JPH02280677A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPH02280677A
JPH02280677A JP1101467A JP10146789A JPH02280677A JP H02280677 A JPH02280677 A JP H02280677A JP 1101467 A JP1101467 A JP 1101467A JP 10146789 A JP10146789 A JP 10146789A JP H02280677 A JPH02280677 A JP H02280677A
Authority
JP
Japan
Prior art keywords
elastic body
mode
vibration wave
vibration
dynamic stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1101467A
Other languages
Japanese (ja)
Other versions
JP2685284B2 (en
Inventor
Hitoshi Mukojima
仁 向島
Ichiro Okumura
一郎 奥村
Takayuki Tsukimoto
貴之 月本
Akio Atsuta
暁生 熱田
Hajime Kanazawa
元 金沢
Koichi Ueda
浩市 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1101467A priority Critical patent/JP2685284B2/en
Priority to DE69030827T priority patent/DE69030827T2/en
Priority to EP90102905A priority patent/EP0383309B1/en
Publication of JPH02280677A publication Critical patent/JPH02280677A/en
Priority to US07/827,866 priority patent/US5300850A/en
Application granted granted Critical
Publication of JP2685284B2 publication Critical patent/JP2685284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To suppress noise by providing a portion having uneven dynamic rigidity in an elastic body. CONSTITUTION:A vibration wave motor comprises an elastic body 28, a piezoelectric element, a rotor, and the like. The elastic body 28 is formed into a ring and a plurality of grooves are provided at the side of pressure contact face. Forty grooves 28b-28o are made slightly deeper than other groove 28a and the dynamic rigidity is varied in order to prevent generation of progressive wave in unnecessary mode, and 7th order mode of outward bending vibration of ring face is employed as the driving mode. By such arrangement, generation of unnecessary mode is prevented.

Description

【発明の詳細な説明】 [a集土の利用分野] 本発明は振動波モータに関するものである。[Detailed description of the invention] [Fields of use of soil collection a] The present invention relates to a vibration wave motor.

[従来の技術] 弾性体に進行性振動波を生じさせ、この振動によってロ
ータ等の移動体を移動させる撮動波モータは、小型であ
り、また低速時に高いトルりが得られることから、近年
−眼レフカメラの撮影レンズ駆動用として採用された。
[Prior Art] Photographic wave motors, which generate progressive vibration waves in an elastic body and use these vibrations to move a moving body such as a rotor, have become popular in recent years because they are small and can provide high torque at low speeds. -Used to drive the photographic lens of reflex cameras.

第6図は振動波モータを、撮影レンズ駆動用として組込
んだ一眼レフカメラの撮影レンズの縦断面図で、1は撮
影レンズの光軸りを回転中心とする、円環状の金属性の
弾性体で、後述するロータ3に接する側には第7図に示
される様に所定の4I51tと深さhの溝IAが全周に
わたって設けられている。また該弾性体1の下部には1
’ZT等の圧電素子2からなる駆動用の2群の駆動相等
が接着剤により固定されている。電気−機械エネルギ変
換素子としての該圧電、素子2からなる2群の駆動相に
対しては公知の方法で、位相の異なる超音波の駆動信号
が夫々印加され、この信号に応答して弾性体1が振動す
ることによって振動体を形成する弾性体1の周方向に回
転する進行性振動波が発生する。3は弾性体1の上面に
加圧接触した端部を有する円環状のロータで、移動体と
しての該ロータ3の他端にはゴム等の円環状の吸振体5
が設けられている。4はフェルト等で形成された円環状
の振動絶縁体で、該絶縁体4はフェルト台8を介して重
ね合わされた2枚の皿バネ9から加圧力を受けている。
Figure 6 is a vertical cross-sectional view of a single-lens reflex camera lens incorporating a vibration wave motor for driving the lens. As shown in FIG. 7, a groove IA having a predetermined length 4I51t and a depth h is provided over the entire circumference on the side that contacts the rotor 3, which will be described later. Further, at the bottom of the elastic body 1, there is a
'Two groups of drive phases, etc. for driving consisting of piezoelectric elements 2 such as ZT are fixed with an adhesive. Ultrasonic drive signals with different phases are applied to the two groups of drive phases consisting of the piezoelectric elements 2 as electro-mechanical energy conversion elements by a known method, and in response to these signals, the elastic body When the elastic body 1 vibrates, a progressive vibration wave that rotates in the circumferential direction of the elastic body 1 forming the vibrating body is generated. Reference numeral 3 denotes an annular rotor having an end in pressurized contact with the upper surface of the elastic body 1, and the other end of the rotor 3 as a moving body has an annular vibration absorber 5 made of rubber or the like.
is provided. Reference numeral 4 denotes an annular vibration insulator made of felt or the like, and the insulator 4 receives pressing force from two disc springs 9 superimposed on each other via a felt base 8 .

