JPH02281673A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH02281673A
JPH02281673A JP10267689A JP10267689A JPH02281673A JP H02281673 A JPH02281673 A JP H02281673A JP 10267689 A JP10267689 A JP 10267689A JP 10267689 A JP10267689 A JP 10267689A JP H02281673 A JPH02281673 A JP H02281673A
Authority
JP
Japan
Prior art keywords
gas laser
side hole
gas
laser medium
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10267689A
Other languages
Japanese (ja)
Other versions
JP2615996B2 (en
Inventor
Tsutomu Sugiyama
勤 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1102676A priority Critical patent/JP2615996B2/en
Publication of JPH02281673A publication Critical patent/JPH02281673A/en
Application granted granted Critical
Publication of JP2615996B2 publication Critical patent/JP2615996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To remove the pressure pulsation induced by a blower without being accompanied with the blast pressure loss of gas laser medium and making a gas laser device large in size so as to lessen a laser ray output in fluctuation and to improve the device in quality of laser processing by a method wherein a side hole is provided to the guide section of a laser resonator on a gas laser medium supply side, and a box is provided to the side hole through the intermediary of a connecting section variable in area. CONSTITUTION:As a pressure pulsation wave inside a supply duct 6 changes in propagation property at a side hole 8, the pressure pulsation wave propagates into a resonance box 10. When a gas laser medium rises in temperature and increases in sonic speed, a resonance frequency becomes higher than a pulsation frequency, and the rise of temperature is detected by a detector 20 to revolve an actuator 22 through a signal operator 23 to close a sliding valve to lessen an opening 9a in area, whereby the resonance frequency is made to decrease to the pulsation frequency. Inversely, when the gas laser medium decreases in temperature and the resonance frequency becomes lower than the pulsation frequency, the actuator is made to rotate reversely to make the opening 9a large in area, whereby the resonance frequency is made to increase up to the pulsation frequency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭酸ガスレーザ等の気体レーザ装置において
、特にレーザ光の出力変動を低減して加工品質の改善を
図る気体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas laser device such as a carbon dioxide laser, and particularly to a gas laser device that improves processing quality by reducing output fluctuations of laser light.

従来の技術 ルーツプロワを使用した従来の気体レーザ装置の構成例
を第3図に示す。気体レーザ媒質は、ルーツプロワ3に
よりレーザ共振器1に供給ダクト17を通して供給され
、高電圧電源2による放電にて励起されレーザ光を出力
しているが、ルーツプロワ3が発生する気体レーザ媒質
の圧力脈動により放電電圧が変化する。その結果、励起
入力が変動して出力変動を生じ、切断加工などの時に切
断面粗さが大きくなる問題点があった。従来は、ルーツ
ブロワ3出口側の供給ダクト17に図には示されていな
いがオリフィスを設けたり、特開昭63−7680号公
報に記載のごとく、ルーツプロワ出口側に大容積の容器
を直列に取り付るなどの方法が用いられている。
Conventional Technology An example of the configuration of a conventional gas laser device using a Roots blower is shown in FIG. The gas laser medium is supplied by the roots blower 3 to the laser resonator 1 through the supply duct 17, and is excited by discharge from the high voltage power supply 2 to output laser light. The discharge voltage changes. As a result, there is a problem in that the excitation input fluctuates, causing output fluctuations, resulting in increased cut surface roughness during cutting. Conventionally, an orifice (not shown in the figure) was provided in the supply duct 17 on the outlet side of the Roots blower 3, or a large volume container was installed in series on the Roots blower outlet side as described in Japanese Patent Application Laid-Open No. 63-7680. Methods such as attaching are used.

発明が解決しようとする課題 しかし、ダクト上に設けたオリフィスは気体レーザ媒質
の送風圧力損失が高い欠点があり、ダクトに直列に容器
を設ける場合は充分な容器容積を必要とするので装置が
大形化する問題があった。
Problems to be Solved by the Invention However, the orifice provided on the duct has the disadvantage of high blowing pressure loss of the gas laser medium, and when a container is provided in series with the duct, a sufficient container volume is required, making the device large. There was a problem to take shape.

本発明の目的は、気体レーザ媒質の送風圧力損失を伴わ
ず、装置の大形化を伴わず、送風機の発生する圧力脈動
を除去してレーザ光出力変動を低減し、レーザ加工の品
質を向上することにある。
The purpose of the present invention is to improve the quality of laser processing by eliminating pressure pulsations generated by a blower and reducing laser light output fluctuations without causing blowing pressure loss of the gas laser medium or increasing the size of the device. It's about doing.

