JPH02282664A - Electric expansion valve control device for multi-chamber type air conditioner - Google Patents

Electric expansion valve control device for multi-chamber type air conditioner

Info

Publication number
JPH02282664A
JPH02282664A JP1103934A JP10393489A JPH02282664A JP H02282664 A JPH02282664 A JP H02282664A JP 1103934 A JP1103934 A JP 1103934A JP 10393489 A JP10393489 A JP 10393489A JP H02282664 A JPH02282664 A JP H02282664A
Authority
JP
Japan
Prior art keywords
expansion valve
electric expansion
control device
indoor
valve control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1103934A
Other languages
Japanese (ja)
Inventor
Naoki Iga
伊賀 尚樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP1103934A priority Critical patent/JPH02282664A/en
Publication of JPH02282664A publication Critical patent/JPH02282664A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep a flow rate of refrigerant corresponding to a value of capability of an indoor device and then improve a rising characteristic by a method wherein a rate of a degree of opening of an electric expansion valve corresponding to an indoor device having different capabilities under a value of the capability of the operating is determined and the operation is controlled while this rate being satisfied. CONSTITUTION:A capability rank of each of indoor devices is sent to an electric expansion valve control device 36 from indoor devices 33 to 35 having different capabilities as capability signals 33a to 35a. At the same time the rank is outputted from an inverter 37 to a compressor 26 so as to perform the operation. The control device 36 amy input a difference of temperature between a saturation temperature sensor SS and a suction temperature sensor 39 under a combination of the indoor devices having different capabilities and their racks of capabilities and then a degree of opening of the device is determined in such a way as a flow rate of the refrigerant is proportional to a capability rank of each of the indoor devices 33 to 35, and after this operation, the control operation is carried out in reference to a difference between the sensors 38 and 39 while a rate in respect to the rank of capability is satisfied.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は一台の室外ユニットに対し、複数の室内ユニッ
トを冷媒配管で接続した多室形空気調和機の電動膨張弁
制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electric expansion valve control device for a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit through refrigerant piping.

従来の技術 従来この種の多室形空気調和機は、−台の室外ユニット
に苅し、複数の室内ユニットを冷媒配管で接続している
2. Description of the Related Art Conventionally, this type of multi-room air conditioner has two outdoor units connected to each other and a plurality of indoor units connected by refrigerant piping.

これを第2図に示す。すなわち、室外ユニット1の内部
には、圧縮機2.冷媒の流路を切換える四方弁3.室外
熱交換器4.冷媒の絞り機構として設けられた過熱度制
御用電動膨張弁62分配用電動膨張弁7,8,9を設け
ている。前記圧縮機2は各室内ユニッ)10,11. 
12からの出力線を介して運転命令により作動するイン
バータ部13に、より駆動する。前記圧縮機2により吐
出した冷媒は、前記四方弁3を通り、冷房時は前記室外
熱交換器4により凝縮され、前記過熱度制御用電動膨張
弁6により減圧され、さらに分配用電動膨張弁7,8.
9により、各室内ユニッ)10゜11.12に冷媒を分
配して送られ、熱交換を行い、その後圧縮機2に戻ると
いうサイクルを形成している。運転中は、電動膨張弁制
御装置14が、一定時間毎に受液器6よりキャピラリチ
ューブ23を介して圧縮機2に導出した吸込管24に飽
和温度を検出する飽和篩センサ16と、吸込温度を検出
する吸込温度センサ15より信号15’、16’として
検出し、この両温度センサ15,16の温度差により電
動膨張弁eの開度を調節している。また前記分配用電動
膨張弁7,8.9はそれぞれ室内ユニッ)10,11.
12に対応し、それぞれの室内ユニットの液管、ガス管
に設けだ液温センサ17,18,19と、ガス温センサ
20,21゜22の温度は信号17’、j8’、19’
、20’、21’22′として電動膨張弁制御装置14
に検出され、との液温センサ17,18. 19とガス
温センサ20.21,22の温度差により、分配用電動
膨張弁子、8,9の開度を調節していた。
This is shown in FIG. That is, inside the outdoor unit 1, there is a compressor 2. Four-way valve that switches the refrigerant flow path3. Outdoor heat exchanger4. An electric expansion valve 62 for superheat control, which is provided as a refrigerant throttling mechanism, and electric expansion valves 7, 8, and 9 for distribution are provided. The compressor 2 is installed in each indoor unit) 10, 11.
It is driven by an inverter unit 13 which is activated by an operation command via an output line from 12. The refrigerant discharged by the compressor 2 passes through the four-way valve 3, is condensed by the outdoor heat exchanger 4 during cooling, is depressurized by the electric expansion valve 6 for controlling the degree of superheat, and is further passed through the electric expansion valve 7 for distribution. ,8.
9, the refrigerant is distributed and sent to each indoor unit (10°, 11, 12), undergoes heat exchange, and then returns to the compressor 2, forming a cycle. During operation, the electric expansion valve control device 14 sends a saturation sieve sensor 16 which detects the saturation temperature to the suction pipe 24 led out from the liquid receiver 6 to the compressor 2 via the capillary tube 23 at regular intervals, and a suction temperature The temperature difference between the two temperature sensors 15 and 16 is used to adjust the opening degree of the electric expansion valve e. Further, the distribution electric expansion valves 7, 8.9 are indoor units) 10, 11.9, respectively.
Corresponding to 12, the temperature of liquid temperature sensors 17, 18, 19 and gas temperature sensors 20, 21, 22 provided in the liquid pipes and gas pipes of each indoor unit is determined by signals 17', j8', 19'.
, 20', 21' and 22' are the electric expansion valve control device 14.
The liquid temperature sensors 17, 18 . The opening degree of the electric distribution expansion valves 8 and 9 was adjusted based on the temperature difference between the gas temperature sensor 19 and the gas temperature sensors 20, 21, and 22.

