JPH02284107A - Distributed refractive index type lens system - Google Patents

Distributed refractive index type lens system

Info

Publication number
JPH02284107A
JPH02284107A JP10667189A JP10667189A JPH02284107A JP H02284107 A JPH02284107 A JP H02284107A JP 10667189 A JP10667189 A JP 10667189A JP 10667189 A JP10667189 A JP 10667189A JP H02284107 A JPH02284107 A JP H02284107A
Authority
JP
Japan
Prior art keywords
lens
refractive index
concave
distribution
single lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10667189A
Other languages
Japanese (ja)
Inventor
Keisuke Araki
荒木 敬介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10667189A priority Critical patent/JPH02284107A/en
Publication of JPH02284107A publication Critical patent/JPH02284107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To well correct an offaxial aberration which is the drawback of a distributed refractive index type single lens by forming the end faces of the single lens as concave faces, i.e. providing a negative refracting power on these faces. CONSTITUTION:The lens length z0 of the distributed refractive index type lens 3 which is highest in the refractive index distribution n(r) on the z-axis, i.e. the optical axis and is lowered in the refractive index with the rotationally symmetrical distribution of n<2>(r, z)=n0<2>(z)x {1-g<2>(z)r<2>+h4(z)g<4>(z)r<4>+h6(z)g<6>+(z)r<6>+...} as removed from the optical axis by a distance r is determined in the range of equation I to form an erecting real image 2 and the concave refracting power is provided on both end faces 4, 4'. The curvature of field at the meridian cross section which is heretofore not corrected is well corrected simultaneously with the spherical aberration in this way and the range of the images usable with the single lens is widened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は屈折率分布型レンズ所謂ロッドレンズを用いた
レンズ系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a lens system using a gradient index lens, a so-called rod lens.

(従来の技術) 従来より屈折率分布型の昨レンズにおいて光11qlI
に関して回転対称な屈折十分11を持つものとしては所
謂5ELFOC[F]が知られている。この5ELFO
C[F]の屈折率分布n (r)は光軸からの距離「を
用いると という式で表わされる。ここでnoとgは屈折率分布を
表わす定数である。この屈折率分布型レンズは正の屈折
力を持っているのでレンズ長2゜を −〈  g 2°   く  π となる範囲にとればiE立実像結像系となる。又このレ
ンズをアレイ状に並べたものは正立等倍結像系を構成で
きるので複写機やファクシミリ等に広く用いられている
(Prior art) In the conventional lens of gradient index type, light 11qlI
The so-called 5ELFOC[F] is known as having a refractive index 11 that is rotationally symmetrical with respect to the optical axis. This 5ELFO
The refractive index distribution n (r) of C[F] is expressed by the formula using the distance from the optical axis. Here, no and g are constants representing the refractive index distribution. This gradient index lens is Since it has positive refractive power, if the lens length 2° is set in the range of −〈g 2° × π, it becomes an iE erect real image imaging system.Also, when this lens is arranged in an array, it becomes an erect image system. Since it can form a double imaging system, it is widely used in copying machines, facsimile machines, etc.

(発明が解決しようとする問題点) しかしながら上記従来例の単レンズは軸上の収差は屈折
率分布の形状を調整することにより補正できるものの軸
外の収差を補正することができないという欠点を持って
いた。即ち軸上収差は屈折率分布n (r)に対して高
次の項を導入しというようにn(r)−nosech(
gr)の形に近づけて行くことにより殆ど0にもってい
くことができる事が知られている。
(Problem to be Solved by the Invention) However, the conventional single lens described above has the drawback that although axial aberrations can be corrected by adjusting the shape of the refractive index distribution, off-axis aberrations cannot be corrected. was. In other words, the axial aberration is calculated by introducing a higher-order term to the refractive index distribution n (r), such as n(r)-nosech(
It is known that by approaching the shape of gr), it is possible to bring it almost to 0.

これに対し軸外収差はn。gZoによって決まる像面湾
曲がどうしても残ってしまい、軸上のように径方向の屈
折率分布を直しても改善することができない。このため
軸外の光線を使う光学系や、軸外の光線を隣接するレン
ズと互いに重ね合せて結像を行うレンズアレイでは光学
性能に自ずと限界か生じていた。
On the other hand, the off-axis aberration is n. The curvature of field determined by gZo inevitably remains, and cannot be improved even if the refractive index distribution in the radial direction is corrected, such as on the axis. For this reason, optical systems that use off-axis light rays, or lens arrays that overlap off-axis light rays with adjacent lenses to form images, naturally have a limit to their optical performance.

