JPH02282715A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPH02282715A
JPH02282715A JP10545589A JP10545589A JPH02282715A JP H02282715 A JPH02282715 A JP H02282715A JP 10545589 A JP10545589 A JP 10545589A JP 10545589 A JP10545589 A JP 10545589A JP H02282715 A JPH02282715 A JP H02282715A
Authority
JP
Japan
Prior art keywords
optical unit
base
pin
scanned
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10545589A
Other languages
Japanese (ja)
Inventor
Jun Makino
純 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10545589A priority Critical patent/JPH02282715A/en
Publication of JPH02282715A publication Critical patent/JPH02282715A/en
Priority to US07/839,715 priority patent/US5151811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To adjust the inclination between the best image plane and a scanned surface by adjusting an optical unit so that it can rotate. CONSTITUTION:The heights of the optical unit 10 and a base 20 are adjusted by using four pins A, B1, B2, and B3. A positioning pin C used when the optical unit 10 is fitted to the base 20 is fixed on the surface of the optical unit 10 which faces the base. A pin D which is movable along a laterally long unloaded hole E in parallel to a scanning line formed on a surface to be scanned as a deflector rotates is fixed to the optical unit after its movement. Here, even if the best image plane and the surface to be scanned slant because of the working accuracy and fitting errors of optical components, the whole optical unit of this invention can be rotated in a plane of deflection around the pin C by moving the position of the pin D about the optical unit. Consequently, the surface to be scanned can be matched with the best image plane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は回転多面鏡等の偏向器を使用する光偏向装置に
関するものであり、特に、光源部と該光源部からの光束
を偏向する偏向器とを有する光学ユニットと、その光学
ユニットを取り付ける基台の取り付けの構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light deflection device using a deflector such as a rotating polygon mirror, and in particular to a light source section and a deflector for deflecting a light beam from the light source section. The present invention relates to an optical unit having a container and a structure for mounting a base on which the optical unit is mounted.

[従来の技術] レーザービーム等の記録装置における光偏向装置におい
ては、光源部1回転子面鏡、fθレンズ等の走査系の光
学部品を1つのユニットとして組み上げた光学ユニット
とその光学ユニットを取り付けることで光偏向装置とな
る本体(基台)との2つの大きな部分に分けて構成する
ことが行なわれている。このような光偏向装置では各光
学部品の加工精度及び取付精度の関係上、走査線が所定
の位置からズしてしまうことがある。このため走査線の
位置を調整するために従来の光偏向装置では、光学ユニ
ットの基台への取り付は位置をネジ等で上下できるよう
な構造をもっていた。しかしながら、光学ユニットの基
台への取り付は位置を偏向面(偏向器の偏向反射面で偏
向された光ビームが経時的に形成する光線束面)内で回
転できるような構造にはなっていなかった。そのため、
従来の光偏向装置において、良好なスポットの得られる
範囲(最良像面)と走査される被走査面(例えば感光ド
ラム面)とが傾いていた場合にこれを補正する手段はな
かった。これは装置の目的とするレーザビームのスポッ
ト径が100μm程度であり、この程度の良好なスポッ
ト径を保つための深度が±6mm程度と広かったために
、各光学部品の加工精度、取り付は精度でこの最良像面
と被走査面との傾きを許容範囲内に収めてきた。
[Prior Art] In a light deflection device for a recording device such as a laser beam, an optical unit is assembled in which optical components of a scanning system such as a single rotator mirror and an fθ lens are assembled as one unit, and the optical unit is attached thereto. For this reason, the optical deflection device is divided into two large parts: a main body (base) that serves as an optical deflection device. In such an optical deflection device, the scanning line may deviate from a predetermined position due to the processing precision and mounting precision of each optical component. For this reason, in order to adjust the position of the scanning line, conventional optical deflectors have a structure in which the optical unit can be mounted on the base by moving it up and down with screws or the like. However, the mounting of the optical unit on the base is not structured so that its position can be rotated within the deflection plane (the beam flux plane formed over time by the light beam deflected by the deflection reflection surface of the deflector). There wasn't. Therefore,
In conventional optical deflection devices, there is no means for correcting when the range where a good spot can be obtained (best image plane) and the surface to be scanned (for example, the surface of a photosensitive drum) are tilted. This is because the target laser beam spot diameter of the device is about 100 μm, and the depth to maintain this good spot diameter is about ±6 mm, so the processing accuracy and installation of each optical component are accurate. The inclination between this best image plane and the scanned surface has been kept within an allowable range.