発明が解決しようとする課題 このような従来の構成では、例えば接続している室内ユ
ニットの能力に違いがある場合、例えば、といったよう
にそれぞれ異なる場合、圧縮機2の起動時等の安定に至
るまでの過渡期には能力の大きい室内ユニットと小さい
室内ユニットに同じ量の冷媒が流れるため、能力の大き
い室内ユニットの能力が発揮できないだめ、立上り性能
が劣ってしまう。捷た各室内ユニットの液管、ガス管に
液晶センサ17,18,19.  ガス温センサ20゜
21.22を取付けなければならないため多くのセンサ
を必要とし、コスト高の要因となり、しかも1つのセン
サでも故障などによる異常があれば、その異常となった
センサが接続されている室内ユニットは適正な冷媒が流
れなくなり、引いてはシステム全体の異常につながって
しまうので、多室形空気調和における冷凍サイクルの安
定した性能が維持できないという課題を有していた。
Problems to be Solved by the Invention In such a conventional configuration, for example, if the connected indoor units have different capacities, e.g. During the transition period, the same amount of refrigerant flows through the indoor units with large capacity and the indoor units with small capacity, so the indoor unit with large capacity cannot reach its full potential, resulting in poor start-up performance. Liquid crystal sensors 17, 18, 19. Because gas temperature sensors 20° and 21.22 must be installed, many sensors are required, which increases costs.Moreover, if there is an abnormality due to failure of even one sensor, the sensor with the abnormality will be connected. The problem with indoor units in which the proper refrigerant does not flow is that the stable performance of the refrigeration cycle in multi-room air conditioners cannot be maintained because this can lead to malfunctions in the entire system.

本発明はこのような課題を解決するもので、室内ユニッ
トがそれぞれに異能力のものを備えたときにその室内ユ
ニットの能力の大きさに応じた冷媒流量を確保し、立上
り性能の向上と、各センサを少なくして、故障要因を軽
減して安定した運転を行なわせることを目的とするもの
である。
The present invention solves these problems by ensuring a refrigerant flow rate corresponding to the capacity of the indoor unit when each indoor unit is equipped with a different capacity, improving start-up performance, The purpose of this is to reduce the number of sensors, reduce the causes of failure, and ensure stable operation.