第7図に示したのは上述した従来の単レンズの性能を表
わした説明図である。図中1物体而で2は近軸上の像面
、2′の破線は湾曲した像面を示している。屈折率分布
型レンズである3は表3のパラメータに見られるように
5ech型の分布定数を持っている。このため軸上光束
の結像を表わす光線Aは軸上に収差無く集まっているが
、軸外光束の結像を示す光線Bは像面湾曲のため、物体
面に近づいた位置で結像している。第7図に示す学レン
ズに係る球面収差を第8図に、非点収差及び像面湾曲を
第9図に示す。
FIG. 7 is an explanatory diagram showing the performance of the conventional single lens described above. In the figure, in the case of one object, 2 indicates a paraxial image plane, and the broken line 2' indicates a curved image plane. 3, which is a gradient index lens, has a 5ech type distribution constant, as seen from the parameters in Table 3. Therefore, the ray A representing the imaging of the axial ray bundle is focused on the axis without aberration, but the ray B representing the imaging of the off-axis ray bundle is focused at a position close to the object plane due to field curvature. ing. FIG. 8 shows the spherical aberration of the school lens shown in FIG. 7, and FIG. 9 shows the astigmatism and field curvature.

本発明は前述の従来の単レンズの欠点である軸外収1を
良好に補正することのできる屈折率分布型レンズ系の提
供を目的とする。
An object of the present invention is to provide a gradient index lens system that can satisfactorily correct off-axis aberration 1, which is a drawback of the conventional single lens described above.

(問題点を解決するための手段) 本発明の上記従来例の欠点である軸外光束の像面湾曲の
問題を屈折率分布型の単レンズの端面を凹面、即ち負の
屈折力を持たせることにより解決している。
(Means for Solving the Problems) The problem of field curvature of off-axis light beams, which is a drawback of the above-mentioned conventional example of the present invention, is solved by making the end surface of the gradient index single lens concave, that is, having negative refractive power. This is solved by this.

本発明にように端面な凹面化しても球面収差は従来の5
ech分布のものと同じ性能に保つことかり能である。
Even if the end surface is made concave as in the present invention, the spherical aberration is still lower than that of the conventional 5.
It is possible to maintain the same performance as that of the ech distribution.

一方、本発明の凹面特有の効果として従来屈折率分布の
高次定数の最適化のみでは達成できなかった子午断面内
での像面湾曲を補正することが可能となった。更に本発
明による単レンズを正立等倍結像のレンズアレイに適用
すれば、個々のレンズの像面湾曲に起因する像のぼけが
補正される。この結果アレイとしてのMTFは各周波数
について向上され、従来に無い高品位な画質を達成する
ことができる。
On the other hand, as an effect unique to the concave surface of the present invention, it has become possible to correct field curvature within the meridional section, which could not be achieved conventionally by optimizing only the higher-order constants of the refractive index distribution. Furthermore, if the single lens according to the present invention is applied to a lens array for erecting equal-magnification imaging, image blur caused by field curvature of individual lenses can be corrected. As a result, the MTF as an array is improved for each frequency, making it possible to achieve a higher image quality than ever before.

(実施例) 第1図は本発明を最も端的に表わした第1実施例の概略
図である。
(Embodiment) FIG. 1 is a schematic diagram of a first embodiment that most clearly represents the present invention.

図中1は物体面、2は像面、3が本発明に係る屈折率分
布型の単レンズである。図から明らかなように屈折率分
布型レンズの両端面が凹面になっているのが本実施例の
特徴である。従来例の場合と同じく軸上光束の結像を示
しているのが光線A、軸外光束の結像を表わしているの
が光線Bである。径方向の屈折率分布を変化させること
では実現することのできなかった球面収差と子午断面で
の像面湾曲の同時補正が可能となったことが示されてい
る。
In the figure, 1 is an object plane, 2 is an image plane, and 3 is a gradient index single lens according to the present invention. As is clear from the figure, the feature of this embodiment is that both end surfaces of the gradient index lens are concave. As in the case of the conventional example, ray A represents the imaging of the axial ray, and ray B represents the imaging of the off-axis ray. This shows that it is now possible to simultaneously correct spherical aberration and curvature of field in the meridional section, which could not be achieved by changing the refractive index distribution in the radial direction.