前述のロータ3は前記した吸振体5を介して連結板22
に密接保持される0円環状の連結板22は締め付はビス
(不図示)により出力伝達体25と固定される。光軸り
を回転中心として回転する出力伝達体25はボール10
を用いてボールレース13.14で玉軸受けを構成して
いる。ボールレース13.14は撮影レンズの外筒12
に固定され、外筒12は固定筒11と結合され、カメラ
マウント19に固定される。
The aforementioned rotor 3 is connected to the connecting plate 22 via the aforementioned vibration absorber 5.
The annular connecting plate 22 that is closely held is fixed to the output transmitting body 25 by tightening screws (not shown). The output transmission body 25 that rotates around the optical axis is a ball 10.
A ball bearing is constructed using ball races 13 and 14. Ball races 13 and 14 are the outer cylinder 12 of the photographic lens.
The outer cylinder 12 is combined with the fixed cylinder 11 and fixed to the camera mount 19.

出力伝達体25の先端には連結コロ15が固定され、光
軸方向に設けられたフォーカスレンズ2フを保持した移
動環1フのキー溝(不図示)と係合する。固定内筒1B
のネジ部18aと移動環1フのネジ部17aがヘリコイ
ド結合しており、出力伝達体25の回転運動によって連
結コロ15を介して移動環17は回転しながら光軸方向
へ移動可能となる。
A connecting roller 15 is fixed to the tip of the output transmitting body 25, and engages with a keyway (not shown) of a movable ring 1f that holds a focus lens 2f provided in the optical axis direction. Fixed inner cylinder 1B
The threaded portion 18a of the movable ring 1f and the threaded portion 17a of the movable ring 1F are helicoidally coupled, and the movable ring 17 can be rotated and moved in the optical axis direction via the connecting rollers 15 by the rotational movement of the output transmission body 25.

かかる構成において、カメラ側からのAP信号または、
マニュアルリング16からの駆動信号によって弾性体と
圧電素子からなる振動体に公知の方法で進行性振動波を
発生させ、ロータ3を回転させて最終的にフォーカスレ
ンズ27を光軸方向へ9勤させ、ピント調整を行うもの
である。
In such a configuration, an AP signal from the camera side or
A driving signal from the manual ring 16 causes a vibrating body made of an elastic body and a piezoelectric element to generate progressive vibration waves using a known method, rotates the rotor 3, and finally moves the focus lens 27 nine times in the optical axis direction. , to adjust the focus.

そしてかかる振動波モータにおいて、この振動体は駆動
用進行性振動波が振動体上のどの位置でも同じ振幅、同
じ波長となる様に均一な部材で形成され、かつ147図
示のようにほぼ均一な構造となっている。
In such a vibration wave motor, the vibrating body is formed of a uniform member so that the progressive vibration wave for driving has the same amplitude and the same wavelength at any position on the vibrating body, and is made of a substantially uniform member as shown in Fig. 147. It has a structure.

[発明が解決しようとする課題] しかしながら、上記従来の振動波モータでは撮動体、移
動体、或いはそれらの保持部材の加工後の平面度誤差が
、振動体と移動体の接触面に面圧ラムを引き起こし、か
かる原因により駆動用進行性振wJ@とは異なった波長
の進行性振動波が゛成長し、振動体と移動体との接触面
より騒音が発生することがあった。
[Problems to be Solved by the Invention] However, in the conventional vibration wave motor described above, flatness errors after machining of the imaging body, the movable body, or their holding members cause a surface pressure ram on the contact surface between the vibrating body and the movable body. Due to this cause, a progressive vibration wave having a wavelength different from that of the driving progressive vibration wJ@ grows, and noise may be generated from the contact surface between the vibrating body and the moving body.

そしてこの騒音を発生する波長をもった進行性振動波を
分析したところ、この不要進行性振動波は、1つの波長
の場合であったり、あるいは複数の波長の場合であった
When the progressive vibration waves having the wavelengths that generate this noise were analyzed, it was found that the unnecessary progressive vibration waves had one wavelength or multiple wavelengths.

本発明の目的は、駆動モードの波長に影響を与えること
なく不要の波数の進行波の発生を防止して鳴きのない振
動波そ一夕を提供するものである。
An object of the present invention is to prevent the generation of traveling waves of unnecessary wave numbers without affecting the wavelength of the drive mode, and to provide vibration-free vibration waves.

〔課題を解決するための手段] 本発明の目的を達成するための代表的な例は、互いに所
定の位置的位相差を有する1奪番駆動用電気−機械エネ
ルギ変換手段に交流電圧を印加することにより、該弾性
体に進行性振動波を形成し、該弾性体と該弾性体に加圧
接触した加圧部材とを相対移動させる振動波モータにお
いて、該弾性体又は該弾性体の支持部材のいずれか一方
に、該弾性体に励起される駆動モードの定在波の固有振
動数差が、駆動用の進行性振動波以外の少なくとも1つ
の振動モードにおける定在波の振動数差よりも小さくな
るように動剛性不均一部を設け、該各駆動用電気−機械
エネルギ変換手段に対する動剛性不均一部を等しく又は
近づけたことを特徴とする振動波モータにある。
[Means for Solving the Problems] A typical example for achieving the object of the present invention is to apply an alternating current voltage to first-steer drive electric-mechanical energy conversion means having a predetermined positional phase difference with each other. In a vibration wave motor that forms a progressive vibration wave in the elastic body and relatively moves the elastic body and a pressure member that is in pressure contact with the elastic body, the elastic body or a support member of the elastic body The natural frequency difference between the standing waves in the drive mode excited in the elastic body is greater than the frequency difference between the standing waves in at least one vibration mode other than the progressive vibration wave for driving. The vibration wave motor is characterized in that the dynamic stiffness non-uniform portions are provided so as to be small, and the dynamic stiffness non-uniform portions are made equal or close to each other for each driving electro-mechanical energy conversion means.