課題を解決するだめの手段 この課題を解決するために本発明は、1台の室外ユニッ
トに異能力をもつ各室内ユニットを冷媒配管で接続し、
前記室外ユニット内には、室外熱交換器、受液器、前記
各室内ユニットに対応する分配用電動膨張弁を備え、前
記各室内ユニットの運転状態を信号線を介して入力する
とともに、前記受橡液器より吸込管に接続されたバイパ
ス管に取着した飽和温度センサと吸込管に取着した吸込
温度センサとの温度差を入力する電動膨張弁制御装置と
、前記各室内ユニットの運転命令を信号線を介して入力
し、圧縮機へ出力するインバータ部とを備え、前記電動
膨張弁制御装置は、前記分配用電動膨張弁に信号線を介
して異能力の室内ユニットに比例した制御信号を出力す
るものである。
Means for Solving the Problem In order to solve this problem, the present invention connects each indoor unit with different capabilities to one outdoor unit by refrigerant piping,
The outdoor unit is provided with an outdoor heat exchanger, a liquid receiver, and an electric expansion valve for distribution corresponding to each of the indoor units, and the operating status of each of the indoor units is input via a signal line. an electric expansion valve control device that inputs a temperature difference between a saturation temperature sensor attached to a bypass pipe connected to a suction pipe from a water tank and a suction temperature sensor attached to a suction pipe; and operation instructions for each of the indoor units. and an inverter unit that inputs the signal via a signal line and outputs it to the compressor, and the electric expansion valve control device inputs a control signal proportional to the indoor unit of different capacity to the distribution electric expansion valve via the signal line. This outputs the following.

作用 この構成により、異能力の各室内ユニットよりインバー
タ部に出力して圧縮機を運転させるとともに、前記イン
バータ部より、電動膨張弁制御装置に出力し、かつ前記
各室内ユニットよシ前記電動膨張弁制御装置に出力し、
前記電動膨張弁制御装置では、各室内ユニットの能力の
大きさに比例した開度に制御するように各分配用電動膨
張弁の開度を制御し、各室内ユニットの能力の大きさに
応じた冷媒量を確保することとなる。
Function: With this configuration, each indoor unit of different capacity outputs an output to the inverter section to operate the compressor, and the inverter section outputs an output to the electric expansion valve control device, and each indoor unit also outputs the electric expansion valve to the electric expansion valve control device. output to the control device,
The electric expansion valve control device controls the opening degree of each distribution electric expansion valve so that the opening degree is proportional to the capacity of each indoor unit. This will ensure a sufficient amount of refrigerant.