表1に示したのは第1図の実施例に対応する設計値の−
・例である。レンズは完全対称撃て径は1.1mm、屈
折率分布は5ech型である。本発明の特徴を表わして
いるのは両端の凹面で、曲率半径「は2.823mmと
なっている。この数値例に対する球面収差を第2図、非
点収差及び像面湾曲を第3図に示す。
Table 1 shows the design values of - corresponding to the embodiment shown in Figure 1.
・This is an example. The lens is completely symmetrical, has an aperture diameter of 1.1 mm, and has a refractive index distribution of 5ech type. The feature of the present invention is the concave surfaces at both ends, with a radius of curvature of 2.823 mm.The spherical aberration for this numerical example is shown in Figure 2, and the astigmatism and curvature of field are shown in Figure 3. show.

第7図に示した5ech分布の従来例の収差図である第
8図、第9図と比較すると球面収差の性能が同等に保た
れると共に、子牛断面内の像面湾曲が著しく改善され、
はぼ補正されていることがわかる。
When compared with FIGS. 8 and 9, which are aberration diagrams of the conventional example of the 5ech distribution shown in FIG. ,
It can be seen that the blur has been corrected.

第1図に示したレンズの応用は単レンズだけに留まらず
、正立等倍系のレンズアレイとして複写機やファクシミ
リ等の装置に用いた場合にもその効果が大きい。即ちレ
ンズアレイとして用いた場合、画像は複数個のレンズに
よる像の重なり合せとして形成される。従って重なり合
う像を形成する幾つかのレンズについては結像は軸外光
束を用いることになる。像面湾曲に伴うぼけは像のコン
トラストを損なう結果を生じさせてしまう。この為、本
発明による像面の改善の効果は著しく、アレイ方向のM
TFの向上が達成される。この結果本発明によれば高品
位、高精細な画像の転写、複写か可能となる。
The application of the lens shown in FIG. 1 is not limited to a single lens, but it is also highly effective when used as an erect equal-magnification lens array in devices such as copying machines and facsimile machines. That is, when used as a lens array, an image is formed as a superposition of images from a plurality of lenses. Therefore, for some lenses that form overlapping images, off-axis light beams are used for imaging. Blur caused by field curvature results in loss of image contrast. Therefore, the effect of improving the image plane according to the present invention is remarkable, and M
An improvement in TF is achieved. As a result, according to the present invention, it is possible to transfer and copy high-quality, high-definition images.

本発明の別の実施例を第4図に示す。第4図では分布屈
折率型レンズは従来通りの両端が平面の形状をしている
が、その外側に対称に凹の屈折力を持たせる手段として
平凹レンズ41.42が配置されている。平凹レンズは
屈折率分布型レンズでも勿論良いが、この例では均質レ
ンズを用いている。この凹レンズの作用は第1実施例と
同様で、球面収差を従来のものと同等に保ったまま子午
断面内での像面湾曲を良好に補正している。
Another embodiment of the invention is shown in FIG. In FIG. 4, the distributed index lens has a conventional planar shape at both ends, but plano-concave lenses 41 and 42 are arranged on the outside as a means for giving symmetrical concave refractive power. Of course, the plano-concave lens may be a gradient index lens, but in this example, a homogeneous lens is used. The effect of this concave lens is similar to that of the first embodiment, and it satisfactorily corrects the curvature of field within the meridional section while keeping the spherical aberration the same as that of the conventional lens.

表2に示した・のは第2実施例での数値例である。ここ
では通常用いられる12°タイプの5ELFOC■レン
ズの両端に曲率半径3.6mm、JI、fさ3.LOm
mの平凹レンズが装着される構成となっている。又、こ
れら3つのレンズは共軸系となっている。表2の数値例
に対応した球面収差を第5図に、非点収差、像面湾曲を
第6図に示す。同図に示すように第1実施例と全く同じ
効果が達成されていることがわかる。
The marks in Table 2 are numerical examples in the second embodiment. Here, the commonly used 12° type 5ELFOC ■ lens has a radius of curvature of 3.6 mm, JI, f of 3. LOm
It has a configuration in which a plano-concave lens of m is attached. Further, these three lenses are a coaxial system. FIG. 5 shows spherical aberration corresponding to the numerical examples in Table 2, and FIG. 6 shows astigmatism and field curvature. As shown in the figure, it can be seen that exactly the same effect as in the first embodiment is achieved.