しかしながら、目的とするレーザビームのスポット径が
40um程度である高詳細光偏向装置の場合には深度は
±0.8mm程度と狭くなっている。このため従来の装
置と同様に部品の加工精度、取り付は精度の向上で最良
像面と被走査面の傾きを補正しようとすると、走査面全
面で良好なスポットを得るためには部品の加工精度、取
り付は精度を過度にきびしくなくてはならなくなり加工
が困難になりコストの増加になっていた。また仮に傾き
を深度程度で収められたとしても走査面全面については
深度に余裕がないため、環境変動によっては走査面の一
部でスポット径が大きくなり許容範囲をこえてしまうと
いう問題があった。
However, in the case of a highly detailed optical deflection device in which the target laser beam spot diameter is about 40 um, the depth is as narrow as about ±0.8 mm. Therefore, in order to correct the tilt of the image plane and the scanned surface by improving the processing accuracy and mounting accuracy of the parts as with conventional devices, it is necessary to process the parts in order to obtain a good spot on the entire scanning surface. Accuracy and mounting had to be excessively precise, making processing difficult and increasing costs. Furthermore, even if the tilt could be kept within the depth range, there would not be enough depth for the entire scanning surface, so depending on environmental changes, the spot diameter could increase in a part of the scanning surface and exceed the permissible range. .

[発明の概要] 本発明は上述した従来の装置の問題点を解決するために
、光源部と該光源部からの光束を偏向する偏向器とを有
する光学ユニットと、該光学ユニットを取り付ける基台
とを備えた光偏向装置において、前記光学ユニットが基
台に対して回転可能に取り付けられている構成とした。
[Summary of the Invention] In order to solve the problems of the conventional device described above, the present invention provides an optical unit having a light source section and a deflector that deflects a light beam from the light source section, and a base on which the optical unit is mounted. In the optical deflection device, the optical unit is rotatably attached to a base.

このように光学ユニットを基台に取り付ける際の取り付
は位置を光学ユニットが回転するように調整できる構成
としたことにより、最良像面と被走査面との傾きを調整
可能にしたものである。
In this way, when attaching the optical unit to the base, the position can be adjusted so that the optical unit rotates, making it possible to adjust the inclination between the best image plane and the scanned surface. .

[実施例] 第1図(a)から(C)にかけて本発明の光偏向装置の
第1の実施例を示す。第1図(a)は光学ユニット10
を下側(装置の本体である基台20の取り付は面側)か
ら見た図であり、第1図(b)は光学ユニット10を上
側(回転多面鏡。
[Embodiment] A first embodiment of the optical deflection device of the present invention is shown in FIGS. 1(a) to 1(C). FIG. 1(a) shows the optical unit 10.
FIG. 1(b) is a view of the optical unit 10 viewed from the bottom side (the mounting surface side of the base 20, which is the main body of the apparatus), and FIG.

fθレンズ等の走査系の光学部品の取り付は面側)から
見た図であり、第1図(C)は光学ユニット10を側面
から見た図である。同図において、Aは高さの基準ビン
であり、また、B1B2.B3のピンにはネジが取り付
けてあり第1図(a)紙面に垂直な方向に移動可能であ
る。
The attachment of the optical components of the scanning system such as the fθ lens is shown as seen from the front side), and FIG. 1(C) is a view of the optical unit 10 as seen from the side. In the figure, A is a height reference bin, and B1B2. A screw is attached to the pin B3, and it can be moved in a direction perpendicular to the plane of the paper in FIG. 1(a).