課題を解決するだめの手段 本発明は、上記課題を解決するために、レーザ共振器の
気体レーザ媒質供給側導風部に側孔を設け、面積可変の
接続部を介して側孔に容器を取り付けてなるものである
。あるいは、側孔を開口面積可変とし、側孔を含む範囲
の導風部を該導風部の断面積より大きい断面積を有する
外部容器により覆ってなるものである。そして上記いず
れの手段においても、気体レーザ装置内の圧力変動の周
波数が、側孔と接続部と容器の組合せで存在する音響的
共振周波数の範囲の内に含まれているようにしてなるも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a side hole in the gas laser medium supply side air guiding section of the laser resonator, and inserts a container into the side hole through a variable area connection section. It is something that has to be installed. Alternatively, the opening area of the side hole is variable, and the air guide section including the side hole is covered by an external container having a cross-sectional area larger than the cross-sectional area of the air guide section. In any of the above means, the frequency of pressure fluctuation within the gas laser device is included within the range of the acoustic resonance frequency that exists in the combination of the side hole, the connecting portion, and the container. be.

作用 上記本発明の構成において、圧力脈動は気体レーザ媒質
を供給する導風部内をルーツプロワの出口よりレーザ共
振器に向かって平面波として伝播している。導風部に側
孔をあけて中空容器を接続したり外部容器で覆うと、圧
力脈動は側孔を通して外部の容器内に入る。この時、ヘ
ルムホルツの共鳴現象により、容器の容積と接続開口又
は側孔の開口面積で決まる共振周波数付近の音波が容器
内に閉じ込められるため、発明者の行った測定によれば
、圧力脈動の振動数に上記共振周波数を一致させると圧
力脈動がレーザ共振器の方には戻らなくなった。
Operation In the configuration of the present invention described above, pressure pulsations propagate as plane waves from the exit of the Roots blower toward the laser resonator within the air guide section that supplies the gaseous laser medium. If a side hole is made in the air guide section and a hollow container is connected or covered with an external container, pressure pulsations will enter the external container through the side hole. At this time, due to the Helmholtz resonance phenomenon, sound waves near the resonant frequency determined by the volume of the container and the opening area of the connection opening or side hole are confined within the container. When the resonance frequency was made to match the above-mentioned resonance frequency, the pressure pulsations no longer returned to the laser resonator.

さて、第3図の様な2葉のルーツプロワの場合において
、通常はルーツプロワの回転数の4倍の周波数を持つ圧
力変動が発生する。しかし、高電圧電源2によりレーザ
共振器を励起すると、入力エネ/I/ギーに応じてルー
ツプロワの負荷が変動してルーツプロワの回転数が変わ
り脈動周波数が変わるため、側孔を通して容器に共鳴吸
収できなくなる。あるいは、気体レーザ媒質の温度や組
成が変化することによっても、側孔と容器からなる共振
周波数が変わるので、共鳴吸収しにくくなる0そこで、
側孔と容器を結ぶ接続部の断面積または側孔自身の開口
面積を可変とし、励起入力エネルギーの増減による送風
機回転数や気体レーザ媒質の温度または組成の変化に応
じて開口面積を調整することで運転条件によらず上記の
共鳴吸収を発生させて、レーザ共振器に圧力脈動を伝播
させないことにより気体レーザ媒質の励起入力の変動を
抑え、レーザ出力変動を低減してレーザ加工の品質を向
上させる。
Now, in the case of a two-leaf Roots blower as shown in FIG. 3, pressure fluctuations usually occur with a frequency four times the number of rotations of the Roots blower. However, when the laser resonator is excited by the high voltage power supply 2, the load on the roots blower fluctuates depending on the input energy/I/gee, the rotation speed of the roots blower changes, and the pulsation frequency changes, so resonance absorption cannot be absorbed into the container through the side hole. It disappears. Alternatively, changes in the temperature and composition of the gas laser medium also change the resonance frequency of the side hole and container, making it difficult to absorb resonance.
The cross-sectional area of the connecting part connecting the side hole and the container or the opening area of the side hole itself can be made variable, and the opening area can be adjusted according to changes in the blower rotation speed and the temperature or composition of the gas laser medium due to increases or decreases in excitation input energy. By generating the above resonance absorption regardless of operating conditions and preventing pressure pulsations from propagating to the laser resonator, fluctuations in the excitation input of the gas laser medium are suppressed, and laser output fluctuations are reduced to improve the quality of laser processing. let