第4図の実施例は3つのレンズが互いに密着し貼合され
ているが、共軸系の条件を守りさえすれば個々のレンズ
の間に空気等の等屈折率媒質をはさみ込んでも良い。又
表2では両端の凹レンズの屈折率が中央の屈折率分布型
の単レンズの中心屈折率と同一となっているが、異るよ
うにして構成しても良い。
In the embodiment shown in FIG. 4, three lenses are closely bonded to each other, but as long as the coaxial system conditions are maintained, a medium of equal refractive index, such as air, may be sandwiched between the individual lenses. Further, in Table 2, the refractive indexes of the concave lenses at both ends are the same as the central refractive index of the single lens of the refractive index distribution type at the center, but they may be configured to be different.

硝材として異なる屈折率のものを選んでも最適な曲率半
径とレンズ厚ささえ設定すれば本発明の効果は達成され
る。
Even if glass materials with different refractive indexes are selected, the effects of the present invention can be achieved as long as the optimum radius of curvature and lens thickness are set.

本実施例に示された3つのレンズの組合せを1つの単レ
ンズユニットとして考えれば、この単レンズユニットを
並べることによりレンズアレイを構成することかできる
。この際は各単レンズユニット相互間のクロストークを
防止するようにする必要かある。、更にレンズアレイと
しての発展形としては平面的配列が全く等しい3つのレ
ンズアレイ、即ち1つは従来型の屈折率分布型のレンズ
アレイ、残りの2つは屈折率分布型レンズアレイの配列
と全く同じ配列を持った凹レンズのレンズアレイを用意
し、これらを光軸を合せる形で直列に密着させて構成す
ることも考えられる。この場合密着させられた時に光軸
が合致する個々の単レンズユニットか第4図のように構
成されることになる。
If the combination of three lenses shown in this embodiment is considered as one single lens unit, a lens array can be constructed by arranging these single lens units. In this case, it is necessary to prevent crosstalk between each single lens unit. As a further development of the lens array, there are three lens arrays with exactly the same planar arrangement: one is a conventional gradient index lens array, and the remaining two are gradient index lens arrays. It is also conceivable to prepare a lens array of concave lenses having exactly the same arrangement and to arrange these in series and in close contact with each other with their optical axes aligned. In this case, individual single lens units whose optical axes coincide when brought into close contact are constructed as shown in FIG. 4.

本発明の特徴となるのは屈折率分布型のレンズの両端に
凹レンズを付加することである。このときの凹レンズは
広義の意味でのフィールドフラットナーと言える。
A feature of the present invention is that concave lenses are added to both ends of the gradient index lens. The concave lens in this case can be said to be a field flattener in a broad sense.

表ル レンズ径    :  1.1 mm   T C= 
49.5mmレンズ長Zo   s 19.067m+
n中心屈折率no   1.6197 2次分布定数g   0.2:12714次分布定数h
4・0.801 (光軸に沿って一定)端面R・−2,
82344 R’    2.82344 表2 レンズ径 レンズ長Z。
Front lens diameter: 1.1 mm T C=
49.5mm lens length Zo s 19.067m+
n center refractive index no 1.6197 quadratic distribution constant g 0.2:12714th distribution constant h
4・0.801 (constant along the optical axis) end surface R・−2,
82344 R' 2.82344 Table 2 Lens diameter Lens length Z.

1.1  mm     T  Cg、49.5mm−
23,269mm (3,097++7.076+3.097)1.6]9
7 0.23271 0.524 1.6197 中心屈折率n。
1.1 mm T Cg, 49.5 mm-
23,269mm (3,097++7.076+3.097)1.6]9
7 0.23271 0.524 1.6197 Center refractive index n.

