜の形成方法は、前記知見に基
づいてなされたものであって、真空中でジアミンとジイ
ソシアネートとから成る原料モノマーを蒸発させ、これ
らを基板上で蒸着重合させて該基板上にポリユリア膜を
形成し、該ポリユリア膜にポーリング処理を施すことを
特徴とする。
The method for forming an organic piezoelectric pyroelectric film of the present invention was made based on the above-mentioned knowledge, and comprises evaporating raw material monomers consisting of diamine and diisocyanate in a vacuum, and then vapor-polymerizing them on a substrate. The method is characterized in that a polyurea film is formed on the substrate and a poling treatment is performed on the polyurea film.

ポリユリアの一方の原料モノマーに用いるジアミンとし
ては、44′−ジアミノジフェニルエーテル、4,4′
−ジアミノ−3,3′ジメチルジフエニルメタン、p、
p’ −ジアミノジフェニルメタン舌が挙げられる。
The diamines used as one of the raw material monomers for polyurea include 44'-diaminodiphenyl ether, 4,4'
-diamino-3,3'dimethyldiphenylmethane, p,
Mention may be made of p'-diaminodiphenylmethane.

また、他方の原料モノマーに用いるジイソシアネートと
しては、4.4’ −ジイソシアン酸メチレンジフェニ
ル、4.4’ −ジイソシアン酸3,3′−ジメチルジ
フェニル等が挙げられる。
Examples of the diisocyanate used as the other raw material monomer include methylene diphenyl 4,4'-diisocyanate and 3,3'-dimethyldiphenyl 4,4'-diisocyanate.

また、前記両原料モノマーを蒸発させて基板上で重合さ
せる際の真空度としては1×10〜I X ]、 0 
 ’Torr程度に設定する。
Further, the degree of vacuum when evaporating both of the raw material monomers and polymerizing them on the substrate is 1×10 to I x ], 0
'Set to about Torr.

また、ポリユリア膜に施すポーリング処理はポリユリア
膜を180〜200℃程度の解離温度に近い高温度に加
熱し、該ポリユリア膜に100〜200MV/m程度の
電界を所定時間印加した後、該ポリユリア膜を室温まで
徐冷する。
In addition, in the poling treatment performed on the polyurea film, the polyurea film is heated to a high temperature of about 180 to 200°C, close to the dissociation temperature, and an electric field of about 100 to 200 MV/m is applied to the polyurea film for a predetermined period of time. Cool slowly to room temperature.

ポリユリアの重合反応を、ジアミンに44′−ジアミノ
ジフェニルエーテルを用い、ジイソシアネ−1・に4,
4′−ジイソシアン酸メチレンジフェニルを用いた場合
で示せば次式の通りである。
The polymerization reaction of polyurea was carried out using 44'-diaminodiphenyl ether as the diamine and 4,
The following formula shows the case where methylene diphenyl 4'-diisocyanate is used.

〇二〇 この反応は可逆反応であり、温度200°C(=1近で
は分子運動か活発となる。そこで−旦ポリユリアを成膜
した後、温度200°Cでポーリングを行うと膜内の分
子は動きやすい状態となっているため、極めて容易に配
向する。そして配向後、温度を低くすることにより、膜
内の分子が配向したまま固定されて、一定方向の配向性
を有するポリユリア膜か得られる。
〇20 This reaction is a reversible reaction, and at a temperature of 200°C (= 1), molecular motion becomes active. Therefore, after forming a polyurea film, poling at a temperature of 200°C will cause the molecules in the film to move. Because it is in a state of easy movement, it is extremely easy to orient.After orientation, by lowering the temperature, the molecules in the film are fixed in an oriented state, resulting in a polyurea film with a certain orientation. It will be done.