A、Bl 、B2.B3の4本のピンを用いて光学ユニ
ット10と基台20との高さ調整を行う。Cは光学ユニ
ット10を基台20に取り付ける際の位置決めピンであ
り光学ユニット10の基台に向かう面に固定されている
A, Bl, B2. The heights of the optical unit 10 and the base 20 are adjusted using the four pins B3. C is a positioning pin when attaching the optical unit 10 to the base 20, and is fixed to the surface of the optical unit 10 facing the base.

Dは偏向器の回転に伴って被走査面上に形成される走査
線と平行な方向に横長のバカ穴Eに沿って移動可能なピ
ンであり、移動後に光学ユニットに固定される。・本実
施例による光学ユニットはピンC,Dを基台側の取り付
は穴に一致させることで基台に取り付けられる。また、
1は半導体レーザ、コリメータレンズを有する光源部、
2は偏向器である回転多面鏡、3.4は2枚の単レンズ
よりなる走査用のf−θレンズである。
A pin D is movable along a horizontally long hole E in a direction parallel to a scanning line formed on the surface to be scanned as the deflector rotates, and is fixed to the optical unit after movement. - The optical unit according to this embodiment can be attached to the base by aligning the pins C and D with the holes on the base side. Also,
1 is a light source section having a semiconductor laser and a collimator lens;
2 is a rotating polygon mirror which is a deflector, and 3.4 is an f-θ lens for scanning consisting of two single lenses.

ここで、光学部品の加工精度、取り付は誤差により第2
図(a)のように最良像面と被走査面が傾いている場合
でも、本実施例の装置においては第2図(b)のように
光学ユニットに対するピンDの位置を移動させることで
光学ユニット全体をピンCを中心にして偏向面内で回転
することができるので、最良像面と被走査面を一致する
ようにすることができる。
Here, the machining accuracy and installation of optical parts may be subject to second-order errors due to errors.
Even when the best image plane and the surface to be scanned are tilted as shown in Figure 2(a), in the apparatus of this embodiment, the position of the pin D relative to the optical unit can be moved as shown in Figure 2(b). Since the entire unit can be rotated within the deflection plane around the pin C, the best image plane can be made to coincide with the scanned plane.

最良像面と被走査面との傾き調整においては光学ユニッ
トをピンCを中心にして偏向面内で回転し最良像面と被
走査面が一致した後にピンDを光学ユニットに固定する
。走査線の位置(高さ)調整はピンB、、B2.B3で
行う。ピンDの高さの調整は標準となる基台(設計値ど
おりの基台)を用いて行う。一方、基台側の取り付は穴
は標準となる光学ユニット(設計値どおりの光学ユニッ
ト)を用いて調整後固定される。この基台に調整の終っ
た光学ユニットは基台上の取り付は穴と光学ユニットの
位置決めピンC,Dが一致するように取り付けてひとつ
の光偏向装置とする。このように、光学ユニット側の調
整は標準となる基台を基にして個々のユニットとして調
整され、基台側の取り付は装置の調整は標準となる光学
ユニットを用いて個々のユニットとは独立に個々の基台
として調整されるので、ユニットが故障した場合でもユ
ニットの交換は簡単に行える。
To adjust the inclination between the best image plane and the scanned surface, the optical unit is rotated within the deflection plane around the pin C, and after the best image plane and the scanned surface are aligned, the pin D is fixed to the optical unit. The position (height) of the scanning line can be adjusted using pins B, , B2. Do it in B3. The height of the pin D is adjusted using a standard base (a base according to the designed value). On the other hand, when mounting on the base side, the holes are fixed after adjustment using a standard optical unit (an optical unit that meets the design values). The optical unit that has been adjusted is mounted on this base so that the hole and the positioning pins C and D of the optical unit coincide with each other to form one optical deflection device. In this way, the adjustment on the optical unit side is adjusted as an individual unit based on the standard base, and the installation on the base side is different from the individual units when adjusting the device using the standard optical unit. Since they are independently adjusted as individual bases, even if a unit breaks down, it can be easily replaced.