2次分布定数g 4次分布定数h4・ 端面レンズの屈折率 R−−3,61425 R”    3.81455 表3 レンズ径    :  1.1 mm   T C= 
49.5n+mレンズ長20  −14.804mm 中心屈折率n o   1.6197 2次分布定数g   0.23271 4次分布定数h4−0.667  (sech分布)屈
折率差 Δn′−Δn  = 0.0132(発明の効
果) 以上説明してきたことをより一般的に表現すると光軸で
あるZ軸上の屈折率が最も高く、光軸から離れるに従っ
て、 n2(r、z)= n02(z) (+−g”(z)r
2+h4(z)g’(z)r’◆ha(z)g’(Z)
r” ” ” )という回転対称な分布で屈折率が低く
なっていく屈折率分布型レンズにおいて、レンズ長z0
をとなる範囲にと7て正立実像を結像させると共にその
両端に凹の屈折力を持たせ、これにより本発明では球面
収差と同時に、従来では補正できなかった子午断面ての
像面湾曲の補正を良好に行った光学装置を達成している
Quadratic distribution constant g Quaternary distribution constant h4・Refractive index of end lens R--3,61425 R” 3.81455 Table 3 Lens diameter: 1.1 mm T C=
49.5n+m Lens length 20 -14.804mm Center refractive index no 1.6197 Second-order distribution constant g 0.23271 Fourth-order distribution constant h4-0.667 (Sech distribution) Refractive index difference Δn'-Δn = 0.0132 (Effect of the invention) To express what has been explained above more generally, the refractive index on the Z axis, which is the optical axis, is the highest, and as the distance from the optical axis increases, n2 (r, z) = n02 (z) (+ -g”(z)r
2+h4(z)g'(z)r'◆ha(z)g'(Z)
In a gradient index lens where the refractive index decreases with a rotationally symmetrical distribution called r''''''), the lens length z0
By forming an erect real image in a range such that We have achieved an optical device that is well-corrected.

本発明の適用により単レンズでは使用可能な像の範囲を
大きくすることができる。又、本発明の構成をレンズア
レイに適用すると、像面湾曲の補正による像のぼけが小
さくなるため、全系としてのMTFが向上し、高解像な
レンズアレイを得ることができる。
By applying the present invention, the range of images that can be used with a single lens can be increased. Further, when the configuration of the present invention is applied to a lens array, image blur due to correction of field curvature is reduced, so the MTF as a whole system is improved and a high-resolution lens array can be obtained.

本発明によるような凹のパワーの付加は加工上も容易窓
であり、又レンズアレイへの適用でも部品製作は従来−
膜内に行われている手法でそのまま流用できる。高品位
、高精細な画像形成か求められている現在、本発明は従
来技術をそのまま転用して実現でき、しかも効果が大き
い。
The addition of concave power according to the present invention is easy in terms of processing, and even when applied to lens arrays, parts manufacturing is difficult compared to conventional methods.
The method used in the membrane can be used as is. Nowadays, there is a demand for high-quality, high-definition image formation, and the present invention can be realized by directly applying the conventional technology, and is highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概念を示した第1実施例の光路図、第
2図は第1実施例の球面収差図、第3図は第1実施例の
非点収差及び像面湾曲を示す収差図、第4図は本発明の
第2実施例の光路図、第5図は第2実施例の球面収差図
、第6図は第2実施例の非点収差及び像面湾曲を示す収
差図、第7図は従来例で最も良いとされているs e 
c h (gr)型の分布を持つレンズの光路図、第8
図は第7図のレンズ系の球面、収差図、第9図は第7図
のレンズ系の非点収差及び像面湾曲を表わす収差図であ
る。 図中、1は物体面、2は像面、2′は湾曲した像面、3
は屈折率分布型レンズ、4及び4′は凹の屈折力を持つ
面又は凹の屈折力を持つレンズ、光線Aは軸上光束の結
像状態を示す光線、光線Bは軸外光束の結像状態を示す
光線である。 第 図
Fig. 1 is an optical path diagram of the first embodiment showing the concept of the present invention, Fig. 2 is a spherical aberration diagram of the first embodiment, and Fig. 3 is a diagram showing astigmatism and field curvature of the first embodiment. Aberration diagrams, FIG. 4 is an optical path diagram of the second embodiment of the present invention, FIG. 5 is a spherical aberration diagram of the second embodiment, and FIG. 6 is an aberration diagram showing astigmatism and field curvature of the second embodiment. Figure 7 shows s e which is considered to be the best in the conventional example.
Optical path diagram of a lens with c h (gr) type distribution, No. 8
The figure is a spherical surface and aberration diagram of the lens system of FIG. 7, and FIG. 9 is an aberration diagram showing astigmatism and field curvature of the lens system of FIG. In the figure, 1 is the object plane, 2 is the image plane, 2' is the curved image plane, and 3
is a gradient index lens, 4 and 4' are surfaces with concave refractive power or lenses with concave refractive power, ray A is a ray that indicates the imaging state of an axial ray, and ray B is a condensation of an off-axis ray. This is a light ray that indicates the state of the image. Diagram