[作  用] 上記した構成の振動波モータは、不要な振動モードが発
生しても、そのモードにおける定在波の固有振動数差が
駆動モードの定在波の固有振動数差よりも大きいので、
駆動モードにおける進行波形成に影響を与えることなく
不要モードの進行波の形成が阻止され、@き等の騒音発
生が未然に防止できると共に、動剛性不均一部と駆動用
電気−機械エネルギ変換手段との位置を等しく又は近づ
けることで、動剛性不均一部が駆動に影響を与えること
を防ぐ。
[Function] In the vibration wave motor having the above configuration, even if an unnecessary vibration mode occurs, the natural frequency difference between the standing waves in that mode is larger than the natural frequency difference between the standing waves in the drive mode. ,
The formation of traveling waves in unnecessary modes is prevented without affecting the formation of traveling waves in the drive mode, and the generation of noise such as @ noise can be prevented. By making the positions equal or close to each other, it is possible to prevent the dynamic stiffness uneven portion from affecting the drive.

[実施例] 第1図は本発明による振動波モータの一実施例を示す弾
性体の平面図である。
[Embodiment] FIG. 1 is a plan view of an elastic body showing an embodiment of a vibration wave motor according to the present invention.

本実施例による弾性体28は、第7図に示すように円環
状に形成されると共に、振幅の拡大を図るために移動体
(不図示)圧接面側に複数の溝を形成している。
The elastic body 28 according to this embodiment is formed in an annular shape as shown in FIG. 7, and has a plurality of grooves formed on the pressure contact surface of the movable body (not shown) in order to increase the amplitude.

本実施例において、上記した溝は、4°ピツチで90個
形成し、上記した振幅の拡大を図る目的の他に、不要モ
ードの進行波発生を防止するために、図中、黒く塗りつ
ぶした溝28b、28c。
In this embodiment, 90 grooves are formed at a pitch of 4°, and in addition to the purpose of expanding the amplitude described above, the grooves shown in black in the figure are used to prevent the generation of traveling waves in unnecessary modes. 28b, 28c.

211d、28e、28f、28g、28h、281.
28J、28に、281.28m。
211d, 28e, 28f, 28g, 28h, 281.
28J, 28, 281.28m.

28n、28oの14個の溝(以下深溝と称す)の深さ
hを他の溝28a(計76個)よりも若干、例えば0.
2■深くし動剛性を変えている。なお、本実施例の振動
体はリング面外曲げ振動の7次モード(7波モード)を
駆動モードとするようにしている。
The depth h of the 14 grooves 28n and 28o (hereinafter referred to as deep grooves) is set to be slightly smaller than the other grooves 28a (76 grooves in total), for example, 0.
2 ■ Deepening and changing dynamic rigidity. It should be noted that the vibrating body of this embodiment is configured to use the seventh mode (seven wave mode) of the ring out-of-plane bending vibration as the drive mode.

したがって、モータ駆動時に発生する鳴きは、駆動そ−
ドより低次モードであることから、3,4,5.6次(
波)そ−ドのいずれか、あるいはその複合の共握として
発生することになる。なお従来例で示したモータでは、
2次モードは、弾性体と移動体の接触状態を考えると不
安定であるためか殆んど発生しなかった。
Therefore, the noise that occurs when the motor is driven is caused by the drive itself.
Since it is a lower order mode than the 3rd, 4th, 5.6th order (
Waves) or a combination of them. In addition, in the motor shown in the conventional example,
The secondary mode hardly occurred, probably because it was unstable considering the contact state between the elastic body and the moving body.

このような動剛性が不均一な構造の弾性体28を有する
振動波モータにおいて、5次モードの不要モードが発生
した場合を例にして、鳴き発生の防止を以下に説明する
In the vibration wave motor having the elastic body 28 having such a structure with non-uniform dynamic stiffness, prevention of squealing will be described below, taking as an example a case where an unnecessary fifth-order mode occurs.

進行性振動波の形成原理は、波長(λ)と振動数が共に
等しく、互いに位置的位相がλ/4ずれた2つの定在波
を合成することにより形成されるものである。したがっ
て、不要モードの進行波の発生を防ぐには、弾性体28
上に形成される不要モードにおける2つの定在波の固有
振動数が等しくならないようにすればよく、そのために
本実施例では、深溝28b・・・28h・・・28゜を
形成して、弾性体28の動剛性の不均一化を図っている
The principle of formation of a progressive vibration wave is that it is formed by combining two standing waves that have the same wavelength (λ) and frequency and are shifted in position by λ/4 from each other in phase. Therefore, in order to prevent the generation of traveling waves in unnecessary modes, the elastic body 28
It is only necessary to make sure that the natural frequencies of the two standing waves in the unnecessary modes formed above are not equal, and for this purpose, in this embodiment, deep grooves 28b...28h...28° are formed to reduce the elasticity. The dynamic rigidity of the body 28 is made non-uniform.

