JPH02281782A - Semiconductor laser array device - Google Patents

Semiconductor laser array device

Info

Publication number
JPH02281782A
JPH02281782A JP10520589A JP10520589A JPH02281782A JP H02281782 A JPH02281782 A JP H02281782A JP 10520589 A JP10520589 A JP 10520589A JP 10520589 A JP10520589 A JP 10520589A JP H02281782 A JPH02281782 A JP H02281782A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser array
dimensional semiconductor
heat
insulating plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10520589A
Other languages
Japanese (ja)
Other versions
JP2554741B2 (en
Inventor
Masahiro Kume
雅博 粂
Hiroki Naito
浩樹 内藤
Hideo Nagai
秀男 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1105205A priority Critical patent/JP2554741B2/en
Publication of JPH02281782A publication Critical patent/JPH02281782A/en
Application granted granted Critical
Publication of JP2554741B2 publication Critical patent/JP2554741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain continuous oscillation by placing a two-dimensional semiconductor array, wherein plural pieces of one-dimensional semiconductor arrays are placed in layer shape between insulating plates excellent in heat conductivity, on a heat radiating member through the insulating plates. CONSTITUTION:Plural pieces of one-dimensional semiconductor arrays 1 are placed in layer shape between insulating plates 2 excellent in heat conductivity so as to constitute a two-dimensional semiconductor laser array 4, and this two-dimensional semiconductor laser array 4 is placed on a heat radiating member 5 through the insulating plates 2. For the material of the insulating plates 2, BN is used which is almost the same as GaAs being laser crystals in point of cost and in heat expansion coefficient. Hereby, the heat generated from the one-dimensional semiconductor laser array 1 is transmitted to the heat radiating member 5 through the insulating plate 2 excellent in heat conductivity, and heat radiation is performed enough, and the temperature rise of the semiconductor laser array device is suppressed, and also continuous oscillation becomes possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体レーザ結晶の励起や、加工用に用いられ
る高出力の半導体レーザアレイ装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-output semiconductor laser array device used for excitation and processing of solid-state laser crystals.

従来の技術 半導体レーザはスペクトル幅が狭く高効率であり、Nd
:YAG結晶などの固体レーザ結晶の吸収スペクトルに
波長を合わぜることにより効率良く励起できるため、従
来のランプに代る固体レーザ励起光源として近年注目を
集めるようになってきた。半導体レーザを固体レーザの
励起光源として用いる場合、励起光源の光密度が高いこ
とが必要となる。半導体レーザの発光領域の大きさは1
0μmx2μm程度であるため、多数の発光部であるレ
ーザ光出射点を一次元(直線的)あるいは二次元(平面
的)に並べた半導体レーザアレイとすることにより、極
めて高い光密度を得ることが可能である。半導体レーザ
をYAGレーザの励起光源に用いた場合の総合゛効率は
、半導体レーザの電気−光変換効率が30%、YAGレ
ーザの入力励起光−レーザ出力光変換効率が30%であ
るので、10%近い値が得られ、これはランプ励起の場
合の10倍以上となる。また、余分な波長の光の吸収に
よる結晶の発熱がなく、YAGレーザの冷却も軽減され
る。従来、半導体レーザで高出力を1qる場合、多数の
レーザ光出射点を高密度でもって二次元にすなわち平面
上に配置する必要がある。ところで、半導体レーザは結
晶の勇開面を共振器に用いるため、−枚の基板上にモノ
リシックにレーザ光出射点を並べることは容易ではない
。そこで−次元にレーザ光出射点を並べたバー状の半導
体レーザアレイを用い、これをさらに二次元に配置する
ことが考えられる。
Conventional technology semiconductor lasers have a narrow spectral width and high efficiency, and Nd
:Since efficient excitation can be achieved by matching the wavelength to the absorption spectrum of a solid-state laser crystal such as a YAG crystal, it has recently attracted attention as a solid-state laser excitation light source in place of conventional lamps. When a semiconductor laser is used as an excitation light source for a solid-state laser, the excitation light source needs to have a high optical density. The size of the emission area of a semiconductor laser is 1
Since it is approximately 0 μm x 2 μm, it is possible to obtain extremely high light density by creating a semiconductor laser array in which many laser light emission points, which are light emitting parts, are arranged one-dimensionally (linearly) or two-dimensionally (planarly). It is. The overall efficiency when a semiconductor laser is used as the pumping light source for a YAG laser is 10%, since the semiconductor laser's electrical-to-optical conversion efficiency is 30% and the YAG laser's input pumping light-to-laser output optical conversion efficiency is 30%. %, which is more than 10 times that in the case of lamp excitation. Furthermore, there is no heat generation in the crystal due to absorption of light of extra wavelengths, and cooling of the YAG laser is also reduced. Conventionally, in order to achieve a high output of 1 q with a semiconductor laser, it is necessary to arrange a large number of laser beam emission points with high density two-dimensionally, that is, on a plane. By the way, since semiconductor lasers use the open plane of a crystal as a resonator, it is not easy to monolithically arrange laser light emitting points on two substrates. Therefore, it is conceivable to use a bar-shaped semiconductor laser array in which laser beam emission points are arranged in the negative dimension, and to further arrange this in two dimensions.