また、上述した実施例ではピンCとDのうち被走査面か
ら近いピンDを移動可能なピンとし被走査面から遠いピ
ンCを固定ピンとする構成をとっていたが、逆に、ピン
CとDのうち被走査面から近いピンDを固定ビンとし被
走査面から遠いピンCを移動可能なピンとする構成も可
能である。
Furthermore, in the above-mentioned embodiment, among the pins C and D, pin D, which is closer to the surface to be scanned, is a movable pin, and pin C, which is farther from the surface to be scanned, is a fixed pin. It is also possible to have a configuration in which the pin D, which is closer to the surface to be scanned, is a fixed pin, and the pin C, which is farther from the surface to be scanned, is a movable pin.

上述した実施例では固定ピンCの中心軸、つまり光学ユ
ニットの回転軸は3.4のfθレンズの光軸を含みかつ
偏向面に垂直な面内にあるように構成している。このよ
うな構成をとれば走査線の対称性を保ちつつ最良像面と
被走査面との傾きを調整することができる。
In the embodiment described above, the central axis of the fixing pin C, that is, the rotation axis of the optical unit, is configured to be within a plane that includes the optical axis of the 3.4 fθ lens and is perpendicular to the deflection plane. With such a configuration, the inclination between the best image plane and the scanned surface can be adjusted while maintaining the symmetry of the scanning line.

上述した実施例では光学ユニットに固定ピンと移動可能
なピンを設は基台に取り付は穴を設ける構成をとってい
たが、逆に、光学ユニットに取り付は穴を設は基台に固
定ピンと移動可能なピンを設ける構成も可能である。
In the above embodiment, the optical unit has a fixed pin and a movable pin, and a hole is provided for mounting on the base, but conversely, the optical unit has a hole for mounting and is fixed on the base. A configuration in which a pin and a movable pin are provided is also possible.

第3図(a)、(b)に本発明の光偏向装置の第2の実
施例を示す。第3図(a)は光学ユニットlOを下側(
装置の本体である基台20の取り付は面側)から見た図
であり、第3図(b)は光学ユニット10を基台20に
取り付けた状態を示す図である。同図において、F、、
F、は光学ユニットに固定された2つの位置決めピンで
あり、ピンGは第1の実施例のピンDと同様にバカ穴H
に沿って移動可能である。基台上にはガイドレール■と
取り付は穴Jがあり、ガイドレールIは被走査面の中心
0を中心とする曲率をもっている。
A second embodiment of the optical deflection device of the present invention is shown in FIGS. 3(a) and 3(b). Figure 3(a) shows the optical unit 1O with the lower side (
The attachment of the base 20, which is the main body of the apparatus, is a view seen from the front side), and FIG. 3(b) is a diagram showing the state in which the optical unit 10 is attached to the base 20. In the same figure, F,...
F is two positioning pins fixed to the optical unit, and pin G is located in the hole H in the same way as pin D in the first embodiment.
can be moved along. There is a guide rail (2) and a mounting hole (J) on the base, and the guide rail (I) has a curvature centered on the center 0 of the surface to be scanned.

ユニット側のピンGが固定されていない状態でユニット
はピンF、、F2をガイドレール■に接触させながら移
動可能である。この移動によってユニットを被走査面の
中心Oを軸として偏向面内で回転することができる。こ
れによって最良像面と被走査面の傾きを調整する。この
実施例では光学ユニットが被走査面の中心を軸として偏
向面内で回転する構造をもつため、最良像面の中心と被
走査面の中心は全く一致した状態を保ちつつ最良像面と
被走査面との傾きを調整することができる。また、基台
上のガイドレールIと取り付は穴Jは標準となる光学ユ
ニットを用いて調整後固定されたものであり、光学ユニ
ットは標準となる基台を用いて調整されるので、故障時
にユニット交換が簡単に行える。
In a state where the pin G on the unit side is not fixed, the unit is movable while the pins F, , F2 are in contact with the guide rail (■). This movement allows the unit to rotate within the deflection plane around the center O of the surface to be scanned. This adjusts the inclination of the best image plane and the scanned plane. In this embodiment, the optical unit has a structure that rotates within the deflection plane with the center of the scanned surface as an axis, so the center of the best image plane and the center of the scanned surface are kept in the same state. The inclination with respect to the scanning plane can be adjusted. In addition, the guide rail I and mounting hole J on the base are fixed after adjustment using a standard optical unit, and the optical unit is adjusted using a standard base, so there is no possibility of failure. Unit replacement can be done easily.