進行波の形成において、2つの定在波が位置的位相がλ
/4ずれるということは、弾性体28における周方向の
任意の1点に一方の定在波の腹があるとすると、その点
に他方の定在波の節がなければならない。
In the formation of a traveling wave, two standing waves have a positional phase of λ
The shift of /4 means that if the antinode of one standing wave is at any point in the circumferential direction of the elastic body 28, there must be a node of the other standing wave at that point.

5次モー・ドの振動波において、弾性体28上に形成さ
れる1波長は72°ピツチである。ここで、深溝28b
を節とする5波の定在波が発生したとすると、その定在
波は深溝28e、28h、281゜28J、28mが腹
の位置となり、この定在波に対応する弾性体28の固有
振動数をfrcとする。また、深溝28bを腹とする5
波の定在波が発生したとすると、その定在波は深溝28
e、28h、28i。
In the vibration wave of the fifth-order mode, one wavelength formed on the elastic body 28 has a pitch of 72°. Here, the deep groove 28b
If five standing waves with nodes are generated, the antinode positions of the standing waves are deep grooves 28e, 28h, 281°, 28J, and 28m, and the natural vibration of the elastic body 28 corresponding to this standing wave Let the number be frc. In addition, 5 with the deep groove 28b as its belly
If a standing wave of waves is generated, the standing wave is deep groove 28
e, 28h, 28i.

28J、28mが節の位置となり、この定在波に対応す
る弾性体28の固有振動数をf、とする。
28J and 28m are the node positions, and the natural frequency of the elastic body 28 corresponding to this standing wave is f.

5次モードの進行波が発生するには、双方の定在波の固
有振動数f、とf tcとが等しいか又はその固有振動
数差、Δrra−1f□−f、e1が小さいことが必要
で、逆にこの固有振動数差Δrrsが大きければ5次モ
ードの進行波が発生しなくなる。
In order to generate a fifth-order traveling wave, it is necessary that the natural frequencies f and ftc of both standing waves are equal, or that the difference in natural frequencies, Δrra-1f-f, e1, is small. On the other hand, if this natural frequency difference Δrrs is large, the fifth-order mode traveling wave will not be generated.

一般に、買置をm、剛性をkとした時の固有振動数f1
は 深溝部分は弾性体の板厚が薄い為、曲げ剛性には小さい
、従って深溝の位置を腹とする場合の曲げ剛性をkeと
し、深溝の位置を節とする場合の曲げ剛性をに、とする
と、深溝の位置を節とする場合の腹位置の板厚が厚い為
、k、>kc つまり、 f□> f reとなる。
Generally, natural frequency f1 when purchase is m and stiffness is k
Since the thickness of the elastic body is thin in the deep groove part, the bending rigidity is small.Therefore, the bending rigidity when the deep groove position is the antinode is ke, and the bending rigidity when the deep groove position is the node. Then, when the position of the deep groove is used as a node, since the thickness of the plate at the antral position is thick, k,>kc, that is, f□>fre.

したがって、5次モードにおける固有振動数f、とf 
reとは振動数が異なり、その差が大きいので、鳴きの
発生する可能性がある5次モードの振動数は進行波とな
り得す、5次モードの振動数が何らかの原因によって発
生しても、それによって鳴きが発生することはない。
Therefore, the natural frequencies f in the fifth mode, and f
The frequency of vibration is different from re, and the difference is large, so the frequency of the 5th mode, which can cause squealing, can become a traveling wave. Even if the frequency of the 5th mode occurs for some reason, This does not cause any squealing.

また、この鳴き発生の防止効果は、固有振動数差Δf、
が大きい程顕著であることは明らかである。
In addition, the effect of preventing the occurrence of this squeal is due to the natural frequency difference Δf,
It is clear that the larger the value, the more conspicuous it is.

以上の説明は不要モードが5次モードの場合であるが、
本実施例の弾性体28にあっては、5次モード以外に、
6次モード、4次モード、3次モードの不要モードにつ
いても5次モードの場合と同様に進行波の形成を阻止す
るようになっている。
The above explanation is for the case where the unnecessary mode is the 5th mode, but
In the elastic body 28 of this embodiment, in addition to the fifth-order mode,
Formation of traveling waves is also prevented in unnecessary modes such as the 6th mode, 4th mode, and 3rd mode, as in the case of the 5th mode.

すなわち、4次モードの場合、深溝28b、28f。That is, in the case of the fourth mode, the deep grooves 28b and 28f.

28g、28L、28に、281が動剛性を不均一にし
、固有振動数差Δfr4をその振動波の位置で異ならせ
て4次モードの進行波の形成を防止する。
In 28g, 28L, and 28, 281 makes the dynamic stiffness non-uniform, and makes the natural frequency difference Δfr4 different depending on the position of the vibration wave, thereby preventing the formation of a fourth-order mode traveling wave.

ただし、この場合、弾性体28に形成された全周等ピッ
チ90個の溝に対して、4では割り切れないので、深溝
28f、28g、 (28に、281も同様)の中間を
中心位置として4次モードの1波長である90” ピッ
チとしている。
However, in this case, the 90 grooves formed on the elastic body 28 at equal pitches all around the circumference are not divisible by 4, so the center position is set between the deep grooves 28f, 28g, (28 and 281). The pitch is 90'', which is one wavelength of the next mode.