発明が解決しようとする課題 ところで、半導体レーザの光出射点を高密度に並べた場
合に問題となるのは発熱である。特に、半導体レーザは
、そのしきい電流値が温度に敏感であり、素子の発熱に
よって光出力が飽和する現象が起こる。また高温での動
作では著しく素子の野分を縮める。たとえば、素子温度
が10度上昇すると寿命は半分になる。そのために最大
光出力を上げるには、いかに効率よく放熱を行ない、素
子温度を低く保つかが重要となるが、二次元の半導体レ
ーザアレイを単にヒートシンク上に載置融着することが
できず、したがってどうしても放熱が十分に行われない
という問題があった。なお、放熱が悪いと、連続発振を
得ることは非常に困難となり、短いパルス幅(1μs以
下)で、繰り返しの遅いパルス動作しかさせることがで
きない。
Problems to be Solved by the Invention When the light emitting points of semiconductor lasers are arranged in high density, heat generation becomes a problem. In particular, the threshold current value of a semiconductor laser is sensitive to temperature, and a phenomenon occurs in which optical output is saturated due to heat generation of the element. Furthermore, operation at high temperatures significantly shrinks the field of the device. For example, if the element temperature increases by 10 degrees, the lifetime will be halved. Therefore, in order to increase the maximum optical output, it is important to dissipate heat efficiently and keep the element temperature low, but it is not possible to simply place a two-dimensional semiconductor laser array on a heat sink and fuse it. Therefore, there was a problem that heat radiation was not sufficiently carried out. Note that if heat dissipation is poor, it is very difficult to obtain continuous oscillation, and only slow pulse operation with a short pulse width (1 μs or less) and slow repetition can be performed.

そこで、本発明は上記課題を解消し得る半導体レーザア
レイ装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a semiconductor laser array device that can solve the above problems.

課題を解決するための手段 上記課題を解決するため、本発明の半導体レーザアレイ
装置は、複数個のレーザ光出射点が一次元に並べられて
なる一次元半導体レーザアレイを、熱伝導性の良い絶縁
板の間に複数個層状に配置して二次元半導体レーザアレ
イを構成し、かつこの二次元半導体レーザアレイを、そ
の絶縁板を介して放熱部材上に載置したものである。
Means for Solving the Problems In order to solve the above problems, the semiconductor laser array device of the present invention uses a one-dimensional semiconductor laser array in which a plurality of laser beam emission points are arranged one-dimensionally. A two-dimensional semiconductor laser array is constructed by arranging a plurality of semiconductor lasers in a layer between insulating plates, and this two-dimensional semiconductor laser array is placed on a heat dissipating member via the insulating plates.

作用 上記の構成において、−次元半導体レーザアレイから発
生した熱は熱伝導性の良い絶縁板を介して放熱部材に伝
導されて、放熱が十分に行われる。
Operation In the above configuration, the heat generated from the -dimensional semiconductor laser array is conducted to the heat radiating member via the insulating plate having good thermal conductivity, and the heat is sufficiently radiated.

したがって半導体レーザアレイ装置の温度1胃が抑制さ
れるとともに連続発振も可能となる。
Therefore, the temperature level of the semiconductor laser array device is suppressed, and continuous oscillation is also possible.