ポリユリアの高分子鎖には各モノマー毎にHN−CO−
NHの双極子が存在し、その双極子モーメントは約5デ
バイユニツトであり、高電場の下ではこれら双極子が電
場方向に配向する。特に分子運動か容易に行なえる高温
度では双極子が分子鎖上で一定の方向に配向するので、
形成された膜を室温まで冷却した後でも残留分極が発生
する。この残留分極は安定であり、高分子の転移温度以
下では温度を昇降させても消滅しない。
The polymer chain of polyurea contains HN-CO- for each monomer.
There are dipoles of NH with a dipole moment of about 5 Debye units, and under high electric fields these dipoles align in the direction of the electric field. In particular, at high temperatures where molecular motion can easily occur, the dipoles are oriented in a certain direction on the molecular chain.
Residual polarization occurs even after the formed film is cooled to room temperature. This residual polarization is stable and does not disappear even if the temperature is raised or lowered below the transition temperature of the polymer.

また、電場の向きを反対にすることにより双極子の向き
を反対方向に変えることが出来る。
Furthermore, by reversing the direction of the electric field, the direction of the dipole can be changed to the opposite direction.

このことは積層膜を形成する際の利点となる。This is an advantage when forming a laminated film.

(実施例) 以下添付図面に従って本発明の実施例について説明する
(Example) Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明方法を実施する装置の1例を示すもので
、図中、1は処理室を示す。該処理室1内を外部の真空
ポンプその他の真空排気系2に接続すると共に、該処理
室1内に圧電焦電体の蒸着膜を形成せしめるべき基板3
を2本のレールから成るホルダー4上に保持し、かつ基
板3の前面に設けられた膜厚モニター5によって基板3
上に形成される膜厚を測定するようにした。また、処理
室1内の下方に前記基板3に対向させて焦電体の原料モ
ノマーaとしてのジアミン、原料モノマーbとしてのジ
イソシアネートを夫々蒸発させるためのガラス製の蒸発
用容器6,6を設け、該各蒸発用容器6をその近傍に設
けられた水晶振動の蒸発モニター7と、ヒーター8とに
よって前記原料モノマーaおよびbの蒸発を常に一定化
させる所定温度にコントロール出来るようにした。尚、
図中、9は基板3と両蒸発用容器6との間に介在される
シャッター 10は両蒸発用容器6間に設けた仕切板を
示す。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention, and in the figure, 1 indicates a processing chamber. A substrate 3 on which the inside of the processing chamber 1 is connected to an external vacuum pump or other evacuation system 2, and on which a vapor-deposited film of a piezoelectric pyroelectric material is to be formed inside the processing chamber 1.
is held on a holder 4 consisting of two rails, and the film thickness monitor 5 provided on the front surface of the substrate 3 measures the thickness of the substrate 3.
The thickness of the film formed on the surface was measured. Furthermore, glass evaporation containers 6, 6 are provided in the lower part of the processing chamber 1, facing the substrate 3, for evaporating diamine as the raw material monomer a of the pyroelectric body and diisocyanate as the raw material monomer b, respectively. Each of the evaporation containers 6 was able to be controlled at a predetermined temperature by a crystal vibration evaporation monitor 7 and a heater 8 provided in the vicinity thereof so as to keep the evaporation of the raw material monomers a and b constant. still,
In the figure, 9 indicates a shutter interposed between the substrate 3 and both evaporation containers 6, and 10 indicates a partition plate provided between both evaporation containers 6.

次に前記装置を用いてポリユリア膜の形成の具体的実施
例を比較例と共に説明する。
Next, specific examples of forming a polyurea film using the above-mentioned apparatus will be described together with comparative examples.

実施例1 先ず、蒸発用容器6,6の一方に原料モノマa即ちジア
ミンとして4,4′ −ジアミノジフェニルエーテルと
、他方に原料モノマーb即ちジイソシアネートとして4
,4′−ジイソシアン酸メチレンジフェニルを夫々充填
し、シャッター9を閉゛じた状態で処理室1内の全圧を
真空排気系2を介してI X 10−5Torrに設定
する。
Example 1 First, raw material monomer a, that is, 4,4'-diaminodiphenyl ether as a diamine, was placed in one of the evaporation vessels 6, 6, and raw material monomer b, that is, 4,4'-diaminodiphenyl ether as a diisocyanate, was placed in the other.
, 4'-methylene diphenyl diisocyanate are respectively filled, and the total pressure in the processing chamber 1 is set to I.times.10@-5 Torr via the evacuation system 2 with the shutter 9 closed.

