JPH02281781A - Semiconductor laser array device - Google Patents

Semiconductor laser array device

Info

Publication number
JPH02281781A
JPH02281781A JP10520489A JP10520489A JPH02281781A JP H02281781 A JPH02281781 A JP H02281781A JP 10520489 A JP10520489 A JP 10520489A JP 10520489 A JP10520489 A JP 10520489A JP H02281781 A JPH02281781 A JP H02281781A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser array
semiconductor
heat radiating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10520489A
Other languages
Japanese (ja)
Inventor
Hideo Nagai
秀男 永井
Masahiro Kume
雅博 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10520489A priority Critical patent/JPH02281781A/en
Publication of JPH02281781A publication Critical patent/JPH02281781A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Abstract

PURPOSE:To obtain continuous oscillation by laminating, with heat radiating plates between, plural pieces of semiconductor laser arrays, in each of which plural pieces of laser emitting points are arranged one-dimensionally, and forming fluid lines for cooling in each heat radiating plate. CONSTITUTION:Plural pieces of semiconductor arrays 1, in each of which plural pieces of laser emitting points are arranged one-dimensionally, are laminated with heat radiating plates 3 between, and fluid lines 4 for cooling are formed in each heat radiating plate 3. Furthermore, electrode terminals 6 are provided through insulating plates 5 at the top and bottom of a two-dimensional semiconductor laser array 1 wherein the semiconductor arrays 1 and the heat radiating plates 3 are piled up alternately. Hereby, the heat generated by the semiconductor array 1 can be removed enough by the fluid for cooling, and the life of the device can be prolonged, and continuous oscillation can be done with large output.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体レーザ結晶の励起や、加工用に用いられ
る高出力の半導体レーザアレイ装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-output semiconductor laser array device used for excitation and processing of solid-state laser crystals.

従来の技術 半導体レーザはスペクトル幅が狭く高効率であり、Nd
:YAG結晶などの固体レーザ結晶の吸収スペクトルに
波長を合わせることにより効率良く励起できるため、従
来のランプに代る固体レーザ励起光源として近年注目を
集めるようになってきた。半導体レーザを固定レーザの
励起光源として用いる場合、励起光源の光密度が高いこ
とが必要になる。半導体レーザの発光領域の大きさは1
0μmX2μm程度であるため、多数の発光部であるレ
ーザ光出射点を一次元(直線的)あるいは二次元(平面
的)に並べた半導体レーザアレイとすることにより、極
めて高い光密度を得ることが可能である。半導体レーザ
をYAGレーザの励起光源に用いた場合の総合効率は、
半導体レーザの電気−光変換効率が30%、YAGレー
ザの入力励起光−レーザ出力光変換効率が30%である
ので、10%近い値が得られ、これはランプ励起の場合
の10倍以上になる。また、余分な波長の光の吸収によ
る結晶の発熱がなく、YAGレーザの冷却も軽減される
。従来、半導体レーザで高出力を得る場合、多数のレー
ザ光出射点を高密度でもって二次元にすなわち平面上に
配置する必要がある。ところで、半導体レーザは結晶の
へき開面を共振器に用いるため、−枚の基板上にモノリ
シックにレーザ光出射点を並べることは容易ではない。
Conventional technology semiconductor lasers have a narrow spectral width and high efficiency, and Nd
:Since efficient excitation can be achieved by matching the wavelength to the absorption spectrum of a solid-state laser crystal such as a YAG crystal, it has recently attracted attention as a solid-state laser excitation light source in place of conventional lamps. When a semiconductor laser is used as an excitation light source for a fixed laser, it is necessary that the excitation light source has a high optical density. The size of the emission area of a semiconductor laser is 1
Since it is approximately 0 μm x 2 μm, it is possible to obtain extremely high light density by creating a semiconductor laser array in which a large number of laser light emission points, which are light emitting parts, are arranged one-dimensionally (linearly) or two-dimensionally (planarly). It is. The overall efficiency when a semiconductor laser is used as the excitation light source of a YAG laser is:
Since the electrical-to-optical conversion efficiency of a semiconductor laser is 30% and the input pumping light to laser output light conversion efficiency of a YAG laser is 30%, a value close to 10% can be obtained, which is more than 10 times that of lamp pumping. Become. Furthermore, there is no heat generation in the crystal due to absorption of light of extra wavelengths, and cooling of the YAG laser is also reduced. Conventionally, in order to obtain high output with a semiconductor laser, it is necessary to arrange a large number of laser beam emission points with high density two-dimensionally, that is, on a plane. By the way, since a semiconductor laser uses a cleavage plane of a crystal as a resonator, it is not easy to monolithically arrange laser light emitting points on two substrates.