実施例 以下、本発明の一実施例を図面に基づき説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図に半導体レーザアレイ装置の外観斜視図、第2図
に同装置の要部斜視図および部品分解斜視図を示す。
FIG. 1 is an external perspective view of a semiconductor laser array device, and FIG. 2 is a perspective view of the main parts and an exploded perspective view of the device.

第1図および第2図において、1はたとえば10個のレ
ーザ光出射点(発光点ともいう)が100μmの間隔で
一次元に並べて構成されたバー状の一次元半導体レーザ
アレイで、長さ1.2闇、厚さ100μm1共振器長さ
250μmとされている。この−次元半導体レーザアレ
イ1は、5個並置されるとともに、これらの間および両
件側に熱伝導性の良い材料で構成された絶縁板2が介装
されて層状にされるとともに、−次元半導体レーザアレ
イ1とは反対側の各絶縁板2の間に、絶縁板2と同じ材
質で構成された絶縁スペーサ3が介装されて、二次元半
導体レーザアレイ4が構成されている。
In FIGS. 1 and 2, reference numeral 1 denotes a bar-shaped one-dimensional semiconductor laser array composed of, for example, ten laser beam emission points (also referred to as light-emitting points) arranged one-dimensionally at intervals of 100 μm, and has a length of 1. .2 darkness, thickness 100 μm, 1 resonator length 250 μm. Five -dimensional semiconductor laser arrays 1 are arranged in parallel, and insulating plates 2 made of a material with good thermal conductivity are interposed between them and on both sides to form a layered structure. An insulating spacer 3 made of the same material as the insulating plates 2 is interposed between each insulating plate 2 on the side opposite to the semiconductor laser array 1, thereby forming a two-dimensional semiconductor laser array 4.

そして、さらにこの層状の二次元半導体レーザアレイ4
は、その絶縁スペーサ3側の端面がヒートシンク(放熱
部材)5の表面に接触するように、ヒートシンク5上に
[置されている。なお、上記絶縁板2の材質としては、
熱伝導率の点ではダイヤモンドが一番優れているが、コ
ストの点と熱膨張係数がレーザ結晶であるGaAsとほ
とんど同じであるという点で8Nの方が優れている。B
Nの熱伝導率はダイヤモンドの3分の1であるが銅より
2倍以上と優れているので本実施例においては8Nが使
用されている。また、絶縁板2の厚さは100μmとさ
れており、第2図に示すように、上下部の表面にはCr
−Pt−Auのメタライズパターンaがほどこされてい
る。なお、金パターン上にはAu−8n、Pb−8nな
どの半田材が@着され、−次元半導体レーザアレイ1と
融着できるようにされている。上記半田材は熱伝導性が
悪いため、その膜厚は3μmと薄くされている。
Furthermore, this layered two-dimensional semiconductor laser array 4
is placed on the heat sink 5 such that its end face on the insulating spacer 3 side contacts the surface of the heat sink (heat dissipation member) 5. The material of the insulating plate 2 is as follows:
Diamond is the best in terms of thermal conductivity, but 8N is better in terms of cost and thermal expansion coefficient, which is almost the same as GaAs, which is a laser crystal. B
The thermal conductivity of N is one-third that of diamond, but is more than twice that of copper, so 8N is used in this example. The thickness of the insulating plate 2 is 100 μm, and as shown in FIG. 2, the upper and lower surfaces are made of Cr.
- A metallized pattern a of Pt-Au is applied. Note that a solder material such as Au-8n or Pb-8n is deposited on the gold pattern so that it can be fused to the -dimensional semiconductor laser array 1. Since the solder material has poor thermal conductivity, its film thickness is made as thin as 3 μm.