次に、蒸発モニター7.7で蒸発用容器6゜6からの各
原料モノマーa、bの蒸発量を測定しながらヒーター8
,8によって4,4′ −ジアミノジフェニルエーテル
を温度135±2°Cに、また、4,4′ −ジイソシ
アン酸メチレンジフェニルを温度75±2°Cに夫々加
熱する。
Next, while measuring the evaporation amount of each raw material monomer a and b from the evaporation container 6°6 with the evaporation monitor 7.
, 8 to a temperature of 135±2°C and methylene diphenyl 4,4′-diisocyanate to a temperature of 75±2°C, respectively.

次いで、原料モノマーa、bが所定温度に達して所要の
蒸発量が得られた後にシャッター9を開き、処理室1内
のホルダー4で保持された基板3(スライドガラスの表
面に下部電極として予めアルミニウムが蒸着されている
)上に該原料モノマーa、bを2人/分の析出速度で厚
さ2000人に堆積させた後、シャッター9を閉じ、基
板3上でポリユリアの重合反応を起こさせて該基板3上
にポリユリア膜を形成した。
Next, after the raw material monomers a and b reach a predetermined temperature and the required amount of evaporation is obtained, the shutter 9 is opened, and the substrate 3 (a slide glass) held in the holder 4 in the processing chamber 1 is After depositing the raw material monomers a and b to a thickness of 2000 mm on the substrate (on which aluminum is vapor-deposited) at a deposition rate of 2 mm/min, the shutter 9 is closed and a polymerization reaction of polyurea is caused on the substrate 3. A polyurea film was formed on the substrate 3.

このポリユリア膜の上に更に上部電極としてアルミニウ
ムを蒸着した。
Aluminum was further deposited on this polyurea film as an upper electrode.

尚、原料モノマーa、bは化学量論的にポリユリア膜か
形成されるように蒸発量の調整によって1=1のモル比
で蒸発するようにした。また、原料モノマーa、bの蒸
発時における処理室1内の圧力は3 X 10−5To
rrとした。
The raw material monomers a and b were evaporated at a molar ratio of 1=1 by adjusting the evaporation amount so that a polyurea film was formed stoichiometrically. Furthermore, the pressure inside the processing chamber 1 during the evaporation of the raw material monomers a and b is 3 x 10-5To
It was set as rr.

このようにしてポリユリア膜の形成された基板3を取り
出し温度200°Cに加熱し、上部電極と下部電極の間
即ち該ポリユリア膜に150M V / mの電界を1
0分間印加してしたまま加熱を停止し、ポリユリア膜の
温度を200”Cがら室温まで徐冷してポーリング処理
を施した。
The substrate 3 on which the polyurea film was formed in this manner was taken out and heated to a temperature of 200°C, and an electric field of 150 M V/m was applied between the upper electrode and the lower electrode, that is, to the polyurea film.
Heating was stopped while the voltage was being applied for 0 minutes, and the temperature of the polyurea film was gradually cooled from 200''C to room temperature to perform a poling treatment.

前記方法でポーリング処理されたポリユリア膜を温度5
0°Cから170℃に加熱しながら焦電流をfllll
定し、次式により焦電率(C/ rrf’ K )を求
めた。
The polyurea film polled by the above method was heated to a temperature of 5
Fullllll pyroelectric current while heating from 0°C to 170°C
The pyroelectric constant (C/rrf' K ) was determined using the following formula.

焦電流(A) jiA電率− 温度変化速度(0C/分) 得られた各温度毎の焦電率を第2図Aに示す。Pyroelectric current (A) jiA electric rate- Temperature change rate (0C/min) The obtained pyroelectric constants at each temperature are shown in FIG. 2A.

また、共振法で圧電率を調べたところd=5pC/Nで
あった。
Furthermore, when the piezoelectric constant was examined using a resonance method, it was found that d=5 pC/N.