第4図(a)、(b)に本発明の光偏向装置の第3の実
施例を示す。第4図(a)は光学ユニットlOを下側(
装置の本体である基台20の取り付は面側)から見た図
であり、第4図(b)は光学ユニット10を基台20に
取り付けた状態を示す図である。同図において、光学ユ
ニット側には固定された横方向の位置を決める位置決め
ピンにと前後方向の位置を定めるためのピンL、Mがあ
り、ピンMは前後方向に移動可能となっている。
A third embodiment of the optical deflection device of the present invention is shown in FIGS. 4(a) and 4(b). FIG. 4(a) shows the optical unit 1O with the lower side (
The attachment of the base 20, which is the main body of the apparatus, is a view seen from the front side), and FIG. 4(b) is a diagram showing the state in which the optical unit 10 is attached to the base 20. In the figure, on the optical unit side, there are a fixed positioning pin for determining the position in the lateral direction, and pins L and M for determining the position in the front-rear direction, and the pin M is movable in the front-rear direction.

基台側には横方向の位置を定めるガイドラインN及び前
後方向の位置を定めるガイドラインPがある。ユニット
のピンKがガイドラインNに、ピンL、Mがガイドライ
ンPにつき当たってユニットの位置が定まるようになっ
ている。ピンMを前後方向に移動することによりピンL
を軸としてユニットが偏向面内で回転し、これによって
最良像面と被走査面の傾きを調整する。
On the base side, there are a guideline N that determines the position in the lateral direction and a guideline P that determines the position in the front and back direction. The pin K of the unit touches the guideline N, and the pins L and M touch the guideline P, so that the position of the unit is determined. By moving pin M back and forth, pin L
The unit rotates within the deflection plane around the axis, thereby adjusting the inclination of the best image plane and the scanned plane.

[発明の効果] 以上説明したように、本発明によれば、光学ユニットが
基台に取り付ける際の取り付は位置を光学ユニットが回
転するように調整することで最良像面と被走査面の傾き
を調整するようにした。したがって、個々の光学部品の
加工精度、取り付は精度を極度にぎびしくすることなし
に、すなわちコストの大幅な増加をさけながら、なおか
つ環境変動等に対しても走査面全面にわたって充分安定
したスポット径が得られる光偏向装置を実現できた。
[Effects of the Invention] As explained above, according to the present invention, when the optical unit is attached to the base, the mounting position is adjusted so that the optical unit rotates, so that the best image plane and the scanned surface can be adjusted. Adjusted the tilt. Therefore, the processing accuracy and mounting of individual optical components can be made without making the accuracy extremely difficult, in other words, while avoiding a significant increase in cost, and maintaining sufficient stability over the entire scanning surface against environmental changes. We have achieved an optical deflection device that can obtain a spot diameter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、(c)は本発明の光偏向装置の
第1の実施例を示す図、第2図(a)。 (b)は最良像面と被走査面の傾ぎの調整を説明するた
めの図、第3図(a)、(b)は本発明の光偏向装置の
第2の実施例を示す図、第4図(a)、(b)は本発明
の光偏向装置の第3の実施例を示す図である。 1・・・光源部 2・・・回転多面鏡 3.4・・・f−θレンズ 10・・・光学ユニット 20・・・基台 塘1記(し) 口(C) 粟20(0)
FIGS. 1(a), (b), and (c) are views showing a first embodiment of the optical deflection device of the present invention, and FIG. 2(a). 3(b) is a diagram for explaining the adjustment of the inclination of the best image plane and the scanned surface; FIGS. 3(a) and 3(b) are diagrams showing a second embodiment of the optical deflection device of the present invention; FIGS. 4(a) and 4(b) are diagrams showing a third embodiment of the optical deflection device of the present invention. 1...Light source part 2...Rotating polygon mirror 3.4...F-θ lens 10...Optical unit 20...Base box 1 (shi) Mouth (C) Millet 20 (0)

Claims (2)