実施例 以下、本発明の実施例を図により説明する。なお、第1
図、第2図において、第3図と同一の構成物に対し同一
番号を付しである。第1図aは本発明の実施例の構成を
示す。レーザ共振器1は高電圧電源2による放電励起で
気体レーザ媒質を励起してレーザ光を出力する。レーザ
共振器1は供給ダクト6及び排気ダクト7により各々ル
ーツプロワ3の送風口31に取シ付けられたガス冷却器
4及び吸気口32に取り付けられたガス冷却器5に接続
されている。供給ダクト6には側孔8をあけ、共鳴容器
1oを接続ダクト9により接続する。
EXAMPLES Hereinafter, examples of the present invention will be explained with reference to the drawings. In addition, the first
In the drawings and FIG. 2, the same components as in FIG. 3 are given the same numbers. FIG. 1a shows the configuration of an embodiment of the invention. The laser resonator 1 excites a gas laser medium by discharge excitation by a high voltage power supply 2 and outputs laser light. The laser resonator 1 is connected by a supply duct 6 and an exhaust duct 7 to a gas cooler 4 attached to an air outlet 31 of the roots blower 3 and a gas cooler 5 attached to an intake port 32, respectively. A side hole 8 is opened in the supply duct 6, and the resonance container 1o is connected to it through a connection duct 9.

各接続ダクト9の長さ及び共鳴容器10の奥行き長さは
、その中で圧力脈動の定在波が発生せぬように脈動波長
よりも短い。第1図すに共鳴容器1Qと接続ダクト9の
接続部分の詳細を示すが、接続部分の開口9乙には回転
角により接続部分の開口9aの開口面積を変えるスライ
ド弁21があり、アクチュエータ22により、回転角を
設定される。
The length of each connecting duct 9 and the depth of the resonance vessel 10 are shorter than the pulsation wavelength so that no standing waves of pressure pulsations are generated therein. FIG. 1 shows the details of the connecting part between the resonance container 1Q and the connecting duct 9. In the opening 9B of the connecting part, there is a slide valve 21 that changes the opening area of the opening 9a of the connecting part depending on the rotation angle, and the actuator 22 The rotation angle is set by

又、温度検出器2oが、共鳴容器1oの中の気体レーザ
媒質温度を計り、信号演算器23においてアクチュエー
タ22の、駆動信号に変換される。接続部分の開口9a
の開口面積可変範囲は、共鳴容器10の容積と開口91
Lの開口面積と接続ダクト9の長さ及び気体レーザ媒質
の音速により定められる共鳴周波数の範囲内に圧力脈動
の周波数が含まれているようにする0 次に、本発明の実施例の動作を説明する。圧力脈動はル
ーツプロワ3の送風口31よシレーザ共振器1に向かい
、供給ダクト6の中を気体レーザ媒質の組成で決まる音
速で伝播する。供給ダクト6の中の圧力脈動波の伝播特
性は側孔8のところで変わるため、側孔8を通じて共鳴
容器10内へ伝播する。共鳴容器1oは、ヘルムホルツ
の共鳴原理により定められる共振周波数と一致する圧力
脈動の撮動数成分エネルギーを閉じ込めるが、気体レー
ザ媒質温度が上がって音速が増すと共振周波数が脈動周
波数よりも高くなるので、検出器2゜にて温度上昇を検
出して信号演算器23によりアクチュエータ22を回転
し、スライド弁21を閉じて開口9aの面積を減らして
共振周波数を脈動周波数まで下げる。逆に、気体レーザ
媒質温度が下がり、共振周波数が脈動周波数よりも低く
なると、アクチュエータ22を逆に回転して開口9の面
積を大きくして共振周波数を脈動周波数までひきあげる
。その結果、圧力脈動はレーザ共振器1に伝播する前に
吸収されてレーザ共振器1内の気体レーザ媒質圧力の周
期的変動がなくなるので放電電圧が変動せず、レーザ出
力変動率は低下する。
Further, the temperature detector 2o measures the temperature of the gas laser medium inside the resonance container 1o, and the signal calculator 23 converts the temperature into a drive signal for the actuator 22. Connection part opening 9a
The variable range of the opening area is determined by the volume of the resonance container 10 and the opening 91.
The frequency of pressure pulsation should be included within the resonance frequency range determined by the opening area of L, the length of the connecting duct 9, and the sound speed of the gas laser medium.Next, the operation of the embodiment of the present invention will be explained. explain. The pressure pulsations travel from the air outlet 31 of the Roots blower 3 to the laser resonator 1 and propagate through the supply duct 6 at a sonic speed determined by the composition of the gaseous laser medium. Since the propagation properties of the pressure pulsating waves in the supply duct 6 change at the side hole 8 , they propagate through the side hole 8 into the resonance vessel 10 . The resonance vessel 1o confines the imaging number component energy of the pressure pulsation that matches the resonance frequency determined by the Helmholtz resonance principle, but as the gas laser medium temperature rises and the sound speed increases, the resonance frequency becomes higher than the pulsation frequency. , the temperature rise is detected by the detector 2°, the actuator 22 is rotated by the signal calculator 23, the slide valve 21 is closed, the area of the opening 9a is reduced, and the resonance frequency is lowered to the pulsating frequency. Conversely, when the temperature of the gas laser medium decreases and the resonance frequency becomes lower than the pulsation frequency, the actuator 22 is rotated in the opposite direction to increase the area of the aperture 9 and raise the resonance frequency to the pulsation frequency. As a result, the pressure pulsations are absorbed before propagating to the laser resonator 1, and periodic fluctuations in the pressure of the gas laser medium within the laser resonator 1 are eliminated, so the discharge voltage does not fluctuate and the laser output fluctuation rate decreases.