また、上記二次元半導体レーザアレイ4は、金メツキさ
れた銅製のヒートシンク5上に、Pb3nなどの半田材
を用いて融着されており、もちろん絶縁スペーサ3を介
装したのは、ヒートシンク5との熱伝導面積を増加させ
るためである。上記絶縁スペーサ3の表面にも金のメタ
ライズパターンaがほどこされている。なお、ヒートシ
ンク5側の電極端子6と二次元半導体レーザアレイ4の
電極端子としての両側部の絶縁板2とは金ワイヤ7で接
続され、諌だIOA近い大電流を流すため、金ワイヤ7
の本数は50木程度にされている。
The two-dimensional semiconductor laser array 4 is fused onto a gold-plated copper heat sink 5 using a solder material such as Pb3n, and of course the insulating spacer 3 is interposed between the heat sink 5 and the heat sink 5. This is to increase the heat conduction area. A gold metallized pattern a is also applied to the surface of the insulating spacer 3. Note that the electrode terminal 6 on the heat sink 5 side and the insulating plates 2 on both sides as electrode terminals of the two-dimensional semiconductor laser array 4 are connected by a gold wire 7, and in order to flow a large current close to IOA, the gold wire 7
The number of trees is about 50.

上記構成においては、各−次元半導体レーザアレイ1で
発生した熱は、絶縁板2および絶縁スペーサ3を介して
ヒートシンク5側に伝導されて、欣然が十分に行われる
。なお、m1図および第2図中、矢印Aは二次元半導体
レーザアレイ4から出射されるレーザ光である。
In the above configuration, the heat generated in each one-dimensional semiconductor laser array 1 is conducted to the heat sink 5 side via the insulating plate 2 and the insulating spacer 3, and the heat is sufficiently absorbed. Note that in FIG. m1 and FIG. 2, arrow A indicates laser light emitted from the two-dimensional semiconductor laser array 4.

ここで、上記の半導体レーザアレイ装置における電流−
出力特性を第3図に示す。なお、−次元半導体レーザア
レイ1が5重置列に接続されているので、印加電圧は約
10Vとなる。第3図から分かるように、6Aの電流で
20W J3上の光出力が1ηられており、電気からレ
ーザ光への変換効率は33%と非常に良い結果が得られ
ている。発光部であるレーザ光出射点の面積は約1−で
あるので光密度は2KW/cIIとなり、YAGレーザ
の励起光源としては満足すべき特性が得られている なお、絶縁板2および、絶縁スペーサ3の材質として、
[1(Cu ) 、ダイヤモンド(C)の他に、たとえ
ば窒化ホウ素(BN>、炭化ケイ素(S i C> 、
ベリリア<8eO) 、窒化アルミニウム<Al2N>
などが使用される。
Here, the current in the above semiconductor laser array device -
Figure 3 shows the output characteristics. Note that since the -dimensional semiconductor laser arrays 1 are connected in five overlapping rows, the applied voltage is about 10V. As can be seen from FIG. 3, the optical output on the 20W J3 was reduced by 1η with a current of 6A, and the conversion efficiency from electricity to laser light was 33%, a very good result. Since the area of the laser light emitting point, which is the light emitting part, is approximately 1 -, the optical density is 2 KW/cII, which has satisfactory characteristics as an excitation light source for a YAG laser. As the material of 3,
[1(Cu), in addition to diamond (C), for example, boron nitride (BN>, silicon carbide (S i C>),
beryllia <8eO), aluminum nitride <Al2N>
etc. are used.