そこで−次元にレーザ光出射点を並べたバー状の半導体
レーザアレイを用い、これをさらに二次元に配置するこ
とが考えられる。
Therefore, it is conceivable to use a bar-shaped semiconductor laser array in which laser beam emission points are arranged in the negative dimension, and to further arrange this in two dimensions.

発明が解決しようとする課題 ところで、半導体レーザの光出射点を高密度に並べた場
合に問題となるのは発熱である。特に、半導体レーザは
、そのしきい電流値が温度に敏感であり、素子の発熱に
よって光出力が飽和する現象が起こる。また、高温での
動作では著しく素子の寿命を縮める。たとえば、素子温
度が10度上昇すると寿命は半分になる。そのために最
大光出力を上げるには、いかに効率よく放熱を行い、素
子温度を低く保つかが重要となるが、従来の単なるブロ
ック状のヒートシンクによる放熱では十分ではなかった
。なお、放熱が悪いと、連続発振を得ることは非常に困
難となり、短いパルス幅(1μs以下)で、繰り返しの
遅いパルス動作しかさせることができない。
Problems to be Solved by the Invention When the light emitting points of semiconductor lasers are arranged in high density, heat generation becomes a problem. In particular, the threshold current value of a semiconductor laser is sensitive to temperature, and a phenomenon occurs in which optical output is saturated due to heat generation of the element. Furthermore, operation at high temperatures significantly shortens the life of the device. For example, if the element temperature increases by 10 degrees, the lifetime will be halved. Therefore, in order to increase the maximum optical output, it is important to efficiently dissipate heat and keep the element temperature low, but conventional heat dissipation using a simple block-shaped heat sink was not sufficient. Note that if heat dissipation is poor, it is very difficult to obtain continuous oscillation, and only slow pulse operation with a short pulse width (1 μs or less) and slow repetition can be performed.

そこで、本発明は上記課題を解消し得る半導体レーザア
レイ装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a semiconductor laser array device that can solve the above problems.

課題をnギ決するための手段 上記課題を解決するため、本発明の半導体レーザアレイ
装置は、複数個のレーザ光出射点が一次元に並べられて
なる半導体レーザアレイを、放熱板を間に挾んで複数個
積層するとともに、これら各放熱板に冷却用流木管路を
形成したものである。
Means for Resolving the Problems In order to solve the above problems, the semiconductor laser array device of the present invention includes a semiconductor laser array in which a plurality of laser beam emission points are arranged in one dimension, with a heat sink placed between them. A plurality of heat dissipating plates are stacked together, and cooling driftwood pipes are formed on each of these heat sinks.

作用 上記の構成において、半導体レーザアレイで発生した熱
は、各放熱板の管路内を流れる冷却用流体によって強制
的にかつ十分に奪われて、放熱が十分に行われる。した
がって半導体レーザアレイの温度上昇が抑制されるとと
もに連続発振も可能となる。
Operation In the above configuration, the heat generated in the semiconductor laser array is forcibly and sufficiently removed by the cooling fluid flowing in the pipes of each heat sink, and the heat is sufficiently radiated. Therefore, temperature rise in the semiconductor laser array is suppressed and continuous oscillation is also possible.

実線例 以下、本発明の一実施例を図面に基づき説明する。solid line example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図に半導体レーザアレイ装置の外観斜視図、第2図
に同装置の要部斜視図を示す。
FIG. 1 shows an external perspective view of a semiconductor laser array device, and FIG. 2 shows a perspective view of the main parts of the device.