この時、共鳴容器10が供給ダクト6に並列しているた
め供給ダクト6を通過する気体レーザ媒質の送風圧力損
失は発生しない。又、共鳴条件により決まる共鳴容器1
00寸法は圧力脈動の波長により上限が定まるため、気
体レーザ装置を大形化することなく容器をダクトに追加
できる。
At this time, since the resonance container 10 is parallel to the supply duct 6, no blowing pressure loss of the gas laser medium passing through the supply duct 6 occurs. In addition, the resonance container 1 determined by the resonance conditions
Since the upper limit of the 00 dimension is determined by the wavelength of pressure pulsation, a container can be added to the duct without increasing the size of the gas laser device.

第2図は、本発明の他の実施例であるが、第1図と同じ
符号を付けであるのは、同等の機能を有するものである
。第2図の例においては、側孔8を含む範囲の供給ダク
ト6を外部容器16で覆う。
FIG. 2 shows another embodiment of the present invention, and the same reference numerals as in FIG. 1 indicate the same functions. In the example shown in FIG. 2, the area of the supply duct 6 including the side hole 8 is covered with an external container 16.

側孔8は、供給ダクト6の回りを同軸に回転する回転弁
15により、開口面積可変となっている。
The opening area of the side hole 8 is variable by a rotary valve 15 that rotates coaxially around the supply duct 6.

回転弁15は、歯車16&、16bを介して、アクチュ
エータ22により駆動される。
The rotary valve 15 is driven by an actuator 22 via gears 16&, 16b.

又、図示してはいないが、上記実施例のごとく気体レー
ザ媒質温度を検出する他に、共鳴容器内の圧力変動周波
数を計数するカウンタや、特定のガス成分濃度を検出す
る、例えば、炭酸ガスレーザにおける一酸化炭素などの
センサーを用いることによっても、共鳴条件の変動を検
出して共鳴容器1oの開口91Lまたは側孔8の面積を
調整し、′脈動を吸収することができる。
Although not shown, in addition to detecting the gas laser medium temperature as in the above embodiment, there is also a counter that counts the pressure fluctuation frequency in the resonance container, and a carbon dioxide laser that detects the concentration of a specific gas component. By using a sensor such as a carbon monoxide sensor, it is possible to detect fluctuations in resonance conditions and adjust the area of the opening 91L of the resonance container 1o or the side hole 8, thereby absorbing the pulsation.