また、3次モード及び6次モードの場合、深溝28c、
28d、28f 、28g、28に、281.28n、
28oが動剛性を不均一にし、固有撮動数差Δf、3.
Δfr8をその振動波の位置で異ならせて3次、6次モ
ードの進行波形成を防止する。
In addition, in the case of the third mode and the sixth mode, the deep groove 28c,
28d, 28f, 28g, 28, 281.28n,
28o makes the dynamic stiffness non-uniform, and the specific moving number difference Δf, 3.
By varying Δfr8 depending on the position of the vibration wave, the formation of traveling waves in the third and sixth modes is prevented.

ただし、この場合も深溝28c、28dと、深溝28f
、28gと、深溝28に、281と、深溝28n、28
oの夫々の中間を中心位置として、3次そ−ドの場合1
72波長、6次モードの場合1波長である60°ピツチ
としている。
However, in this case as well, the deep grooves 28c and 28d and the deep groove 28f
, 28g, deep groove 28, 281, deep groove 28n, 28
1 in the case of 3rd order, with the center position between each of o.
In the case of 72 wavelengths and the 6th mode, the pitch is 60°, which is one wavelength.

第3図は、これらの1次モードの固有振動数差Δf?、
1を各モード毎に求めたものである。
Figure 3 shows the natural frequency difference Δf? of these first modes. ,
1 is obtained for each mode.

第3図かられかるように、駆動用の7次モードも動剛性
の不均一によって固有撮動数差Δfr?が生じているが
その量は少ない、しかもその他の騒音時発生する。3次
、4次、5次、6次モードの固有撮動数差Δf13.Δ
f、4゜Δf15.Δf、6の方が7次モードの場合の
Δfr?より大きいので鳴き防止効果が大きいのがわか
る。つまり、モータ駆動に悪影響を与えにくく、しかも
0!%きが発生しにくい。
As can be seen from Fig. 3, the seventh mode for driving also has an inherent difference in the number of moving images Δfr? due to non-uniformity of dynamic stiffness. However, the amount is small, and it also occurs when other noises occur. Specific imaging number difference Δf13 in 3rd, 4th, 5th, and 6th modes. Δ
f, 4°Δf15. Δf, Δfr when 6 is the 7th mode? Since it is larger, it can be seen that the noise prevention effect is greater. In other words, it has less negative impact on motor drive and has zero effect! % loss is less likely to occur.

すなわち、これらの各モードの固有振動数差Δfrnは
、第1図に示すような深溝パターン、つまり動剛性の平
均一部パターンに大きく依存する。
That is, the natural frequency difference Δfrn of each of these modes largely depends on the deep groove pattern as shown in FIG. 1, that is, the average partial pattern of dynamic stiffness.

第2図は、本実施例の圧電素子30の平面図である。つ
まり、第1図の弾性体28に接着される圧電素子30を
裏面側から見た図である。
FIG. 2 is a plan view of the piezoelectric element 30 of this embodiment. That is, this is a view of the piezoelectric element 30 bonded to the elastic body 28 of FIG. 1, viewed from the back side.

30^で示す電極群がA相駆動電極であり、7波駆動の
波長λフのλフ/2の電極の集合体となっている0図中
■eは裏面に形成された共通電極(不図示)に対する分
極処理時の印加電圧の+−を夫々示している。30Bで
示す電極群がB相駆動電極群で、A相駆動電極に対して
λ1/4位相がずれた位置に形成される。A相駆動電極
30^と該B相駆動電極30Bは対称面31に対して線
対称となっている。モータ駆動時は、A相駆動電極30
AとB相駆動電極30Bは時間的に位相の±90゛ずれ
た交番電圧が印加される。
The electrode group indicated by 30^ is the A-phase driving electrode, which is a collection of electrodes of λf/2 of the wavelength λf of the 7-wave drive. (Illustrated) shows the applied voltage during polarization treatment, respectively. The electrode group indicated by 30B is a B-phase drive electrode group, and is formed at a position shifted by λ1/4 phase with respect to the A-phase drive electrode. The A-phase drive electrode 30^ and the B-phase drive electrode 30B are line symmetrical with respect to the plane of symmetry 31. When driving the motor, the A phase drive electrode 30
Alternating voltages whose phases are temporally shifted by ±90 degrees are applied to the A and B phase drive electrodes 30B.

第4図は、第1図に示す弾性体28の対称面29からθ
方向に1次モードの振動波が各モードの1波長分(φ。
FIG. 4 shows θ from the plane of symmetry 29 of the elastic body 28 shown in FIG.
The vibration wave of the first mode in the direction corresponds to one wavelength of each mode (φ.

=360°)進行した場合の、動剛性不均一部分(第1
図黒ぬりの深溝)の実質的総和Rを計算した図である。
= 360°), the dynamic stiffness non-uniform part (first
This is a diagram in which the substantial sum R of the deep grooves shown in black is calculated.