実施例2 一方の原料モノマーaとして44′−ジアミノ−3,3
′−ジメチルジフェニルメタンを用い、その加熱温度を
]]0±2℃とし、また、他方の原料モノマーbとして
4,4′−ジイソシアン酸メチレンジフェニルを用い、
その加熱温度を75±2℃とした以外は実施例]と同様
の方法で基板3上にポーリング処理されたポリ] ] ユリア膜を形成した。
Example 2 44'-diamino-3,3 as one raw material monomer a
'-dimethyldiphenylmethane was used, the heating temperature was ]]0±2°C, and methylene diphenyl 4,4'-diisocyanate was used as the other raw material monomer b,
A poling-treated polyurea film was formed on the substrate 3 in the same manner as in Example except that the heating temperature was 75±2°C.

そして実施例1と同様の方法で焦電率を求め、得られた
各温度毎の焦電率を第2図Bに示す。
Then, the pyroelectric constant was determined in the same manner as in Example 1, and the obtained pyroelectric constant at each temperature is shown in FIG. 2B.

また、実施例]と同様の方法で圧電率を調べたところd
=12pc/Nであった。
In addition, when the piezoelectric constant was investigated using the same method as in Example], d
=12pc/N.

実施例3 一方の原料モノマーaとして4,4′−ジアミノジフェ
ニルエーテルを用い、その加熱温度を135±2°Cと
し、また、他方の原料モノマーbとして4,4′−ジイ
ソシアン酸3,3′ジメチルジフエニルを用い、その加
熱温度を100±2℃とした以外は実施例1と同様の方
法で基板3上にポーリング処理されたポリユリア膜を形
成した。
Example 3 4,4'-diaminodiphenyl ether was used as one raw material monomer a, and the heating temperature was 135±2°C, and 3,3' dimethyl 4,4'-diisocyanate was used as the other raw material monomer b. A poled polyurea film was formed on the substrate 3 in the same manner as in Example 1 except that diphenyl was used and the heating temperature was 100±2°C.

そして実施例1と同様の方法で焦電率を求め、得られた
各温度毎の焦電率を第2図Cに示す。
Then, the pyroelectric constant was determined in the same manner as in Example 1, and the obtained pyroelectric constant at each temperature is shown in FIG. 2C.

また、実施例1と同様の方法で圧電率を調べたところc
l = 4. p C/ Nてあった。
In addition, when the piezoelectric constant was investigated using the same method as in Example 1, c
l=4. There was p C/N.

実施例4 一方の原料モノマーaとしてp、p’ −シア] 2 ミノジフェニルメタンを用い、その加熱温度を105±
2°Cとし、また、他方の原料モノマーbとして4,4
′−ジイソシアン酸メチレンジフェニルを用い、その加
熱温度を75±2°Cとした以外は実施例]と同様の方
法で基板3」二にポーリング処理されたポリユリア膜を
形成した。
Example 4 One of the raw material monomers a was p,p'-sia]2minodiphenylmethane, and the heating temperature was set to 105±.
2°C, and 4,4 as the other raw material monomer b.
A poled polyurea film was formed on a substrate 3'' in the same manner as in Example except that methylene diphenyl'-diisocyanate was used and the heating temperature was 75±2°C.

そして実施例]と同様の方法で焦電率を求め、得られた
各温度毎の焦電率を第2図りに示す。
Then, the pyroelectric constant was determined in the same manner as in Example], and the obtained pyroelectric constant at each temperature is shown in the second figure.

また、実施例1と同様の方法で圧電率を調べたところd
=4.5pc/Nてあった。
In addition, when the piezoelectric constant was investigated using the same method as in Example 1, d
=4.5pc/N.

比較例 厚さ25μmのPVDFフィルムの両面に電極としてア
ルミニウムを蒸着した後、該フィルムに温度室温〜70
°Cて電場1.00 M V / mの条件下でポーリ
ング処理を行った。
Comparative Example: After aluminum was vapor-deposited as electrodes on both sides of a PVDF film with a thickness of 25 μm, the film was heated to a temperature of room temperature to 70°C.
The poling process was performed at °C under the conditions of an electric field of 1.00 MV/m.