実施例 以下本発明による一実施例を第1図にもとづいて説明す
る。第1図において、室外ユニット25には冷媒配管で
接続した能力の異なる各室内ユニッ)33,34.35
が接続されている。前記室外ユニット26には、圧縮機
26と、冷媒流路を切換える四方弁27と、室外熱交換
器28と、受液器29と、前記各室内ユニット33,3
4.36に対応した分配用電動膨張弁30,31.32
を設けている。また前記受液器29からは、ギヤピラリ
チューブ41を介して吸込管40に接続されたバイパス
管42を導出している。このバイパス管42の吸込管4
oへの接続部手前(冷媒流入側)には吸込管40の飽和
温度を検出する飽和温度センサを、この接続部より手前
(冷媒流入(llII)の吸込管4oには、吸込温度を
検出する吸込温度センサ39を取着している。前記圧縮
機26にはこの圧縮機の回転数を変更するインバータ部
37が接続されている。信号線33’、34’、35’
は、前記異能力の各室内二二ノ)33,34.♀6から
の運転命令を前記インバータ部37に送るとともに電動
膨張弁制御装置36に、各室内ユニッ)33,34゜3
6の運転状態を伝えるものである。出力線30′31’
、32’は、電動膨張弁制御装置36から各室内ユニッ
)33,34.35の運転状態の出力に見合って各室内
ユニットに対応した出力信号を各分配用電動膨張弁30
,31.32に伝えるものである。信号線38’、39
’は、前記飽和温度センサ38と吸込温度センサ39か
らの飽和温度と吸込温度を前記電動膨張弁制御装置36
に伝えるものである。また信号線37′は、前記インバ
ータ部37より前記電動膨張弁制御装置36へそのとき
の圧縮機26の周波数を伝えるものである。
EXAMPLE An example of the present invention will be described below with reference to FIG. In Fig. 1, the outdoor unit 25 is connected to the indoor units (33, 34, 35) with different capacities connected by refrigerant piping.
is connected. The outdoor unit 26 includes a compressor 26, a four-way valve 27 for switching the refrigerant flow path, an outdoor heat exchanger 28, a liquid receiver 29, and each of the indoor units 33, 3.
Distribution electric expansion valve 30, 31.32 compatible with 4.36
has been established. Further, a bypass pipe 42 connected to a suction pipe 40 via a gear pillar tube 41 is led out from the liquid receiver 29 . Suction pipe 4 of this bypass pipe 42
A saturation temperature sensor for detecting the saturation temperature of the suction pipe 40 is installed in front of the connection part to O (on the refrigerant inflow side), and a saturation temperature sensor is installed in front of this connection part (on the refrigerant inflow (llII) suction pipe 4o) to detect the suction temperature. A suction temperature sensor 39 is attached to the compressor 26. An inverter section 37 for changing the rotation speed of the compressor is connected to the compressor 26. Signal lines 33', 34', 35'
(22) 33, 34. The operation command from ♀6 is sent to the inverter section 37, and the electric expansion valve control device 36 is sent to each indoor unit) 33, 34゜3.
This is to convey the operating status of No. 6. Output line 30'31'
, 32' transmits an output signal corresponding to each indoor unit from the electric expansion valve control device 36 to each distribution electric expansion valve 30 in accordance with the output of the operating state of each indoor unit (33, 34, 35).
, 31.32. Signal lines 38', 39
' is the saturation temperature and suction temperature from the saturation temperature sensor 38 and the suction temperature sensor 39, and the electric expansion valve control device 36
It is something that can be conveyed to people. Further, a signal line 37' transmits the frequency of the compressor 26 at that time from the inverter section 37 to the electric expansion valve control device 36.

上記構成において、各異能力の室内ユニット33.34
.35からは、能力信号33a、34a。
In the above configuration, each indoor unit with different abilities 33.34
.. 35, capability signals 33a, 34a.

35aとして、各室内ユニットの能力ランクが電動膨張
弁制御装置36に送られる。これと同時にインバータ部
37より圧縮機26に出力して運転が行なわれる。この
運転信号を送信した各異能力の室内ユニットの組合せと
、その能力ランクにより電動膨張弁制御装置36には、
飽和温度センサ38と吸込温度センサ39の温度差を入
力し、各室内ユニツ)33,34.35に対応した分配
用電動膨張弁30,31.32に出力し、開度を冷媒流
量が各異能力室内ユニツ)33,34,35の能力ラン
クに比例する様に決定する。その後、前記飽和温度セン
サ38と吸込温度センサ39の差により、前記の能力ラ
ンクに対する比率を満足しながら制御する。
As 35a, the capacity rank of each indoor unit is sent to the electric expansion valve control device 36. At the same time, the inverter section 37 outputs power to the compressor 26 for operation. Depending on the combination of indoor units with different capabilities that sent this operation signal and their capability ranks, the electric expansion valve control device 36
The temperature difference between the saturation temperature sensor 38 and the suction temperature sensor 39 is input and output to the electric distribution expansion valves 30, 31, 32 corresponding to the indoor units (33, 34, 35), and the opening degree is determined depending on the refrigerant flow rate. Ability Indoor Units) Determined in proportion to the ability ranks of 33, 34, and 35. Thereafter, control is performed based on the difference between the saturation temperature sensor 38 and the suction temperature sensor 39 while satisfying the ratio to the capacity rank.