っまりθ=θll/nの関係となる。32.33゜34
.35は夫々3次、4次、5次、6次モードといった騒
音となる振動モードの場合である。第4図に示す如く、
各モードは約90゛位相φ。がずれた位置でRの最大、
最小をとっている。つまり動剛性の不均一性が約90°
位相がずれた場所で最大・最小となり、最も進行波にな
りにくい形となっている。第5図は第4図と同様な図で
あるが、駆動用の7次モード36の場合である。この図
からRの最大、最小差が他モードに比べて少ないのがわ
かる。つまり7次モードの進行波への悪影響が少ない。
Therefore, the relationship is θ=θll/n. 32.33°34
.. 35 is the case of vibration modes that produce noise, such as the third, fourth, fifth, and sixth modes, respectively. As shown in Figure 4,
Each mode has a phase φ of approximately 90°. The maximum of R at the position where is shifted,
Taking the minimum. In other words, the non-uniformity of dynamic stiffness is approximately 90°.
The maximum and minimum occur where the phase shifts, making it the most difficult form to become a traveling wave. FIG. 5 is a diagram similar to FIG. 4, but in the case of the seventh-order mode 36 for driving. From this figure, it can be seen that the maximum and minimum differences in R are smaller than in other modes. In other words, there is little adverse effect on the traveling wave of the seventh mode.

但しゼロではない。今、弾性体28の深溝パターンの対
称面2つと圧電素子30の対称面31を一致させた場合
、PI 、PIがA相3Qへのみを駆動したときのA相
定在波の腹位置(B相30Bのみを駆動したときのB相
定在波の節位置)、P2゜P4がB相定在波の腹位置(
A相定在波の節位置)となる。P、−P4のRの値が等
しい事から、動剛性の不均一性がA相、B相の駆動電極
に対して同様な影響しか与えない事がわかる。
However, it is not zero. Now, when the two symmetry planes of the deep groove pattern of the elastic body 28 and the symmetry plane 31 of the piezoelectric element 30 are made to match, the antinode position of the A-phase standing wave (B The node position of the B-phase standing wave when only phase 30B is driven), P2゜P4 is the antinode position of the B-phase standing wave (
The node position of the A-phase standing wave). Since the values of R for P and -P4 are equal, it can be seen that the non-uniformity of dynamic stiffness has a similar effect on the A-phase and B-phase drive electrodes.

つまり、A相定在波の固有振動数とB相定在彼の固有撮
動数が一致して、駆動に悪影響を与えない、ところが、
弾性体28の深溝パターンの対称面29と圧電素子30
の対称面31をずらがA相定在波の腹位置(B相定在波
の節位置)%P61P8がB相定在波の腹位置(A相定
在波の節位置)となるかもしくはその逆となる。
In other words, the natural frequency of the A-phase standing wave and the natural frequency of the B-phase standing wave match and do not adversely affect the drive.However,
The symmetry plane 29 of the deep groove pattern of the elastic body 28 and the piezoelectric element 30
If the plane of symmetry 31 is shifted, the antinode position of the A-phase standing wave (nodal position of the B-phase standing wave) %P61P8 becomes the antinode position of the B-phase standing wave (nodal position of the A-phase standing wave), or The opposite is true.

この場合、Ps  (P9)、P7のRの値の方がP 
8 *  P 6のRの値より大きくなる。つまり、動
剛性の不均一性の影響でA相定在波の固有振動数よりB
相定在波の固有振動数が高くなり、進行波としてのムラ
が大きくなってしまう、このことから、弾性体28の対
称面29と圧電素子の対称面31を一致させるのが最も
駆動波に悪影響を与えないことがわかる。
In this case, the value of R of Ps (P9) and P7 is
8*P is larger than the R value of 6. In other words, due to the non-uniformity of dynamic stiffness, the natural frequency of the A-phase standing wave is lower than the B
The natural frequency of the phase standing wave becomes high and the unevenness of the traveling wave becomes large.For this reason, it is best to match the plane of symmetry 29 of the elastic body 28 and the plane of symmetry 31 of the piezoelectric element to the driving wave. It turns out that it does not have any negative effects.

なお、上記した動剛性不均一部分の実質的総和Rは、動
剛性不均一部分の1つの大きさを仮にRolとして、曲
げ振動の形をSinで近似し、弾性体リング全体での総
和を考えると、R(φ1)=、Σ Ral I sin
  (N0区 +φ、1)11■1 となる、但し、kは動剛性不均一の部分の数である。
Note that the above-mentioned substantial sum R of the dynamic stiffness non-uniform parts is calculated by assuming that the size of one of the dynamic stiffness non-uniform parts is Rol, and approximating the shape of bending vibration by Sin, and considering the sum of the entire elastic body ring. and R(φ1)=, Σ Ral I sin
(N0 section +φ, 1) 11■1, where k is the number of parts with non-uniform dynamic stiffness.

もし仮に、本実施例のように動剛性不均一部分が深溝で
ある場合は、R(φn)は深溝の全体総和の進行波位置
(φn)による分布を表わす。
If the dynamically non-uniform portion is a deep groove as in this embodiment, R(φn) represents the distribution of the total sum of the deep grooves depending on the traveling wave position (φn).