そして実施例1と同様の方法で焦電率を求め、得られた
各温度毎の焦電率を第2図Eに示す。
Then, the pyroelectric constant was determined in the same manner as in Example 1, and the obtained pyroelectric constant at each temperature is shown in FIG. 2E.

また、実施例]と同様の方法で圧電率を調べたところd
=25pc/Nであった。
In addition, when the piezoelectric constant was investigated using the same method as in Example], d
=25pc/N.

第2図に示すように焦電体膜の原料モノマとしてジアミ
ンとジイソシアネートとを用いた実施例1,2.3.4
のポリユリア膜は、PVDFフィルムを用いた比較例に
比して温度100℃ないし200°Cのような高温度下
において優れた焦電性を備えていることが確認された。
Examples 1, 2.3.4 using diamine and diisocyanate as raw material monomers for the pyroelectric film as shown in FIG.
It was confirmed that the polyurea film had superior pyroelectricity at a high temperature of 100° C. to 200° C. compared to a comparative example using a PVDF film.

(発明の効果) このように本発明によるときは、真空中で基板」二に直
接有機圧電焦電体膜を形成(コーティング)することが
出来るので、例えば基板上にパターニング等も可能とな
ってICと組み合わせることによってセンサー素子の形
成にも利用することが出来、また該有機圧電焦電体膜の
形成を従来法のような延伸処理することなく形成するこ
とか出来るので、有機圧電焦電体膜の製作か容易であり
、耐熱性の優れた有機圧電焦電体膜を形成することが出
来る等の効果を有する。
(Effects of the Invention) According to the present invention, an organic piezoelectric pyroelectric film can be directly formed (coated) on a substrate in a vacuum, so it is also possible to perform patterning on the substrate, for example. By combining it with an IC, it can also be used to form a sensor element, and the organic piezoelectric pyroelectric film can be formed without the need for stretching treatment as in conventional methods. The film is easy to produce and has the advantage of being able to form an organic piezoelectric pyroelectric film with excellent heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明有機圧電焦電体膜の形成方法を実施する
ための装置の1例の載断面図、第2図は本発明実施例お
よび比較例における有機圧電焦電体膜の焦電率と温度変
化との関係を示す特性図である。
FIG. 1 is a cross-sectional view of an example of an apparatus for carrying out the method for forming an organic piezoelectric pyroelectric film of the present invention, and FIG. FIG. 3 is a characteristic diagram showing the relationship between rate and temperature change.

Claims (1)

【特許請求の範囲】[Claims]  真空中でジアミンとジイソシアネートとから成る原料
モノマーを蒸発させ、これらを基板上で蒸着重合させて
該基板上にポリユリア膜を形成し、該ポリユリア膜にポ
ーリング処理を施すことを特徴とする有機圧電焦電体膜
の形成方法。
An organic piezoelectric focus, characterized in that raw material monomers consisting of diamine and diisocyanate are evaporated in vacuum, these are vapor-deposited and polymerized on a substrate to form a polyurea film on the substrate, and the polyurea film is subjected to a poling treatment. Method of forming an electric film.
JP10456289A 1989-04-26 1989-04-26 Method of forming organic piezoelectric pyroelectric film Expired - Lifetime JP2782528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10456289A JP2782528B2 (en) 1989-04-26 1989-04-26 Method of forming organic piezoelectric pyroelectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10456289A JP2782528B2 (en) 1989-04-26 1989-04-26 Method of forming organic piezoelectric pyroelectric film

Publications (2)

Publication Number Publication Date
JPH02284485A true JPH02284485A (en) 1990-11-21
JP2782528B2 JP2782528B2 (en) 1998-08-06

Family

ID=14383900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10456289A Expired - Lifetime JP2782528B2 (en) 1989-04-26 1989-04-26 Method of forming organic piezoelectric pyroelectric film

Country Status (1)