発明の効果 以上のように、本発明の気体レーザ装置によれば、ルー
ツプロワの発生する圧力脈動がレーザ共振器に伝播する
前に吸収除去されるので、気体レーザ媒質の励起条件の
変動によるレーザ光出力変動が低減し、レーザ加工の品
質を向上する効果があり、かつ、気体レーザ媒質の送風
圧力損失を伴わず、かつ気体レーザ装置を大形化するこ
とがない。
Effects of the Invention As described above, according to the gas laser device of the present invention, the pressure pulsations generated by the roots blower are absorbed and removed before propagating to the laser resonator, so that the laser beam due to fluctuations in the excitation conditions of the gas laser medium is absorbed and removed. This has the effect of reducing output fluctuations and improving the quality of laser processing, and does not involve blowing pressure loss of the gas laser medium and does not increase the size of the gas laser device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の一実施例を示す気体レーザ装置の気
体レーザ媒質回路図、第1図すは同要部斜視図、第2図
aは本発明の他の実施例を示す気体レーザ装置の気体レ
ーザ媒質回路図、第2図すは同要部斜視図、第3図は従
来の気体レーザ装置の気体レーザ媒質回路図である。 1・・・・・・レーザ共振器、2・・・・・・高電圧電
源、3・・・・・・ルーツプロワ、4・・・・・・ガス
冷却器、6・・・・・・ガス冷却器、6・・・・・・供
給ダクト、7・・・・・・排気ダクト、8・・・・・・
側孔、9・・・・・・接続ダクト、9a・・・・・・共
鳴容器と接続ダクトの接続部開口、10・・・・・・共
鳴容器、11・・・・・・共鳴容器底板、12・・・・
・・共鳴容器側壁、14・・・・・・外部容器、15・
・・・・・回転弁、IE51L・・・・・・回転弁開口
、161L、16b・・・・・・歯車、20・・・・・
・温度検出器、21・・・・・・スライド弁、21ト・
・・・・スライド弁開口、22・・・・・・アクチュエ
ータ、23・・・・・・信号演算器、31・・・・・・
ルーツプロワ送風口、32・・・・・・ルーツブロワ吸
気口。
FIG. 1a is a gas laser medium circuit diagram of a gas laser device showing one embodiment of the present invention, FIG. 1 is a perspective view of the same essential parts, and FIG. FIG. 2 is a perspective view of the same essential parts, and FIG. 3 is a gas laser medium circuit diagram of a conventional gas laser device. 1... Laser resonator, 2... High voltage power supply, 3... Roots blower, 4... Gas cooler, 6... Gas Cooler, 6... Supply duct, 7... Exhaust duct, 8...
Side hole, 9...connection duct, 9a...connection opening between resonance container and connection duct, 10...resonance container, 11...resonance container bottom plate , 12...
... Resonance container side wall, 14 ... External container, 15.
...Rotary valve, IE51L...Rotary valve opening, 161L, 16b...Gear, 20...
・Temperature detector, 21...Slide valve, 21t・
...Slide valve opening, 22...Actuator, 23...Signal calculator, 31...
Roots blower air outlet, 32... Roots blower intake port.

Claims (4)

【特許請求の範囲】[Claims] (1) 気体レーザ媒質を励起する励起部と気体レーザ
媒質を励起させてレーザ光を取り出すレーザ共振器と気
体レーザ媒質を送風する送風機と気体レーザ媒質の冷却
器と前記送風機よりレーザ共振器に気体レーザ媒質を導
く導風部より構成される気体レーザ装置において、前記
レーザ共振器の気体レーザ媒質の供給側導風部に側孔を
設け、面積可変の接続部を介して側孔に容器を取り付け
たことを特徴とする気体レーザ装置。
(1) An excitation unit that excites a gas laser medium, a laser resonator that excites the gas laser medium and extracts laser light, a blower that blows air through the gas laser medium, a cooler for the gas laser medium, and a gas pump that pumps gas from the blower into the laser resonator. In a gas laser device comprising an air guide section that guides a laser medium, a side hole is provided in the supply side air guide section of the gas laser medium of the laser resonator, and a container is attached to the side hole via a variable area connection section. A gas laser device characterized by:
(2) 側孔と面積可変の接続部と容器よりなる音響的
共振周波数の可変範囲内に気体レーザ装置内の圧力変動
の周波数が含まれていることを特徴とする特許請求の範
囲第1項記載の気体レーザ装置。
(2) Claim 1, characterized in that the frequency of pressure fluctuation within the gas laser device is included within the variable range of the acoustic resonance frequency formed by the side hole, the variable area connection part, and the container. The gas laser device described.
(3) 気体レーザ媒質を励起する励起部と気体レーザ
媒質を励起させてレーザ光を取り出すレーザ共振器と気
体レーザ媒質を送風する送風機と気体レーザ媒質の冷却
器と送風機よりレーザ共振器に気体レーザ媒質を導く導
風部より構成される気体レーザ装置において、レーザ共
振器の気体レーザ媒質の供給側導風部に開口面積可変の
側孔を設け、側孔を含む範囲の導風部を前記導風部の断
面積より大きい断面積を有する外部容器により覆うこと
を特徴とする気体レーザ装置。
(3) An excitation unit that excites the gas laser medium, a laser resonator that excites the gas laser medium and extracts laser light, a blower that blows air through the gas laser medium, a cooler for the gas laser medium, and a gas laser from the blower to the laser resonator. In a gas laser device configured with an air guide section that guides a medium, a side hole with a variable opening area is provided in the air guide section on the supply side of the gas laser medium of the laser resonator, and the air guide section in a range including the side hole is provided with a side hole that has a variable opening area. A gas laser device characterized in that it is covered with an external container having a cross-sectional area larger than a cross-sectional area of a wind section.
(4) 開口面積可変の側孔と外部容器よりなる音響的
共振周波数の可変範囲内に気体レーザ装置内の圧力変動
の周波数が含まれていることを特徴とする特許請求の範
囲第3項記載の気体レーザ装置。
(4) Claim 3, characterized in that the frequency of pressure fluctuation within the gas laser device is included within the variable range of the acoustic resonance frequency formed by the side hole whose opening area is variable and the external container. gas laser device.
JP1102676A 1989-04-21 1989-04-21 Gas laser device Expired - Fee Related JP2615996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1102676A JP2615996B2 (en) 1989-04-21 1989-04-21 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102676A JP2615996B2 (en) 1989-04-21 1989-04-21 Gas laser device