第4図5図はR,l=1とした場合である6本実施例の
ような場合、前述した様に、R大の位置に振動の腹が来
る場合はど、k小となる。つまりf7小となる。従って
、Rの最大位置で振動の腹となるモードの固有振動数が
最小となり、Rの最小位置で撮動の腹となるモードの固
有振動数が最大となる。実際、騒音となる進行波はこの
最大・最小固有振動数の間の振動数をとる。従ってそれ
らの固有振動数差が大ぎいほど騒音となる進行波は共振
点からはずれ、撮巾が非常に小さくなり、ひいては減衰
してしまう。
4 and 5 show the case where R, l=1.6 In the case of this embodiment, as described above, when the antinode of vibration is located at the position where R is large, k becomes small. In other words, f7 is small. Therefore, the natural frequency of the mode that becomes the antinode of vibration becomes the minimum at the maximum position of R, and the natural frequency of the mode that becomes the antinode of vibration becomes the maximum at the minimum position of R. In fact, traveling waves that cause noise have frequencies between these maximum and minimum natural frequencies. Therefore, the larger the difference in their natural frequencies, the more noisy the traveling waves will be, moving away from the resonance point, making the field of view very small, and eventually attenuating them.

以上の実施例は、深溝を他の溝よりも0.2mm深くし
た例で説明したが、この量を増加すれば効果が大きくな
る事は明らかであり、この値に限定されるものではない
Although the above embodiment has been described using an example in which the deep groove is 0.2 mm deeper than the other grooves, it is clear that the effect will be greater if this amount is increased, and the present invention is not limited to this value.

また、このように溝の深さを変えるだけでなく、付加質
量や付加抵抗などを増減させて動剛性を変えたり、それ
らの複合で動剛性を変えても同様である。また、弾性体
の動剛性だけでなく、第6図に示すロータや振動絶縁体
4などの周辺部材の動剛性を不均一にしても同様の効果
がある。更に、動剛性の不均一パターンは本実施例に限
らず、各駆動相に対して動剛性を等しく又は近づけたも
のであればよい。
Furthermore, in addition to changing the groove depth as described above, the dynamic stiffness can also be changed by increasing or decreasing the added mass or added resistance, or by changing the dynamic stiffness by a combination of these. Furthermore, the same effect can be obtained by making not only the dynamic stiffness of the elastic body uniform but also the dynamic stiffness of peripheral members such as the rotor and vibration insulator 4 shown in FIG. 6 non-uniform. Furthermore, the pattern of non-uniform dynamic stiffness is not limited to this embodiment, and any pattern may be used as long as the dynamic stiffness is equal or close to each other for each drive phase.

[発明の効果] 以上説明してきたように、本発明によれば、電気回路等
の電気制御手段を用いることなく、例えば弾性体に動剛
性不均一部を設けるといったことで駆動用の進行波以外
の進行波の形成を防止でき、駆動時における鳴き等の騒
音を抑えることがてでき、しかも駆動用の進行波の形成
に影響を与えることがないといった効果が得られる。
[Effects of the Invention] As explained above, according to the present invention, for example, by providing a dynamic stiffness non-uniform portion in an elastic body, it is possible to generate waves other than traveling waves for driving without using electric control means such as an electric circuit. The formation of traveling waves for driving can be prevented, noise such as squealing during driving can be suppressed, and the formation of traveling waves for driving is not affected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による振動波モータの一実施例1を示す
弾性体の平面図、第2図は圧電素子の配置を示す平面図
、第3図は弾性体の0次モードの固有振動数差を各モー
ド毎に示した図、第4図、第5図は0次モードの位相に
よる動剛性の変化を示した図、第6図はレンズ鏡筒の断
面図、第7図は弾性体の斜視図である。 1.28:弾性体 2.30:圧電素子 3:ロータ 4:振動絶縁体 28b・・・28i・・・280:深溝他4名 第 図 モード次数n
Fig. 1 is a plan view of an elastic body showing Embodiment 1 of the vibration wave motor according to the present invention, Fig. 2 is a plan view showing the arrangement of piezoelectric elements, and Fig. 3 is the natural frequency of the zero-order mode of the elastic body. Figures 4 and 5 show the changes in dynamic stiffness depending on the phase of the zero-order mode, Figure 6 is a cross-sectional view of the lens barrel, and Figure 7 shows the difference for each mode. FIG. 1.28: Elastic body 2.30: Piezoelectric element 3: Rotor 4: Vibration insulator 28b...28i...280: Deep groove and 4 others Diagram mode order n

Claims (1)