第1図および第2図において、1はバー状の半導体レー
ザアレイで、たとえば10個のレーザ光出射点(発光点
ともいう)が100μmの間隔で一次元に並べられて構
成されており、長さ1.2市、厚さ100μm、共振器
長さ250μmとされている。
In FIGS. 1 and 2, reference numeral 1 denotes a bar-shaped semiconductor laser array, which is composed of, for example, 10 laser beam emission points (also referred to as light emitting points) arranged one-dimensionally at intervals of 100 μm. The diameter is 1.2 mm, the thickness is 100 μm, and the resonator length is 250 μm.

そして、この半導体レーザアレイ1および半導体レーザ
アレイ1と同一厚さの絶縁スペーサ2をそれぞれ5個づ
つと放熱板3とを交互に積層し、レーザ光出射点の二次
元アレイを得ている。なお、各絶縁スペーサ2は半導体
レーザアレイ1のレーザ光出射点を除く周囲三方に配置
されている。また、上記放熱板3は、熱伝導率の点では
ダイヤモンドが一番優れているが、コストと加工の容易
さの点で銅が用いられている。この放熱板3の厚さは1
00μmで、内側に冷却用流体たとえばフロンガスを流
すための直径80μmの穴(管路の一例で、たとえばパ
イプを挿入して構成してもよい)4が100μm間隔で
9本形成されている。また、放熱板3の表面には金のメ
タライズがほどこされており、金−錫や鉛−鍋などの半
田材で半導体レーザアレイ1と融着されている。なお、
半田材は熱伝導性が悪いため、その厚さは3μmと薄く
されている。そして、さらに半導体レーザアレイ1と放
熱板3とが交互に積重ねられた二次元の半導体レーザア
レイ1の上下面に、絶縁板5を介して電極端子6が設け
られている。なお、電極端子6と放熱板3とは金ワイヤ
7で接続され、また10A近い大電流を流すため、金ワ
イヤ7の本数は50本程度にされている。
Then, this semiconductor laser array 1, five insulating spacers 2 each having the same thickness as the semiconductor laser array 1, and heat sinks 3 are alternately laminated to obtain a two-dimensional array of laser beam emission points. The insulating spacers 2 are arranged on three sides of the semiconductor laser array 1 except for the laser beam emission point. Further, for the heat dissipation plate 3, diamond is the best in terms of thermal conductivity, but copper is used in terms of cost and ease of processing. The thickness of this heat sink 3 is 1
Nine holes 4 (an example of a conduit, which may be formed by inserting a pipe, for example) with a diameter of 80 μm are formed at intervals of 100 μm to allow a cooling fluid such as fluorocarbon gas to flow inside. Further, the surface of the heat dissipation plate 3 is metallized with gold, and is fused to the semiconductor laser array 1 using a solder material such as gold-tin or lead-pot. In addition,
Since the solder material has poor thermal conductivity, its thickness is kept as thin as 3 μm. Further, electrode terminals 6 are provided on the upper and lower surfaces of the two-dimensional semiconductor laser array 1 in which semiconductor laser arrays 1 and heat sinks 3 are alternately stacked, with insulating plates 5 interposed therebetween. The electrode terminal 6 and the heat sink 3 are connected by gold wires 7, and the number of gold wires 7 is about 50 in order to pass a large current of nearly 10A.

上記構成においては、放熱板3の各穴4内にフロンガス
Aを、所定の流速で流し、各半導体レーザアレイ1で発
生した熱を強制的に奪い、放熱が十分に行われる。なお
、第1図および第2図中、矢印Bは半導体レーザアレイ
1から出射されるレーザ光である。
In the above configuration, the fluorocarbon gas A is caused to flow into each hole 4 of the heat sink 3 at a predetermined flow rate, and the heat generated in each semiconductor laser array 1 is forcibly removed, so that sufficient heat radiation is achieved. Note that in FIGS. 1 and 2, arrow B indicates laser light emitted from the semiconductor laser array 1.