発明の効果 前記実施例の説明により明らかなように本発明は、運転
している室内ユニットの能力の大きさとその組合せによ
り、各異能力の室内ユニットに対応した電動膨張弁の開
度の比率を決定し、飽和温度と吸込温度の差による過熱
度制御中もこの比率を満足しながら制御を行なうように
したから、立上り時に能力の大きな室内ユニットには大
流量を、小さな室内ユニットには小流量の冷媒が流れる
ことになり、立上り性能は向上し、かつ従来のように多
くのセンサを使用することなく、センサの数を減らすこ
とにより、各室内ユニットが異能力であっても、安定し
た運転とコストの軽減を計れるなどの効果を有するもの
である。
Effects of the Invention As is clear from the description of the above embodiments, the present invention is capable of adjusting the opening ratio of electric expansion valves corresponding to indoor units of different capacities depending on the capacities of the operating indoor units and their combinations. This ratio was determined, and even during superheat control based on the difference between the saturation temperature and the suction temperature, control was performed while satisfying this ratio. Therefore, at startup, a large flow rate is applied to indoor units with large capacity, and a small flow rate is applied to small indoor units. of refrigerant flows, improving start-up performance, and by reducing the number of sensors instead of using as many sensors as in the past, stable operation is achieved even if each indoor unit has a different capacity. This has the effect of reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の空気調和機の電動膨張弁制
御装置の冷凍サイクル図、第2図は従来の空気調和機の
電動膨張弁制御装置の冷凍サイクル図である。 25・・・・・・室外ユニット、28・・・・・・室外
熱交換器、29・・・・・・受液器、30,31,32
・・・・・・分配用電動膨張弁、30’ 、31 ’ 
、32’・・・・・・信号線、33゜34.35・・・
・・・室内ユニット、33’、34’、35’・・・・
・・信号線、33a、34a、36a・・・・・・信号
線、36・・・・・・電動膨張弁制御装置、37・・・
・・・インバータ部、38・・・・・・飽和温度センサ
、39・・・・・・吸込温度センサ、4o・・・・・・
吸込管、42・・・・・・バイパス管。
FIG. 1 is a refrigeration cycle diagram of an electric expansion valve control device for an air conditioner according to an embodiment of the present invention, and FIG. 2 is a refrigeration cycle diagram of a conventional electric expansion valve control device for an air conditioner. 25...Outdoor unit, 28...Outdoor heat exchanger, 29...Liquid receiver, 30, 31, 32
...Electric expansion valve for distribution, 30', 31'
, 32'...signal line, 33°34.35...
...Indoor unit, 33', 34', 35'...
...Signal lines, 33a, 34a, 36a...Signal lines, 36...Electric expansion valve control device, 37...
... Inverter section, 38 ... Saturation temperature sensor, 39 ... Suction temperature sensor, 4o ...
Suction pipe, 42... Bypass pipe.

Claims (1)

【特許請求の範囲】[Claims] 1台の室外ユニットに異能力をもつ各室内ユニットを冷
媒配管で接続し、前記室外ユニット内には、室外熱交換
器、受液器、前記各室内ユニットに対応する分配用電動
膨張弁を備え、前記各室内ユニットの運転状態を信号線
を介して入力するとともに前記受液器より吸込管に接続
されたバイパス管に取着した飽和温度センサーと吸込管
に取着した吸込温度センサーとの温度差を入力する電動
膨張弁制御装置と、前記各室内ユニットの運転命令を信
号線を介して入力し、圧縮機へ出力するインバータ部と
を備え、前記電動膨張弁制御装置は、前記分配用電動膨
張弁に信号線を介して異能力の室内ユニットに比例した
制御信号を出力する構成とした多室形空気調和機の電動
膨張弁制御装置。
Indoor units with different capacities are connected to one outdoor unit by refrigerant piping, and the outdoor unit is provided with an outdoor heat exchanger, a liquid receiver, and an electric expansion valve for distribution corresponding to each of the indoor units. , the operating status of each of the indoor units is input via a signal line, and the temperatures of the saturation temperature sensor attached to the bypass pipe connected to the suction pipe from the liquid receiver and the suction temperature sensor attached to the suction pipe are input. The electric expansion valve control device includes an electric expansion valve control device that inputs the difference, and an inverter section that inputs the operation command of each indoor unit via a signal line and outputs it to the compressor. An electric expansion valve control device for a multi-room air conditioner configured to output a control signal proportional to an indoor unit of different capacity to the expansion valve via a signal line.
JP1103934A 1989-04-24 1989-04-24 Electric expansion valve control device for multi-chamber type air conditioner Pending JPH02282664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103934A JPH02282664A (en) 1989-04-24 1989-04-24 Electric expansion valve control device for multi-chamber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103934A JPH02282664A (en) 1989-04-24 1989-04-24 Electric expansion valve control device for multi-chamber type air conditioner