発明の効果 以上のように、本発明の構成によれば、−次元半導体レ
ーザアレイから発生する熱を熱伝導性の良い絶縁板を介
して放熱部材に伝導させて十分な放熱を行うことができ
、したがって装置の寿命が延びるとともに、大きな出力
でもって連続発振を行うことができる。特に、この半導
体レーザアレイ装置は、スラブ型固体レーザの連続動作
用励起光源に適しており、さらに多数のブロックを集積
することにより高効率のKWa連続発振スラブ型固体レ
ーザの実現を可能とするものである。
Effects of the Invention As described above, according to the configuration of the present invention, sufficient heat radiation can be performed by conducting the heat generated from the -dimensional semiconductor laser array to the heat radiation member via the insulating plate with good thermal conductivity. Therefore, the life of the device is extended, and continuous oscillation can be performed with a large output. In particular, this semiconductor laser array device is suitable as a pumping light source for continuous operation of a slab-type solid-state laser, and by integrating a large number of blocks, it is possible to realize a highly efficient KWa continuous-wave slab-type solid-state laser. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザアレイ装置の外観斜視図
、第2図は同半導体レーザアレイ装置の要部の斜視図、
第3図は同半導体レーザアレイ装置における電流−光出
力特性図である。 1・・・−次元半導体レーザアレイ、2・・・絶縁板、
3・・・絶縁スペーサ、4・・・二次元半導体レーザア
レイ、5・・・ヒートシンク。 代理人   森  本  義  弘 第1図 翻9.−吹尤!尊4本レーデ7しA 2−8林4歇 5−−1−ヒーFシン2 第 図 第 図 ? 電流(A)
FIG. 1 is an external perspective view of the semiconductor laser array device of the present invention, FIG. 2 is a perspective view of the main parts of the semiconductor laser array device,
FIG. 3 is a current-optical output characteristic diagram of the semiconductor laser array device. 1... -dimensional semiconductor laser array, 2... insulating plate,
3... Insulating spacer, 4... Two-dimensional semiconductor laser array, 5... Heat sink. Agent Yoshihiro Morimoto 1st translation 9. -Blow! Takashi 4 Hon Rede 7 Shi A 2-8 Hayashi 4 Ken 5--1-Hee F Shin 2 Fig. Fig.? Current (A)

Claims (1)

【特許請求の範囲】[Claims] 1、複数個のレーザ光出射点が一次元に並べられてなる
一次元半導体レーザアレイを、熱伝導性の良い絶縁板の
間に複数個層状に配置して二次元半導体レーザアレイを
構成し、かつこの二次元半導体レーザアレイを、その絶
縁板を介して放熱部材上に載置した半導体レーザアレイ
装置。
1. Construct a two-dimensional semiconductor laser array by arranging a plurality of one-dimensional semiconductor laser arrays in which a plurality of laser beam emission points are arranged one-dimensionally between insulating plates with good thermal conductivity, and A semiconductor laser array device in which a two-dimensional semiconductor laser array is placed on a heat dissipation member via an insulating plate.
JP1105205A 1989-04-24 1989-04-24 Semiconductor laser array device Expired - Lifetime JP2554741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1105205A JP2554741B2 (en) 1989-04-24 1989-04-24 Semiconductor laser array device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1105205A JP2554741B2 (en) 1989-04-24 1989-04-24 Semiconductor laser array device

Publications (2)

Publication Number Publication Date
JPH02281782A true JPH02281782A (en) 1990-11-19
JP2554741B2 JP2554741B2 (en) 1996-11-13

Family

ID=14401166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1105205A Expired - Lifetime JP2554741B2 (en) 1989-04-24 1989-04-24 Semiconductor laser array device

Country Status (1)

Country Link
JP (1) JP2554741B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0954069A2 (en) * 1998-04-30 1999-11-03 Cutting Edge Optronics, Inc. Laser diode packaging
US6636538B1 (en) 1999-03-29 2003-10-21 Cutting Edge Optronics, Inc. Laser diode packaging
JP2012514860A (en) * 2009-01-09 2012-06-28 シーアン フォーカスライト テクノロジーズ カンパニー リミッテッド High power semiconductor laser and manufacturing method thereof
US8937976B2 (en) 2012-08-15 2015-01-20 Northrop Grumman Systems Corp. Tunable system for generating an optical pulse based on a double-pass semiconductor optical amplifier
JP2016115767A (en) * 2014-12-12 2016-06-23 浜松ホトニクス株式会社 Semiconductor laser unit and semiconductor laser device
CN105790062A (en) * 2016-03-22 2016-07-20 西安炬光科技股份有限公司 Semiconductor laser based on anisotropic substrate
CN105790071A (en) * 2016-03-22 2016-07-20 西安炬光科技股份有限公司 High-power semiconductor laser and preparation method thereof
CN105790063A (en) * 2016-03-22 2016-07-20 西安炬光科技股份有限公司 Substrate applied to semiconductor laser unit
JP2017028044A (en) * 2015-07-21 2017-02-02 浜松ホトニクス株式会社 Semiconductor laser device and method for manufacturing semiconductor laser device
US9590388B2 (en) 2011-01-11 2017-03-07 Northrop Grumman Systems Corp. Microchannel cooler for a single laser diode emitter based system
JP2022549941A (en) * 2019-09-30 2022-11-29 エイエムエス-オスラム インターナショナル ゲーエムベーハー Laser packages and systems with laser packages