ここで、上記の半導体レーザアレイ1における電流−出
力特性を第3図に示す、なお、半導体レーザアレイ1が
5本直列に接続されているので、印加電圧は約1(IV
となる。第3図から分かるように、6Aの電流で20W
以上の光出力が得られており、電気からレーザ光への変
換効率は33%と非常に良い結果が得られている0発光
部であるレーザ光出射点の面積は約1市2であるので光
密度は2k w / aaとなり、YAGレーザの励起
光源としては満足すべき特性が得られている。なお、放
熱効率を上げるために、各絶縁スペーサ2にも、冷却用
流体を流すための穴をあけることが望ましい。
Here, the current-output characteristics of the above semiconductor laser array 1 are shown in FIG. 3. Since five semiconductor laser arrays 1 are connected in series, the applied voltage is approximately 1 (IV
becomes. As you can see from Figure 3, 20W at 6A current
The above optical output has been obtained, and the conversion efficiency from electricity to laser light is 33%, which is a very good result.The area of the laser light emission point, which is the light emitting part, is approximately 1 city 2. The optical density was 2 kW/aa, and satisfactory characteristics were obtained as a pumping light source for a YAG laser. Note that, in order to increase heat dissipation efficiency, it is desirable that each insulating spacer 2 also have holes for flowing cooling fluid.

なお、放熱板3の材質として、#1(Cu)、ダイヤモ
ンド(C)の他に、たとえば窒化ホウ素(BN)、炭化
ケイ素(SiC)、ベリリア(Bed) 、窒化アルミ
ニウム(AI2N)などが使用される。
In addition to #1 (Cu) and diamond (C), for example, boron nitride (BN), silicon carbide (SiC), beryllia (Bed), aluminum nitride (AI2N), etc. are used as the material for the heat sink 3. Ru.

発明の効果 以上のように、本発明の構成によれば、−次元に並べら
れてなる半導体レーザアレイと交互に積層される各放熱
板に、冷却用流体管路を形成したので、半導体レーザア
レイから発生する熱を冷却用流体によって十分に奪うこ
とができ、したがって装置の寿命が延びるとともに、大
きな出力でもって連続発振を行うことができる。特に、
この半導体レーザアレイ装置は、スラブ型固体レーザの
連続動作励起光源に適しており、さらに多数の半導体レ
ーザアレイを集積することにより、高効率のKW級連続
発振スラブ型固体レーザの実現を可能にするものである
Effects of the Invention As described above, according to the configuration of the present invention, cooling fluid conduits are formed in each of the heat sinks stacked alternately with the semiconductor laser array arranged in the − dimension. The cooling fluid can sufficiently remove the heat generated by the device, thereby extending the life of the device and allowing continuous oscillation with a large output. especially,
This semiconductor laser array device is suitable as a continuous operation excitation light source for slab-type solid-state lasers, and by integrating a large number of semiconductor laser arrays, it is possible to realize a highly efficient KW-class continuous wave slab-type solid-state laser. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザアレイ装置の一実施例の
外観斜視図、第2図は同半導体レーザアレイ装置の要部
断面図、第3図は同半導体レーザアレイ装置における電
流−光出力特性図である。 1・・・半導体レーザアレイ、2・・・絶縁スペーサ、
3・・・放熱板、4・・・穴、5・・・絶縁板。 代理人   森  本  義  弘 光 J六 ノコ (W) 橿 (ド
FIG. 1 is an external perspective view of an embodiment of the semiconductor laser array device of the present invention, FIG. 2 is a sectional view of essential parts of the semiconductor laser array device, and FIG. 3 is current-light output characteristics of the semiconductor laser array device. It is a diagram. 1... Semiconductor laser array, 2... Insulating spacer,
3... Heat sink, 4... Hole, 5... Insulating plate. Agent Yoshihiro Morimoto J Roku Noko (W)

Claims (1)

【特許請求の範囲】[Claims] 1、複数個のレーザ光出射点が一次元に並べられてなる
半導体レーザアレイを、放熱板を間に挾んで複数個積層
するとともに、これら各放熱板に冷却用流体管路を形成
した半導体レーザアレイ装置。
1. A semiconductor laser in which a plurality of semiconductor laser arrays each having a plurality of laser beam emission points arranged one-dimensionally are stacked with a heat sink in between, and a cooling fluid conduit is formed in each of these heat sinks. Array device.
JP10520489A 1989-04-24 1989-04-24 Semiconductor laser array device Pending JPH02281781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10520489A JPH02281781A (en) 1989-04-24 1989-04-24 Semiconductor laser array device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10520489A JPH02281781A (en) 1989-04-24 1989-04-24 Semiconductor laser array device