Publications (1)

Publication Number Publication Date
JPH02282664A true JPH02282664A (en) 1990-11-20

Family

ID=14367268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103934A Pending JPH02282664A (en) 1989-04-24 1989-04-24 Electric expansion valve control device for multi-chamber type air conditioner

Country Status (1)

Country Link
JP (1) JPH02282664A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529410A (en) * 2007-06-12 2010-08-26 ダンフォス・アクチ−セルスカブ Method for controlling a vapor compression system
KR20130071735A (en) * 2011-12-21 2013-07-01 양태허 Temperature regulation system with active jetting type refrigerant supply and regulation
CN103375871A (en) * 2012-04-16 2013-10-30 珠海格力电器股份有限公司 Automatic air-conditioning system capacity adjusting method
JP2013234842A (en) * 2013-06-28 2013-11-21 Mitsubishi Electric Corp Electronic expansion valve and air conditioner with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107866A (en) * 1979-02-09 1980-08-19 Matsushita Electric Ind Co Ltd Refrigerating machine
JPS6096866A (en) * 1983-10-29 1985-05-30 株式会社東芝 Multiple type air conditioner
JPS6419256A (en) * 1987-07-10 1989-01-23 Matsushita Refrigeration Multi-chamber air-conditioning machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107866A (en) * 1979-02-09 1980-08-19 Matsushita Electric Ind Co Ltd Refrigerating machine
JPS6096866A (en) * 1983-10-29 1985-05-30 株式会社東芝 Multiple type air conditioner
JPS6419256A (en) * 1987-07-10 1989-01-23 Matsushita Refrigeration Multi-chamber air-conditioning machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529410A (en) * 2007-06-12 2010-08-26 ダンフォス・アクチ−セルスカブ Method for controlling a vapor compression system
US9303901B2 (en) 2007-06-12 2016-04-05 Danfoss A/S Method for controlling a vapour compression system
KR20130071735A (en) * 2011-12-21 2013-07-01 양태허 Temperature regulation system with active jetting type refrigerant supply and regulation
CN103375871A (en) * 2012-04-16 2013-10-30 珠海格力电器股份有限公司 Automatic air-conditioning system capacity adjusting method
CN103375871B (en) * 2012-04-16 2016-02-03 珠海格力电器股份有限公司 The Automatic adjustment method of air-conditioning system ability
JP2013234842A (en) * 2013-06-28 2013-11-21 Mitsubishi Electric Corp Electronic expansion valve and air conditioner with the same

Similar Documents

Publication Publication Date Title
JPS6334459A (en) Air conditioner
JPH04124544A (en) Air conditioner
JPH03244978A (en) Air conditioner
JP2000297970A (en) Controller for heat pump
JPH02282664A (en) Electric expansion valve control device for multi-chamber type air conditioner
JP2974381B2 (en) Air conditioner
JPH04190054A (en) Multi-chamber type air conditioner
JPH0718933Y2 (en) Release controller for air conditioner
JPH07269977A (en) Motor operated expansion valve controller for air conditioner
JPH0484061A (en) Electrically-driven expansion valve controller for multi-chamber type air conditioner
JPH0849931A (en) Controlling device of motor operated expansion valve of branch unit
JPH03271675A (en) Cold water manufacturing device
JP3378712B2 (en) Air conditioner
JP2625556B2 (en) Operation control device for air conditioner
KR19980083062A (en) Integrated refrigeration unit of air conditioner and refrigerator
JPH04198669A (en) Electric expansion valve control device for multi-chamber type air-conditioning machine
JPH0460349A (en) Air conditioner with multiple indoor unit
JPH07120092A (en) Air conditioner
JPH05248722A (en) Refrigerant control device for multi-chamber type air conditioner
JPH02110267A (en) Refrigerating cycle
JPH03117846A (en) Air conditioner
JPH05322350A (en) Refrigerant controller for multi-room type air conditioner
JPH0579894B2 (en)
JPS62129660A (en) Method of controlling refrigerant in refrigerator
JPH03144258A (en) Air conditioner for multi rooms