Publications (2)

Publication Number Publication Date
JPH02281673A true JPH02281673A (en) 1990-11-19
JP2615996B2 JP2615996B2 (en) 1997-06-04

Family

ID=14333837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102676A Expired - Fee Related JP2615996B2 (en) 1989-04-21 1989-04-21 Gas laser device

Country Status (1)

Country Link
JP (1) JP2615996B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153870U (en) * 1984-03-23 1985-10-14 日産自動車株式会社 engine intake resonator
JPS6174611U (en) * 1984-10-22 1986-05-20
JPS61173156U (en) * 1985-04-17 1986-10-28
JPS63285988A (en) * 1987-05-18 1988-11-22 Fanuc Ltd Laser oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153870U (en) * 1984-03-23 1985-10-14 日産自動車株式会社 engine intake resonator
JPS6174611U (en) * 1984-10-22 1986-05-20
JPS61173156U (en) * 1985-04-17 1986-10-28
JPS63285988A (en) * 1987-05-18 1988-11-22 Fanuc Ltd Laser oscillator

Also Published As

Publication number Publication date
JP2615996B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
Ponton et al. The effects of nozzle exit lip thickness on plume resonance
US20100189547A1 (en) Centrifugal Fan
US6309176B1 (en) Noise attenuating sound resonator for automotive cooling module shroud
Tang On sound transmission loss across a Helmholtz resonator in a low Mach number flow duct
JPH07181978A (en) Silencer
Nomoto et al. An experimental investigation of pure tone generation by vortex shedding in a duct
Hussain et al. Turbulence suppression in free turbulent shear flows under controlled excitation. Part 2. Jet-noise reduction
Lawrie et al. On tuning a reactive silencer by varying the position of an internal membrane
Zhang et al. Sound generation by steady flow through glottis-shaped orifices
Maze et al. Repulsion phenomena in the phase-velocity dispersion curves of circumferential waves on elastic cylindrical shells
Keller et al. Flow-excited resonances in covered cavities
JPH01131417A (en) Method and apparatus for deciding mach number in non-invasion manner
JPH02281673A (en) Gas laser device
Roozen et al. Vortex sound in bass-reflex ports of loudspeakers. Part I. Observation of response to harmonic excitation and remedial measures
Sherman et al. Jet flow field during screech
Sreejith et al. Studies on conical and cylindrical resonators
Druzhinin et al. Low‐frequency acoustic wave generation in a resonant bubble layer
JPH02281674A (en) Gas laser device
Murata et al. Experimental Research on New Acoustic Liners Combined with Fine-Perforated-Film
Groeneweg Current understanding of Helmholtz resonator arrays as duct boundary conditions
JPH02281676A (en) Gas laser device
Xiao et al. A new phenomenon of acoustic streaming
Kop’ev et al. Aeroacoustic interaction in a corrugated duct
JPH02270384A (en) Gas laser device
JPH02285686A (en) Gas laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees