JPH022815B2 - - Google Patents

Info

Publication number
JPH022815B2
JPH022815B2 JP24635686A JP24635686A JPH022815B2 JP H022815 B2 JPH022815 B2 JP H022815B2 JP 24635686 A JP24635686 A JP 24635686A JP 24635686 A JP24635686 A JP 24635686A JP H022815 B2 JPH022815 B2 JP H022815B2
Authority
JP
Japan
Prior art keywords
press
glass
temperature
low
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24635686A
Other languages
Japanese (ja)
Other versions
JPS63100028A (en
Inventor
Sengen Nakajima
Koji Kanda
Masayuki Iwazawa
Takaaki Kameyama
Hitoshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teisan KK
Ishizuka Glass Co Ltd
Original Assignee
Teisan KK
Ishizuka Garasu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teisan KK, Ishizuka Garasu KK filed Critical Teisan KK
Priority to JP24635686A priority Critical patent/JPS63100028A/en
Publication of JPS63100028A publication Critical patent/JPS63100028A/en
Publication of JPH022815B2 publication Critical patent/JPH022815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/10Construction of plunger or mould for making hollow or semi-hollow articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • C03B11/127Cooling of hollow or semi-hollow articles or their moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はガラス食器、灰皿等のガラス製品を高
速度で成形することができるガラス製品のプレス
成形方法に関するものである。 (従来の技術) ガラス食器、灰皿等の肉厚のガラス製品はプレ
ス用のプランジヤを備えた回転テーブル式のプレ
ス成形機でプレス成形されるのが普通である。こ
のようなプレス成形法においては、成形自体は極
めて短時間で完了するが、成形直後のガラス製品
は700〜900℃の高温であるので直ちに取り出すと
変形して不良品となる。このためプレス成形され
たガラス製品は回転テーブルが数回インデツクス
される間プレス成形型の中で冷却された後に取り
出されているが、製品の肉厚が10mmを越えるよう
になると冷却にかなりの時間を必要とし、成形速
度を低下しなければならなかつた。 このため従来からプレス成形されたガラス製品
に多量の圧縮空気を吹きつけ、高温のガラス製品
を冷却する方法が広く行われている。しかし空気
とガラスとの間の熱伝達率は小さいので多量の圧
縮空気を高速度で吹きつけなければ十分な冷却効
果は得られず、またこの圧縮空気による騒音は作
業環境を著しく悪化させている。そこで本発明者
等は先に、プレス成形されたガラス製品に水滴を
吹きつけ、高温のガラス製品を冷却する方法を試
みた。しかし水は気化熱が539kcal/Kgと非常に
大きいために水滴が付着したガラス製品の内表面
が部分的に過度に冷却されて「ビリ」を生じ易
く、また水に含有されている不純物が成形された
ガラス製品の内表面に斑点状に付着して商品価値
を低下させるうえ、水がノズル等から滴下して成
形機等を錆させる等の多くの問題があつて実用化
に踏み切ることができない状況にあつた。 (発明が解決しようとする問題点) 本発明は上記のような従来の問題を解決して、
ガラス製品のプレス成形速度をその商品価値を損
なうことなく著しく向上させることができるガラ
ス製品のプレス成形方法を目的として完成された
ものである。 (問題点を解決するための手段) 本発明者等は上記の問題点を解決するために研
究を重ねた結果、従来の常識に反して極めて低温
の低温液化ガスを直接高温のガラス製品に吹きつ
けてもガラス製品に何の欠点も生ずることがな
く、極めて優れた冷却効果が得られることを見出
した。このような現象は後述するとおり低温液化
ガスの独特な性質によるものであるが、低温液化
ガスを液体状態のまま直接ガラス製品に噴射する
ことは本発明者等によつて始めて行われたものと
考えられる。そしてこのようにして完成された本
発明は、プレス成形型においてプレス成形された
直後のガラス製品の内表面へ低温液化ガスを微小
液滴として噴射して、高温のガラス製品をプレス
成形型の内部で急冷固化させることを特徴とする
ものである。 本発明において用いられる低温液化ガスとして
は、沸点が1気圧中で−196℃の液化窒素のほか、
−186℃の液化アルゴン、−269℃の液化ヘリウム
等が好ましく、中でも安全性、経済性、冷却効果
の点から液化窒素が最も好ましいものである。低
温液化ガスは供給源から断熱チユーブによつてプ
レス成形機のプレス成形型の上方まで導かれ、3
〜6Kg/cm2程度の圧力の圧縮空気とともにプレス
成形された直後のガラス製品の内表面に微小液滴
として噴射される。圧縮空気としては常温の圧縮
空気を使用することもできるが、低温液化ガス供
給源である貯槽(コールドエバポレータ)や断熱
チユーブ等の内部で気化した気化ガスを圧縮空気
中に混入させることにより空気を十分に冷却し、
低温圧縮空気としてガラス製品の内表面に吹きつ
ければ、より大きい冷却効果を得ることができ
る。 噴射された低温液化ガスはガラス製品の700〜
900℃の高熱により急速に気化してガラス内表面
の熱を奪い、更に200〜300℃まで加熱されたうえ
で大気中に放出される。例えば低温液化ガスとし
て液化窒素を用い、その噴射量を10gとしたと
き、−196℃で気化する際に476calの熱をガラスか
ら奪い、この間にプレス金型中のガラス製品は急
速に冷却固化される。 本発明の第1の利点は、非常に低温の低温液化
ガスをプレス成形直後のガラス製品の内表面に直
接噴射することにより高温のガラス製品を急速に
冷却してガラス容器の成形速度を20%以上向上さ
せることができることである。本発明の第2の利
点は、低温液化ガスは気化熱が水の1/10以下(液
化窒素では48kcal/Kg)であつて、微小液滴とし
て噴射されたときには瞬時にガラス表面との間に
ガス膜を形成して高温のガラスと直接接触するこ
とがなく、従つて水滴を用いた場合のような局部
冷却による「ビリ」の発生がないことである。こ
のように、水滴よりもはるかに低温でありしかも
気化熱がはるかに小さい低温液化ガスを微小液滴
として噴射することにより、「ビリ」を生ずるこ
となくガラス製品の冷却ができ、成形速度を向上
できることは本発明者等によつて始めて確認され
た効果である。本発明の第3の利点は低温液化ガ
スは高温のガラス表面と反応して反応生成物を生
ずることがなく、また完全に気化するので水を使
用した場合のような不純物の斑点をガラス表面に
生じたりするおそれのないことである。このため
には液化窒素、液化アルゴン、液化ヘリウム等の
不活性なガスが特に好ましい。本発明の第4の利
点は気化した低温液化ガスが大気中に放出されて
も作業環境が汚染されるおそれのないことであ
り、このためには特に液化窒素を用いることが好
ましい。更に本発明の第5の利点は水を使用する
場合のようにノズル等から液だれが生じて成形機
等を錆びさせるおそれもないことである。 (実施例) 次に、本発明を実施例によつて更に詳細に説明
する。図面は本発明の実施に用いられる回転テー
ブル式のプレス成形機の一部を示すものであり、
1は回転テーブル2上に一定ピツチで取付けられ
たプレス成形型、3はプレスステーシヨンの直後
のプレス成形型1の上方に設けられた冷却ノズル
である。冷却ノズル3は内外二重のパイプからな
るもので、その外側パイプには空気タンク4から
圧縮空気が供給される。圧縮空気は減圧弁5によ
つて3〜6Kg/cm2程度の所定圧力まで減圧された
うえ、回転テーブル1のインデツクスと同期して
開閉されるスライド弁6が開いたときにノズルヘ
ツド7の空気孔8を通じて冷却ノズル3から噴射
されるものである。 一方、冷却ノズル3の内側パイプ9にはフレキ
シブルな断熱チユーブ10、電磁弁11、チユー
ブ12を介して液化窒素が供給され、スライド弁
6が開いたことが圧力スイツチ13によつて感知
されると同時に電磁弁11が開き、約5〜30gの
液化窒素が圧縮空気とともにパリソン内部に吹込
まれる。液化窒素供給設備は断熱された貯槽14
と気液分離槽15,15とを含み、これらの両気
液分離槽間に伸びる断熱された主配管16の各所
に断熱チユーブ10が接続されている。液化窒素
は主配管16等の内部においても気化するため、
主配管16の各所にも小型の気液分離器17が設
置されている。そして貯槽14、気液分離槽1
5、気液分離器17等によつて分離された気化ガ
スは各断熱配管18を介して空気タンク4の内部
へ導入され、圧縮空気を0℃付近あるいはそれ以
下まで冷却する。この装置を用いて重量2000g、
底部平均肉厚15mm、側壁平均肉厚12mmの大型のガ
ラス鉢を現行の成形速度及び10%、20%、30%増
しの各成形速度でプレス成形し、成形品の内表面
温度及び変形の有無を調べて次表に示した。この
表からも明らかなように、本発明方法によればプ
レス成形型内でガラス製品を急速に固化させるこ
とができるので、現行よりも20〜30%程度の成形
速度の向上を図ることができる。
(Industrial Application Field) The present invention relates to a press molding method for glass products, such as glass tableware and ashtrays, which can be molded at high speed. (Prior Art) Thick glass products such as glass tableware and ashtrays are usually press-molded using a rotary table-type press-molding machine equipped with a plunger for pressing. In such a press molding method, the molding itself is completed in a very short time, but the glass product immediately after molding is at a high temperature of 700 to 900°C, so if it is taken out immediately, it will deform and become a defective product. For this reason, press-molded glass products are cooled in the press mold while the rotary table is indexed several times before being taken out, but when the thickness of the product exceeds 10 mm, it takes a considerable amount of time to cool down. , and the molding speed had to be reduced. For this reason, a method has been widely used that blows a large amount of compressed air onto press-molded glass products to cool them at high temperatures. However, the heat transfer coefficient between air and glass is low, so a sufficient cooling effect cannot be obtained unless a large amount of compressed air is blown at high speed, and the noise caused by this compressed air significantly worsens the working environment. . Therefore, the present inventors first attempted a method of cooling the high-temperature glass product by spraying water droplets onto the press-molded glass product. However, water has a very large heat of vaporization of 539kcal/Kg, so the inner surface of the glass product with water droplets is likely to partially cool down excessively, causing "churning", and impurities contained in water can cause molding. In addition, it adheres in spots to the inner surface of glass products, lowering its commercial value, and there are many other problems, such as water dripping from nozzles and rusting molding machines, etc., making it impossible to put it into practical use. The situation suited me. (Problems to be solved by the invention) The present invention solves the conventional problems as described above,
This was completed with the aim of creating a press-molding method for glass products that can significantly improve the press-molding speed of glass products without impairing their commercial value. (Means for Solving the Problems) As a result of repeated research to solve the above problems, the present inventors have devised a method to directly blow extremely low-temperature liquefied gas onto high-temperature glass products, contrary to conventional wisdom. It has been found that no defects occur in glass products even when the glass products are attached, and that an extremely excellent cooling effect can be obtained. Although this phenomenon is due to the unique properties of low-temperature liquefied gas, as will be explained later, the present inventors are the first to inject low-temperature liquefied gas directly onto glass products in a liquid state. Conceivable. The present invention, which was completed in this way, injects low-temperature liquefied gas as minute droplets onto the inner surface of a glass product that has just been press-molded in a press mold, thereby moving the high-temperature glass product inside the press mold. It is characterized by rapid cooling and solidification. The low-temperature liquefied gas used in the present invention includes liquefied nitrogen with a boiling point of -196°C at 1 atmosphere,
Liquefied argon at -186°C, liquefied helium at -269°C, etc. are preferred, and among them, liquefied nitrogen is most preferred from the viewpoint of safety, economy, and cooling effect. The low-temperature liquefied gas is guided from the supply source to the upper part of the press mold of the press molding machine through an insulated tube.
It is injected as minute droplets onto the inner surface of the glass product immediately after being press-molded together with compressed air at a pressure of about 6 kg/cm 2 . Room-temperature compressed air can be used as the compressed air, but it is also possible to use compressed air by mixing vaporized gas inside the compressed air, such as a storage tank (cold evaporator) or an insulated tube, which is a low-temperature liquefied gas supply source. Cool down sufficiently;
A greater cooling effect can be obtained by blowing low-temperature compressed air onto the inner surface of the glass product. The injected low-temperature liquefied gas is 700~
Due to the high heat of 900℃, it quickly vaporizes, absorbing the heat from the inner surface of the glass, and is further heated to 200-300℃ before being released into the atmosphere. For example, when liquefied nitrogen is used as the low-temperature liquefied gas and the amount of injection is 10g, 476cal of heat is removed from the glass when it vaporizes at -196℃, and during this time the glass product in the press mold is rapidly cooled and solidified. Ru. The first advantage of the present invention is that by injecting very low-temperature liquefied gas directly onto the inner surface of the glass product immediately after press-forming, the high-temperature glass product can be rapidly cooled and the molding speed of the glass container can be reduced by 20%. This is something that can be improved. The second advantage of the present invention is that the heat of vaporization of low-temperature liquefied gas is less than 1/10 of that of water (48 kcal/Kg for liquefied nitrogen), and when it is injected as minute droplets, it instantly separates from the glass surface. There is no direct contact with the hot glass by forming a gas film, and therefore there is no occurrence of "burr" due to local cooling, which occurs when water droplets are used. In this way, by injecting low-temperature liquefied gas, which has a much lower temperature than water droplets and has a much lower heat of vaporization, as minute droplets, it is possible to cool glass products without causing "sharpness" and improve molding speed. This is an effect that was first confirmed by the present inventors. A third advantage of the present invention is that the low-temperature liquefied gas does not react with the hot glass surface to produce reaction products, and it completely vaporizes, leaving no spots of impurities on the glass surface, unlike when water is used. There is no risk that this will occur. For this purpose, inert gases such as liquefied nitrogen, liquefied argon, and liquefied helium are particularly preferred. The fourth advantage of the present invention is that there is no risk of contaminating the working environment even if the vaporized low-temperature liquefied gas is released into the atmosphere, and for this purpose, it is particularly preferable to use liquefied nitrogen. Furthermore, a fifth advantage of the present invention is that there is no fear that liquid drips from the nozzle or the like and rusts the molding machine, unlike when water is used. (Example) Next, the present invention will be explained in more detail with reference to Examples. The drawing shows a part of a rotary table type press molding machine used for carrying out the present invention,
1 is a press mold mounted on a rotary table 2 at a constant pitch, and 3 is a cooling nozzle provided above the press mold 1 immediately after the press station. The cooling nozzle 3 is made up of a dual pipe (inside and outside), and compressed air is supplied from the air tank 4 to the outside pipe. The compressed air is reduced to a predetermined pressure of about 3 to 6 kg/cm 2 by the pressure reducing valve 5, and when the slide valve 6, which opens and closes in synchronization with the index of the rotary table 1, opens, the air hole of the nozzle head 7 is opened. 8 and is injected from the cooling nozzle 3. On the other hand, liquefied nitrogen is supplied to the inner pipe 9 of the cooling nozzle 3 via a flexible heat insulating tube 10, a solenoid valve 11, and a tube 12, and when the pressure switch 13 senses that the slide valve 6 has opened, At the same time, the solenoid valve 11 opens, and approximately 5 to 30 g of liquefied nitrogen is blown into the parison together with compressed air. The liquefied nitrogen supply equipment is an insulated storage tank 14
and gas-liquid separation tanks 15, 15, and insulated tubes 10 are connected to various locations of an insulated main piping 16 extending between the two gas-liquid separation tanks. Since liquefied nitrogen also vaporizes inside the main piping 16,
Small gas-liquid separators 17 are also installed at various locations in the main pipe 16. and storage tank 14, gas-liquid separation tank 1
5. The vaporized gas separated by the gas-liquid separator 17 and the like is introduced into the air tank 4 through each heat-insulating pipe 18, and the compressed air is cooled to around 0° C. or lower. Using this device, the weight is 2000g,
A large glass pot with an average bottom wall thickness of 15 mm and an average side wall thickness of 12 mm was press-formed at the current molding speed and at molding speeds increased by 10%, 20%, and 30%, and the inner surface temperature of the molded product and the presence or absence of deformation were measured. The results are shown in the table below. As is clear from this table, according to the method of the present invention, the glass product can be rapidly solidified in the press mold, so the molding speed can be improved by about 20 to 30% compared to the current method. .

【表】 (発明の効果) 本発明は以上の説明からも明らかなように、低
温液化ガスを好ましくはその気化ガスの混入によ
り冷却された低温圧縮空気とともに微小液滴とし
てガラス製品内部へ噴射することにより、プレス
成形されたガラス製品を「ビリ」を生じさせるこ
となくプレス成形型の内部で急速に冷却固化させ
てその成形速度を20〜30%も向上させることがで
きるものである。また本発明は成形されたガラス
製品の内表面が不純物や反応生成物等によつて汚
されることもなく、ノズル等からの液だれのおそ
れもない等々の極めて多くの利点を持つものであ
る。よつて本発明は従来のガラス製品のプレス成
形方法の問題点を解決したものとして、業界に寄
与するところは極めて大きいものがある。
[Table] (Effects of the Invention) As is clear from the above description, the present invention injects low-temperature liquefied gas into the inside of a glass product as minute droplets, preferably together with low-temperature compressed air that has been cooled by mixing the vaporized gas. As a result, press-molded glass products can be rapidly cooled and solidified inside the press mold without causing "burr", and the molding speed can be improved by 20 to 30%. Further, the present invention has many advantages such as the inner surface of the molded glass product is not contaminated by impurities or reaction products, and there is no fear of liquid dripping from the nozzle or the like. Therefore, the present invention makes an extremely large contribution to the industry as it solves the problems of the conventional press molding method for glass products.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施に用いられるガラス製品の
プレス成形装置を示す一部切欠正面図である。 1:プレス成形型、3:冷却ノズル、4:空気
タンク、14:貯槽。
The drawing is a partially cutaway front view showing a press molding apparatus for glass products used for carrying out the present invention. 1: Press mold, 3: Cooling nozzle, 4: Air tank, 14: Storage tank.

Claims (1)

【特許請求の範囲】[Claims] 1 プレス成形型においてプレス成形された直後
のガラス製品の内表面へ低温液化ガスを微小液滴
として噴射して、高温のガラス製品をプレス成形
型の内部で急冷固化させることを特徴とするガラ
ス製品のプレス成形方法。
1. A glass product characterized by injecting low-temperature liquefied gas in the form of minute droplets onto the inner surface of a glass product immediately after being press-molded in a press mold to rapidly cool and solidify the high-temperature glass product inside the press mold. Press molding method.
JP24635686A 1986-10-16 1986-10-16 Method for press-molding glass product Granted JPS63100028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24635686A JPS63100028A (en) 1986-10-16 1986-10-16 Method for press-molding glass product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24635686A JPS63100028A (en) 1986-10-16 1986-10-16 Method for press-molding glass product

Publications (2)

Publication Number Publication Date
JPS63100028A JPS63100028A (en) 1988-05-02
JPH022815B2 true JPH022815B2 (en) 1990-01-19

Family

ID=17147337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24635686A Granted JPS63100028A (en) 1986-10-16 1986-10-16 Method for press-molding glass product

Country Status (1)

Country Link
JP (1) JPS63100028A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732861B2 (en) * 1988-09-12 1998-03-30 オリンパス光学工業株式会社 Optical element molding apparatus and molding method
JP2013184849A (en) * 2012-03-07 2013-09-19 Nippon Electric Glass Co Ltd Producing method and producing device of preform glass material

Also Published As

Publication number Publication date
JPS63100028A (en) 1988-05-02

Similar Documents

Publication Publication Date Title
US5151119A (en) Cooling of molded articles with a mixture of evaporated cryogen and dried air
CA1165521A (en) Process for the production of blow molded articles
US4091059A (en) Method for blow molding and cooling plastic articles
EP0163618B1 (en) Methods and apparatus for forming glass articles
US2180737A (en) Heat treatment for glass
JPH0386518A (en) Holding method and its device for heat-resistant hollow vessel
CN101827795B (en) Glass container one-press manufacturing method
JPH0639911A (en) Blow molding method using pressurized liquid cryogen and blow molding device
CN105502902A (en) Production technology of cold and thermal impact resistant glass milk bottle
US3694424A (en) Method of internally cooling a blow molded article
US4309380A (en) Process for making multilayered containers
JPH022815B2 (en)
US4729779A (en) Method and apparatus for manufacturing glass articles
JPH0146450B2 (en)
US4021517A (en) Method of producing hollow articles of plastics material
JPH0231011B2 (en)
CN209614170U (en) Horizontal centrifuge is used in a kind of production of roll
CN2804119Y (en) Fast cold condensating metal molten purification furnace
US4840656A (en) Methods and apparatus for forming glass articles
CN213794135U (en) Die casting machine capable of safely taking part
US4052189A (en) Apparatus for inhibiting checks and cracks in the moil or yoke area of tv funnels
US3783157A (en) Blow molding process
JPS5820369A (en) Suction casting method
CN217103571U (en) Glass hot bending mold protection device
WO1991003430A1 (en) A method and apparatus for use in the manufacture of hollow glass objects