Claims (3)

【特許請求の範囲】[Claims] (1)光軸であるz軸に垂直な断面での屈折率分布n(
r)が光軸上で最も高く、光軸から距離r離れに従い n^2(r)=n_o^2[1−g^2r^2+h_4
g^4r^4+h_6g^6r^6+(高次項)]とい
う回転対称な分布を持ちながら低下していく屈折率分布
型レンズにおいて、レンズ長z_oを(π/2)<(g
z_o)/(2<π) なる範囲にとると共に、該レンズの両端に負の屈折力を
配置したことを特徴とする屈折率分布型レンズ系。
(1) Refractive index distribution n(
r) is the highest on the optical axis, and as the distance r from the optical axis increases, n^2(r) = n_o^2[1-g^2r^2+h_4
g^4r^4+h_6g^6r^6+ (higher-order term)] In a gradient index lens that decreases while having a rotationally symmetric distribution, the lens length z_o is expressed as (π/2)<(g
z_o)/(2<π) and negative refractive power is arranged at both ends of the lens.
(2)前記屈折率分布型レンズ系を正立実像を結像させ
る状態で使用するようにしたことを特徴とする請求項1
記載の屈折率分布型レンズ系。
(2) Claim 1 characterized in that the refractive index gradient lens system is used in a state where an erect real image is formed.
The gradient index lens system described above.
(3)前記屈折率分布型レンズ系を複数個配置したこと
を特徴とする請求項1記載の屈折率分布型レンズ系。
(3) The gradient index lens system according to claim 1, wherein a plurality of the gradient index lens systems are arranged.
JP10667189A 1989-04-26 1989-04-26 Distributed refractive index type lens system Pending JPH02284107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10667189A JPH02284107A (en) 1989-04-26 1989-04-26 Distributed refractive index type lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10667189A JPH02284107A (en) 1989-04-26 1989-04-26 Distributed refractive index type lens system

Publications (1)

Publication Number Publication Date
JPH02284107A true JPH02284107A (en) 1990-11-21

Family

ID=14439540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10667189A Pending JPH02284107A (en) 1989-04-26 1989-04-26 Distributed refractive index type lens system

Country Status (1)

Country Link
JP (1) JPH02284107A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995295A (en) * 1995-12-13 1999-11-30 Olympus Optical Co., Ltd. Lens system
JP2007156245A (en) * 2005-12-07 2007-06-21 Scalar Corp Rod lens, working method of rod lens and working device of rod lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995295A (en) * 1995-12-13 1999-11-30 Olympus Optical Co., Ltd. Lens system
JP2007156245A (en) * 2005-12-07 2007-06-21 Scalar Corp Rod lens, working method of rod lens and working device of rod lens
JP4718313B2 (en) * 2005-12-07 2011-07-06 スカラ株式会社 Rod lens, rod lens processing method, and rod lens processing apparatus

Similar Documents

Publication Publication Date Title
JPH0627370A (en) High-speed wide angle lens device for projection type television
JP2017142363A (en) Wide-angle lens
CN109620103B (en) 30-degree view angle 4K laparoscope objective lens
US4111558A (en) Retrofocus type wide angle objective lens
JP2000111798A5 (en)
US4057328A (en) Enlarging lens system
JPH0823625B2 (en) Image transmission optical system using inhomogeneous lens
JPS61231517A (en) Variable focal length lens
JPH0210404B2 (en)
JPH0414324B2 (en)
KR20190081932A (en) Apparatus and method for evaluating performance of lens module and relay lens system applicable thereto
JPS6132654B2 (en)
JPH02284107A (en) Distributed refractive index type lens system
JPS6119011B2 (en)
JPH0244042B2 (en)
US2821113A (en) Wide angle photographic objective
JPS58126512A (en) Large-aperture telephoto lens
JPH0569209B2 (en)
US4550987A (en) Small size telephoto lens
JPS6190115A (en) Objective lens for forming image
JPH04335610A (en) Projection lens
US10215958B2 (en) Optical imaging lens
US5572366A (en) Variable power optical system for copying machine
JPH03107102A (en) Distributed refractive index type lens
JP3024134B2 (en) Refractive index distribution type lens