【特許請求の範囲】[Claims] (1)光源部と該光源部からの光束を偏向する偏向器と
を有する光学ユニットと、該光学ユニットを取り付ける
基台とを備えた光偏向装置において、前記光学ユニット
が基台に対して回転可能に取り付けられていることを特
徴とする光偏向装置。
(1) In an optical deflection device including an optical unit having a light source section and a deflector that deflects a light beam from the light source section, and a base to which the optical unit is attached, the optical unit rotates with respect to the base. A light deflection device, characterized in that the light deflection device is attached so that the light deflection device can be attached to the light deflection device.
(2)前記光学ユニットは、偏向面内で回転可能に取り
付けられていることを特徴とする特許請求の範囲第(1
)項記載の光偏向装置。
(2) Claim 1, wherein the optical unit is rotatably mounted within the deflection plane.
).
JP10545589A 1989-04-24 1989-04-24 Optical deflector Pending JPH02282715A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10545589A JPH02282715A (en) 1989-04-24 1989-04-24 Optical deflector
US07/839,715 US5151811A (en) 1989-04-24 1992-02-24 Light deflecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10545589A JPH02282715A (en) 1989-04-24 1989-04-24 Optical deflector

Publications (1)

Publication Number Publication Date
JPH02282715A true JPH02282715A (en) 1990-11-20

Family

ID=14408063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10545589A Pending JPH02282715A (en) 1989-04-24 1989-04-24 Optical deflector

Country Status (1)

Country Link
JP (1) JPH02282715A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090678A (en) * 2000-09-11 2002-03-27 Konica Corp Image-forming apparatus and method for assembling exposure apparatus
JP2011175294A (en) * 2011-05-30 2011-09-08 Konica Minolta Holdings Inc Image forming apparatus
JP2011175295A (en) * 2011-05-30 2011-09-08 Konica Minolta Holdings Inc Image forming apparatus
JP2011186496A (en) * 2011-05-30 2011-09-22 Konica Minolta Holdings Inc Image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028731B2 (en) * 1979-10-08 1985-07-06 三菱重工業株式会社 Transporting the bag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028731B2 (en) * 1979-10-08 1985-07-06 三菱重工業株式会社 Transporting the bag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090678A (en) * 2000-09-11 2002-03-27 Konica Corp Image-forming apparatus and method for assembling exposure apparatus
JP2011175294A (en) * 2011-05-30 2011-09-08 Konica Minolta Holdings Inc Image forming apparatus
JP2011175295A (en) * 2011-05-30 2011-09-08 Konica Minolta Holdings Inc Image forming apparatus
JP2011186496A (en) * 2011-05-30 2011-09-22 Konica Minolta Holdings Inc Image forming apparatus

Similar Documents

Publication Publication Date Title
US7075688B2 (en) Multibeam scanning apparatus
US4962983A (en) Laser optical apparatus
JP5809498B2 (en) Light source unit adjusting apparatus and manufacturing method
US5838001A (en) Scanning optical device and polygon mirror cover
JP2931342B2 (en) Imaging lens holding device in optical scanning device
US5638189A (en) Raster scanner, mirror supporting structure of the same and method for adjusting mirror angle using the structure
US5130840A (en) Light scanning system
US5218461A (en) Scanning optical apparatus
US5162938A (en) Light scanning system
JPH02282715A (en) Optical deflector
JP4677657B2 (en) Scanning optical device
JP2696364B2 (en) Monitor mechanism of scanning optical device
US5812299A (en) Scanning optical device
JP2709949B2 (en) Drawing surface adjustment mechanism of scanning type drawing device
JPH0196612A (en) Holding device for anamorphic optical element
JPH02150399A (en) Image drawn surface control mechanism of scanning type image drawing device
US5151811A (en) Light deflecting apparatus
JP2557938B2 (en) Light beam scanning device with tilt correction function
JP2772556B2 (en) Scanning optical device
JPH0610919U (en) Optical scanning unit
JP3446267B2 (en) Scanning position adjustment method for optical scanning device
JP2749850B2 (en) Optical deflection device
JP2772555B2 (en) Scanning optical device
JPH07181412A (en) Multibeam scanner
JPS6355520A (en) Device for adjusting optical axis of optical system in copying machine or the like