Country Link
JP (1) JP2782528B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111076A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111092A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2009037920A1 (en) * 2007-09-18 2009-03-26 Konica Minolta Medical & Graphic, Inc. Polyurea resin composition, organic piezoelectric and pyroelectric film, method for formation of the film, ultrasonic vibrator, ultrasonic probe, and ultrasonic medical diagnostic imaging device
WO2009081691A1 (en) * 2007-12-25 2009-07-02 Konica Minolta Medical & Graphic, Inc. Organic piezoelectric material, process for producing the organic piezoelectric material, and ultrasonic vibrator and ultrasonic probe using the organic piezoelectric material
WO2009081681A1 (en) * 2007-12-25 2009-07-02 Konica Minolta Medical & Graphic, Inc. Polyurea resin composition, organic piezoelectric material, method for producing the organic piezoelectric material, ultrasonic transducer using the organic piezoelectric material, and ultrasound probe
WO2009139257A1 (en) * 2008-05-15 2009-11-19 コニカミノルタエムジー株式会社 Organic piezoelectric material, ultrasonic probe, and resin composition
WO2012121291A1 (en) 2011-03-09 2012-09-13 三井化学株式会社 Pentamethylene diisocyanate, method for producing pentamethylene diisocyanate, polyisocyanate composition, polyurethane resin, and polyurea resin
JP2013155394A (en) * 2012-01-27 2013-08-15 Kojima Press Industry Co Ltd Method for depositing vapor deposition polymerization film and laminated structure
US8840559B2 (en) 2008-03-14 2014-09-23 Konica Minolta Medical & Graphic, Inc. Organic piezoelectric material, ultrasonic oscillator using the material, method for manufacturing the ultrasonic oscillator, ultrasonic probe, and ultrasonic medical diagnostic imaging device
US8968591B2 (en) 2009-05-25 2015-03-03 Konica Minolta Medical & Graphic, Inc. Organic piezoelectric material, ultrasound transducer, ultrasound probe, and ultrasound medical diagnostic imaging system
US8981625B2 (en) 2009-04-14 2015-03-17 Konica Minolta Medical & Graphics, Inc. Organic piezoelectric material, ultrasound probe, and ultrasound image detector
JP2016008264A (en) * 2014-06-25 2016-01-18 ユニチカ株式会社 Thermoplastic polyurea thin film, laminate of the same, and methods for producing these
JP2016155904A (en) * 2015-02-24 2016-09-01 ユニチカ株式会社 Thin film of urea oligomer, and method of producing the same
WO2019221041A1 (en) 2018-05-14 2019-11-21 学校法人 関西大学 Novel ferroelectric material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111076A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111092A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2009037920A1 (en) * 2007-09-18 2009-03-26 Konica Minolta Medical & Graphic, Inc. Polyurea resin composition, organic piezoelectric and pyroelectric film, method for formation of the film, ultrasonic vibrator, ultrasonic probe, and ultrasonic medical diagnostic imaging device
JP5338681B2 (en) * 2007-12-25 2013-11-13 コニカミノルタ株式会社 Organic piezoelectric material, manufacturing method thereof, ultrasonic transducer and ultrasonic probe using the same
WO2009081681A1 (en) * 2007-12-25 2009-07-02 Konica Minolta Medical & Graphic, Inc. Polyurea resin composition, organic piezoelectric material, method for producing the organic piezoelectric material, ultrasonic transducer using the organic piezoelectric material, and ultrasound probe
WO2009081691A1 (en) * 2007-12-25 2009-07-02 Konica Minolta Medical & Graphic, Inc. Organic piezoelectric material, process for producing the organic piezoelectric material, and ultrasonic vibrator and ultrasonic probe using the organic piezoelectric material
JP5407871B2 (en) * 2007-12-25 2014-02-05 コニカミノルタ株式会社 Organic piezoelectric material, manufacturing method thereof, ultrasonic transducer and ultrasonic probe using the same
US8840559B2 (en) 2008-03-14 2014-09-23 Konica Minolta Medical & Graphic, Inc. Organic piezoelectric material, ultrasonic oscillator using the material, method for manufacturing the ultrasonic oscillator, ultrasonic probe, and ultrasonic medical diagnostic imaging device
WO2009139257A1 (en) * 2008-05-15 2009-11-19 コニカミノルタエムジー株式会社 Organic piezoelectric material, ultrasonic probe, and resin composition
US8981625B2 (en) 2009-04-14 2015-03-17 Konica Minolta Medical & Graphics, Inc. Organic piezoelectric material, ultrasound probe, and ultrasound image detector
US8968591B2 (en) 2009-05-25 2015-03-03 Konica Minolta Medical & Graphic, Inc. Organic piezoelectric material, ultrasound transducer, ultrasound probe, and ultrasound medical diagnostic imaging system
EP3486230A1 (en) 2011-03-09 2019-05-22 Mitsui Chemicals, Inc. Pentamethylenediisocyanate, method for producing pentamethylenediisocyanate, polyisocyanate composition, polyurethane resin, and polyurea resin
WO2012121291A1 (en) 2011-03-09 2012-09-13 三井化学株式会社 Pentamethylene diisocyanate, method for producing pentamethylene diisocyanate, polyisocyanate composition, polyurethane resin, and polyurea resin
JP2013155394A (en) * 2012-01-27 2013-08-15 Kojima Press Industry Co Ltd Method for depositing vapor deposition polymerization film and laminated structure
JP2016008264A (en) * 2014-06-25 2016-01-18 ユニチカ株式会社 Thermoplastic polyurea thin film, laminate of the same, and methods for producing these
JP2016155904A (en) * 2015-02-24 2016-09-01 ユニチカ株式会社 Thin film of urea oligomer, and method of producing the same
WO2019221041A1 (en) 2018-05-14 2019-11-21 学校法人 関西大学 Novel ferroelectric material
KR20210010474A (en) 2018-05-14 2021-01-27 더 스쿨 코포레이션 칸사이 유니버시티 New ferroelectric material

Also Published As

Publication number Publication date
JP2782528B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
Takahashi et al. Piezoelectric properties of thin films of aromatic polyurea prepared by vapor deposition polymerization
Fukada et al. Piezoelectricity and ferroelectricity in polyvinylidene fluoride
JPH02284485A (en) Forming method of organic piezoelectric pyroelectric film
Harrison et al. Piezoelectric polymers
Fukada New piezoelectric polymers
JP4691366B2 (en) Method for forming organic piezoelectric pyroelectric film
US4204135A (en) Piezoelectric elements of organic high molecular weight materials
Newman et al. Effect of water content on the piezoelectric properties of nylon 11 and nylon 7
JPH05311399A (en) Method for forming organic pyroelectric and piezoelectric body
CA1204077A (en) Reverse field stabilization of polarized polymer films
Kunwar et al. Effects of solvents on synthesis of piezoelectric polyvinylidene fluoride trifluoroethylene thin films
EP3576171A1 (en) Piezoelectric film and method for producing same
Tashiro et al. FTIR study on molecular orientation and ferroelectric phase transition in vacuum-evaporated and solution-cast thin films of vinylidene fluoride—trifluoroethylene copolymers: Effects of heat treatment and high-voltage poling
US4830795A (en) Process for making polarized material
Nalwa Ferroelectric nylons
Kubono et al. High piezoelectric activity in nonpoled thin films prepared by vapor deposition polymerization
Hattori et al. Synthesis of aliphatic polyurea films by vapor deposition polymerization and their piezoelectric properties
JP3594692B2 (en) Method of forming organic pyroelectric body
CA2193563C (en) Method for manufacturing a pyroelectric mixture
JP6395470B2 (en) Thermoplastic polyurea thin film, laminate thereof, and production method thereof
Davis Piezoelectric and pyroelectric polymers
JPH03200218A (en) Function member having intra-surface oriented and polymerized thin film and its production
Rastogi et al. Ferroelectric Poly (vinylidene fluoride) Thin Films Grown by Low‐Pressure Chemical Vapor Polymerization
Bloomfield Production of ferroelectric oriented PVDF films
Fukada Pyroelectricity and piezoelectricity of polyurea

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term