Publications (1)

Publication Number Publication Date
JPH02281781A true JPH02281781A (en) 1990-11-19

Family

ID=14401138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10520489A Pending JPH02281781A (en) 1989-04-24 1989-04-24 Semiconductor laser array device

Country Status (1)

Country Link
JP (1) JPH02281781A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668822A (en) * 1994-08-05 1997-09-16 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor laser device
EP0833419A1 (en) * 1996-09-30 1998-04-01 Compagnie Industrielle Des Lasers Cilas Laser diode assembly and method of fabrication
WO1999039412A1 (en) * 1998-01-30 1999-08-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2000101202A (en) * 1998-09-24 2000-04-07 Emerson Electric Co Laser diode line
WO2001082424A1 (en) * 2000-04-26 2001-11-01 Mitsubishi Heavy Industries, Ltd. Cooling block, ld device with the cooling block, and solid laser device using the ld device as excitation light source
JP2006237630A (en) * 1996-11-22 2006-09-07 Fanuc Ltd Optical source device and surface light emitting device
JP2013153138A (en) * 2011-12-27 2013-08-08 Shinko Electric Ind Co Ltd Light emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668822A (en) * 1994-08-05 1997-09-16 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor laser device
EP0833419A1 (en) * 1996-09-30 1998-04-01 Compagnie Industrielle Des Lasers Cilas Laser diode assembly and method of fabrication
WO1998015041A1 (en) * 1996-09-30 1998-04-09 Compagnie Industrielle Des Lasers Cilas Device with semiconducting laser diodes and method of producing same
JP2006237630A (en) * 1996-11-22 2006-09-07 Fanuc Ltd Optical source device and surface light emitting device
WO1999039412A1 (en) * 1998-01-30 1999-08-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2000101202A (en) * 1998-09-24 2000-04-07 Emerson Electric Co Laser diode line
WO2001082424A1 (en) * 2000-04-26 2001-11-01 Mitsubishi Heavy Industries, Ltd. Cooling block, ld device with the cooling block, and solid laser device using the ld device as excitation light source
JP2013153138A (en) * 2011-12-27 2013-08-08 Shinko Electric Ind Co Ltd Light emitting device

Similar Documents

Publication Publication Date Title
US5548605A (en) Monolithic microchannel heatsink
US7466732B2 (en) Laser diode package with an internal fluid cooling channel
US7957439B2 (en) Microchannel cooler for high efficiency laser diode heat extraction
US7944955B2 (en) Liquid cooled laser bar arrays incorporating diamond/copper expansion matched materials
US5084886A (en) Side-pumped laser system with independent heat controls
JPH05508265A (en) Thin plate package for cooling arrays of edge-emitting laser diodes
US7529286B2 (en) Scalable thermally efficient pump diode systems
RU2117371C1 (en) Laser diode array
JPH1041580A (en) Laser diode package body and its manufacture
US7016383B2 (en) Immersion-cooled monolithic laser diode array and method of manufacturing the same
JP3869467B2 (en) Semiconductor laser source
JP2004146720A (en) Semiconductor laser module
CN111129919A (en) High-power solid laser gain module, laser oscillator and laser amplifier
JPH05167143A (en) Semiconductor laser equipment
JP2015505163A (en) Conduction-cooled high-power semiconductor laser and method for manufacturing the same
JP2554741B2 (en) Semiconductor laser array device
EP3101744A1 (en) Liquid cooled laser bar arrays incorporating thermal expansion matched materials
JPH02281781A (en) Semiconductor laser array device
EP0973237A1 (en) Semiconductor laser device
US20060262819A1 (en) Diode laser component with an integrated cooling element
JPH036875A (en) Semiconductor laser
Kissel et al. Reliable QCW diode laser arrays for operation with high duty cycles
CN201008074Y (en) Solid-state thin disk laser
JPH10200199A (en) Semiconductor laser array device
Benett et al. Microchannel-cooled heatsinks for high-average-power laser diode arrays