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0954069A2 (en) * 1998-04-30 1999-11-03 Cutting Edge Optronics, Inc. Laser diode packaging
EP0954069A3 (en) * 1998-04-30 2000-02-09 Cutting Edge Optronics, Inc. Laser diode packaging
US6310900B1 (en) 1998-04-30 2001-10-30 Cutting Edge Optronics, Inc. Laser diode package with heat sink
US6636538B1 (en) 1999-03-29 2003-10-21 Cutting Edge Optronics, Inc. Laser diode packaging
US7060515B2 (en) 1999-03-29 2006-06-13 Cutting Edge Optronics, Inc. Method of manufacturing a laser diode package
US7361978B2 (en) 1999-03-29 2008-04-22 Northrop Gruman Corporation Laser diode packaging
JP2012514860A (en) * 2009-01-09 2012-06-28 シーアン フォーカスライト テクノロジーズ カンパニー リミッテッド High power semiconductor laser and manufacturing method thereof
US9590388B2 (en) 2011-01-11 2017-03-07 Northrop Grumman Systems Corp. Microchannel cooler for a single laser diode emitter based system
US9276375B2 (en) 2012-08-15 2016-03-01 Northrop Grumman Systems Corp. Tunable system for generating an optical pulse based on a double-pass semiconductor optical amplifier
US8937976B2 (en) 2012-08-15 2015-01-20 Northrop Grumman Systems Corp. Tunable system for generating an optical pulse based on a double-pass semiconductor optical amplifier
JP2016115767A (en) * 2014-12-12 2016-06-23 浜松ホトニクス株式会社 Semiconductor laser unit and semiconductor laser device
JP2017028044A (en) * 2015-07-21 2017-02-02 浜松ホトニクス株式会社 Semiconductor laser device and method for manufacturing semiconductor laser device
CN105790062A (en) * 2016-03-22 2016-07-20 西安炬光科技股份有限公司 Semiconductor laser based on anisotropic substrate
CN105790071A (en) * 2016-03-22 2016-07-20 西安炬光科技股份有限公司 High-power semiconductor laser and preparation method thereof
CN105790063A (en) * 2016-03-22 2016-07-20 西安炬光科技股份有限公司 Substrate applied to semiconductor laser unit
JP2022549941A (en) * 2019-09-30 2022-11-29 エイエムエス-オスラム インターナショナル ゲーエムベーハー Laser packages and systems with laser packages

Also Published As

Publication number Publication date
JP2554741B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US5548605A (en) Monolithic microchannel heatsink
US7466732B2 (en) Laser diode package with an internal fluid cooling channel
US4949346A (en) Conductively cooled, diode-pumped solid-state slab laser
JP3781970B2 (en) Laser diode packaging
US5084886A (en) Side-pumped laser system with independent heat controls
US5140607A (en) Side-pumped laser with angled diode pumps
US5105430A (en) Thin planar package for cooling an array of edge-emitting laser diodes
US5029335A (en) Heat dissipating device for laser diodes
US7529286B2 (en) Scalable thermally efficient pump diode systems
US20070217470A1 (en) Laser diode stack end-pumped solid state laser
US7016383B2 (en) Immersion-cooled monolithic laser diode array and method of manufacturing the same
RU2117371C1 (en) Laser diode array
US20110069731A1 (en) Scalable thermally efficient pump diode assemblies
JP4646166B2 (en) Light source consisting of a laser diode module
JP3736462B2 (en) Semiconductor laser device
JPH02281782A (en) Semiconductor laser array device
JP2004146720A (en) Semiconductor laser module
JPH036875A (en) Semiconductor laser
JPH02281781A (en) Semiconductor laser array device
RU2712764C1 (en) Method for creation of two-dimensional matrix of laser diodes and two-dimensional matrix of laser diodes
US6208677B1 (en) Diode array package with homogeneous output
US4864584A (en) Laser diode pumped ND:YAG laser and method of making same
JP2003163409A (en) Semiconductor laser module
CN115275767A (en) High-power quasi-continuous bar chip
JPH10200199A (en) Semiconductor laser array device