【特許請求の範囲】 1 互いに所定の位置的位相差を有する 駆動用電気−機械エネルギ変換手段に交流電圧を印加す
ることにより、該弾性体に進行性振動波を形成し、該弾
性体と該弾性体に加圧接触した加圧部材とを相対移動さ
せる振動波モータにおいて、 該弾性体又は該弾性体の支持部材のいずれ か一方に、該弾性体に励起される駆動モードの定在波の
固有振動数差が、駆動用の進行性振動波以外の少なくと
も1つの振動モードにおける定在波の振動数差よりも小
さくなるように動剛性不均一部を設け、該各駆動用電 気−機械エネルギ変換手段に対する動剛性不均一部を等
しく又は近づけたことを特徴とする振動波モータ。 2 前記動剛性不均一部は線対称のパターンに形成され
ていることを特徴とする請求項1に記載の振動波モータ
。 3 前記2群の電気−機械エネルギ変換手段は夫々所定
の位置的位相差を有して線対称に配置され、前記動剛性
不均一部のパターンの線対称の対称面と一致若しくは僅
かにづれていることを特徴とする請求項2に記載の振動
波モータ。 4 前記動剛性不均一部は円環状に形成した弾性体に設
けたことを特徴とする請求項1、 2、又は3に記載の振動波モータ。
[Scope of Claims] 1. By applying an alternating current voltage to drive electric-mechanical energy conversion means having a predetermined positional phase difference with each other, a progressive vibration wave is formed in the elastic body, and the elastic body and the In a vibration wave motor that relatively moves a pressure member that is in pressure contact with an elastic body, a standing wave of a driving mode excited in the elastic body is applied to either the elastic body or a supporting member of the elastic body. The dynamic stiffness non-uniform portion is provided so that the natural frequency difference is smaller than the frequency difference of the standing wave in at least one vibration mode other than the progressive vibration wave for driving, and each of the electric-mechanical energy for driving A vibration wave motor characterized in that the dynamic stiffness non-uniformity portions of the converting means are equal or close to each other. 2. The vibration wave motor according to claim 1, wherein the dynamic stiffness non-uniform portion is formed in a line-symmetrical pattern. 3. The two groups of electric-mechanical energy conversion means are arranged line-symmetrically with a predetermined positional phase difference, and coincide with or slightly deviate from the plane of line-symmetrical symmetry of the pattern of the dynamic stiffness non-uniform portion. The vibration wave motor according to claim 2, characterized in that: 4. The vibration wave motor according to claim 1, 2, or 3, wherein the dynamic rigidity nonuniform portion is provided in an annularly formed elastic body.
JP1101467A 1989-02-14 1989-04-20 Vibration wave device Expired - Fee Related JP2685284B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1101467A JP2685284B2 (en) 1989-04-20 1989-04-20 Vibration wave device
DE69030827T DE69030827T2 (en) 1989-02-14 1990-02-14 Vibration wave motor
EP90102905A EP0383309B1 (en) 1989-02-14 1990-02-14 Vibration wave motor
US07/827,866 US5300850A (en) 1989-02-14 1992-01-30 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1101467A JP2685284B2 (en) 1989-04-20 1989-04-20 Vibration wave device

Publications (2)

Publication Number Publication Date
JPH02280677A true JPH02280677A (en) 1990-11-16
JP2685284B2 JP2685284B2 (en) 1997-12-03

Family

ID=14301522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1101467A Expired - Fee Related JP2685284B2 (en) 1989-02-14 1989-04-20 Vibration wave device

Country Status (1)

Country Link
JP (1) JP2685284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432394A (en) * 1993-06-25 1995-07-11 Nikon Corporation Ultrasonic motor having a vibratory body and method of producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116979A (en) * 1984-11-08 1986-06-04 Matsushita Electric Ind Co Ltd Supersonic wave drive motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116979A (en) * 1984-11-08 1986-06-04 Matsushita Electric Ind Co Ltd Supersonic wave drive motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432394A (en) * 1993-06-25 1995-07-11 Nikon Corporation Ultrasonic motor having a vibratory body and method of producing the same
US5682805A (en) * 1993-06-25 1997-11-04 Nikon Corporation Ultrasonic motor having a vibratory body and method of producing the same

Also Published As

Publication number Publication date
JP2685284B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
EP0383309B1 (en) Vibration wave motor
US5006746A (en) Travelling-wave motor
KR100384955B1 (en) Vibration member using electro-mechanical energy conversion element as driving source, vibration wave driving apparatus using vibration member as driving source and apparatus provided with vibration wave driving apparatus
JPH03190573A (en) Oscillation wave motor
US5798598A (en) Vibration driven device
JP5322431B2 (en) Vibration wave driving apparatus and apparatus using the same
JPH02280677A (en) Vibration wave motor
KR20020062591A (en) Vibration element and vibration wave driving apparatus
JP2625555B2 (en) Vibration wave device
JP2001157473A (en) Vibrator with electromechanical energy converter as vibration source, oscillating wave driver with vibrator as drive source, apparatus having oscillating wave driver and conveyor with vibrator as conveying source
CA2088239C (en) Vibration driven actuator
JPH0740791B2 (en) Vibration wave motor
JPH02280676A (en) Vibration wave motor
JPH02214477A (en) Vibration wave device
JP2006174680A (en) Oscillator
JPH03207278A (en) Oscillatory wave device
JP2698414B2 (en) Vibration wave device
JP4731737B2 (en) Vibration wave motor
JP2549310B2 (en) Ultrasonic motor
JP2672154B2 (en) Vibration wave drive
JP2720037B2 (en) Ultrasonic motor
JPH01222672A (en) Ultrasonic motor
JPH01243861A (en) Oscillatory wave motor
JP2002369556A (en) Electrical-mechanical energy conversion element and vibration wave drive apparatus
JP5521404B2 (en) Driving device, lens barrel and camera

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees