JPH0228064A - Steering control device - Google Patents

Steering control device

Info

Publication number
JPH0228064A
JPH0228064A JP17859188A JP17859188A JPH0228064A JP H0228064 A JPH0228064 A JP H0228064A JP 17859188 A JP17859188 A JP 17859188A JP 17859188 A JP17859188 A JP 17859188A JP H0228064 A JPH0228064 A JP H0228064A
Authority
JP
Japan
Prior art keywords
drive torque
wheels
steering
difference
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17859188A
Other languages
Japanese (ja)
Inventor
Takashi Imazeki
隆志 今関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17859188A priority Critical patent/JPH0228064A/en
Publication of JPH0228064A publication Critical patent/JPH0228064A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To prevent an uncontrolled steering phenomenon in a split mu road by steering front and rear wheels respectively in specific directions in accordance with a degree of drive torque difference between the right and left drive wheels, when a car speed is not more than a predetermined value further when a rotary speed difference between the right and left drive wheels is not less than a predetermined value. CONSTITUTION:In an automobile, for instance, rear wheel-drive vehicle, pressure oil from an external hydraulic power source 30 is introduced to a power cylinder 27 through a control valve 39, thus right and left front wheels 24, 25 are steered independently of handle control action. The control valve 39 is controlled by a controller 33. Here the controller 33 provides respectively a car speed detecting part 331, drive wheel speed difference detecting part 332 and a drive torque difference detecting part 333 while a front wheel steering control part 334 controlling the control valve 39 in accordance with a detecting result of these detecting parts 331, 332, 333. When a car speed is not more than a predetermined value further when a rotary speed difference is not less than a predetermined value, in accordance with a degree of drive torque difference, for instance, each front wheel 24, 25 is steered in a direction of larger drive torque.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両の操舵制御装置、特に、スプリットμ路
走行時における舵取られ現象の低減技術に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a steering control device for a vehicle, and particularly to a technology for reducing a steering phenomenon when traveling on a split μ road.

(従来の技術) 従来、差動装置(コンベンショナルディファレンシャル
)としては、「自動車工学全書9巻動力伝達装置l (
昭和55年11月二株式会社山海堂発行)の309ペー
ジ〜321ページに記載されている装置が知られている
(Prior Art) Conventionally, a differential device (conventional differential) was used in ``Automotive Engineering Complete Book Vol. 9 Power Transmission Devices''.
The apparatus described on pages 309 to 321 of the publication published by Sankaido Co., Ltd., November 1980 is known.

また、相対回転可能な部材間に介在し、両部材間の差動
を制限する粘性クラッチを備えた差動装置としては、例
えば、特開昭60−227024号公報等に記載されて
いる装置が知られている。
Furthermore, as a differential device equipped with a viscous clutch that is interposed between relatively rotatable members and limits the differential motion between the two members, for example, the device described in Japanese Patent Application Laid-Open No. 60-227024, etc. Are known.

更に、油圧クラッチにより外部からその締結力を可変に
して差動制限力を制御する差動制限力可変装置を備えた
差動装置としては、例えば、特開昭62−103226
号公報、特開昭62−103227号公報等に記載され
ている装置か知られている。
Further, as a differential device equipped with a differential limiting force variable device that controls the differential limiting force by varying the engagement force from the outside using a hydraulic clutch, for example, Japanese Patent Application Laid-Open No. 62-103226
Devices described in Japanese Patent Application Laid-open No. 103227/1983 are known.

(発明が解決しようとする課題) しかしながら、このような差動装置を備えた車両でスプ
リット−路を走行する場合には、路面μの影響で差動装
置を介して分配される左右輪の駆動トルクが、第9図に
示すように、低車輪速となる高μ路側トルク■2が高く
、高車輪速となる低μ路イμ+11 +が低くなり、車
両に矢印方向のヨーモーメントMが作用する為、直進走
行時であるにもかかわらず、モーメント方向に舵が取ら
れるという現象が発生するという問題があった。
(Problem to be Solved by the Invention) However, when driving on a split road with a vehicle equipped with such a differential, the drive is divided between the left and right wheels via the differential due to the influence of the road surface μ. As shown in Fig. 9, the torque is high on the high μ road side torque (■2), which causes low wheel speeds, and the low μ road side torque (μ+11), which causes high wheel speeds, becomes low, and a yaw moment M acts on the vehicle in the direction of the arrow. Therefore, there was a problem in that the rudder was steered in the direction of the moment even though the vehicle was traveling straight ahead.

特に、差動を制限する為の粘性クラッチや差動制限力可
変装置を備えた差動装置において前記ヨーモーメントM
は生じ易く、中でも後者の差動装置で発進性を高める為
に、アクセルオンでは差動制限力を強める構成とした場
合には、スプリットμ路走行時に高駆動トルクか得られ
るものの、左右輪の駆動トルク差も顕著となり、舵取ら
れ現象か著しい。
In particular, in a differential gear equipped with a viscous clutch for limiting the differential or a variable differential limiting force device, the yaw moment M
In particular, if the latter differential device is configured to strengthen the differential limiting force when the accelerator is on in order to improve starting performance, high drive torque can be obtained when driving on a split μ road, but the The drive torque difference also becomes significant, leading to a noticeable steering phenomenon.

尚、コンベンショナルディファレンシャルの場合には、
理論的にトランスファレシオ(駆動トルク配分比)は1
であるが、実際は、フリクション等の影響によりその値
は1.2〜1.5となる。
In addition, in the case of a conventional differential,
Theoretically, the transfer ratio (drive torque distribution ratio) is 1.
However, in reality, the value is 1.2 to 1.5 due to the influence of friction and the like.

これにより、左右の駆動トルク配分比が異なり、スプリ
ットμ路走行時には、小さい値ではあるが差動制限力が
可変の差動装置と同様に、車両にヨーモーメントを発生
させる。
As a result, the left and right drive torque distribution ratios are different, and when traveling on a split μ road, a yaw moment is generated in the vehicle, similar to a differential device in which the differential limiting force is variable, although the value is small.

本発明は、このような問題に着目してなされたもので、
普通の差動装置や粘性クラッチを有する差動装置、更に
は差動制限力か可変の差動装置を搭載した車両において
、スプリットμ路走行時に舵取られ現象の有効防止を図
った操舵制御装置の開発を共通の課題とする。
The present invention was made with attention to such problems, and
A steering control device that effectively prevents the steering phenomenon when traveling on split μ roads in vehicles equipped with a normal differential device, a differential device with a viscous clutch, or a differential device with differential limiting force or a variable differential device. development as a common issue.

(課題を解決するための手段) 上記課題を解決することを目的とし、この目的達成のた
めに請求項1記載の操舵制御装置では、所定の検出手段
と制御手段を備え、前輪または後輪のうち少なくとも一
方の転舵角を外部からの指令で制御出来る操舵制御装置
であって、前記検出手段として、車速を検出する車速検
出手段と、差動装置を介して分配される左右駆動輪の回
転速度差を検出する回転速度差検出手段と、該左右駆動
輪の駆動トルク差を検出する駆動トルク差検出手段とを
有し、前記制御手段は、車速か所定車速以下であり、左
右駆動輪の回転速度差か所定値以上の時に、前記駆動ト
ルク差の大きさに応じて前輪を駆動トルクの大きい方向
に転舵させるか、後炉を駆動トルクの小さい方向に転舵
させるかくとも一方の制御を行なう操舵制御部を有1 
≠を特徴とする手段とした。
(Means for Solving the Problems) It is an object of the present invention to solve the above problems, and to achieve this object, the steering control device according to claim 1 is provided with predetermined detection means and control means, The steering control device is capable of controlling at least one of the steering angles by an external command, and the detection means includes vehicle speed detection means for detecting vehicle speed, and rotation of left and right drive wheels distributed via a differential device. It has a rotational speed difference detection means for detecting a speed difference, and a drive torque difference detection means for detecting a drive torque difference between the left and right drive wheels, and the control means is configured to control the speed of the left and right drive wheels when the vehicle speed is equal to or lower than a predetermined vehicle speed. When the rotational speed difference is greater than a predetermined value, the front wheels are steered in a direction with a larger drive torque or the rear furnace is steered in a direction with a smaller drive torque depending on the magnitude of the drive torque difference. It has a steering control section that performs
The method is characterized by ≠.

また、請求項2記載の操舵制御装置では、所定の検出手
段と制御手段を備え、前輪または後輪のうち少なくとも
一方の転舵角を外部からの指令で制御出来る操舵制御装
置であって、前記検出手段として、車速を検出する車速
検出手段と、差動制限力可変装置を備えた差動装置を介
して分配される左右駆動輪の回転速度差を検出する回転
速度差検出手段と、該左右駆動輪の駆動トルク差を検出
する駆動トルク差検出手段とを有し、前記制御手段は、
車速か所定車速以下であり、左右駆動輪の回転速度差が
所定値以上の時に、差動制限力を高める制御を行なう差
動制限力制御部と、この差動制限力制御と同時に、前記
駆動トルク差の大きさに応じて前輪を駆動トルクの大き
い方向に転舵させるか、後輪を駆動トルクの小さい方向
に転舵させるかの少なくとも一方の制御を行なう操舵制
御部を有する事を特徴とする手段とした。
The steering control device according to claim 2 is a steering control device comprising a predetermined detection means and a control means and capable of controlling the steering angle of at least one of the front wheels and the rear wheels by an external command, The detection means includes a vehicle speed detection means for detecting the vehicle speed, a rotation speed difference detection means for detecting the rotation speed difference between the left and right drive wheels distributed via a differential device equipped with a variable differential limiting force device, and and drive torque difference detection means for detecting a drive torque difference between the drive wheels, and the control means includes:
a differential limiting force control section that performs control to increase the differential limiting force when the vehicle speed is less than a predetermined vehicle speed and the rotational speed difference between the left and right drive wheels is greater than or equal to a predetermined value; The vehicle is characterized by having a steering control section that controls at least one of steering the front wheels in a direction with a larger driving torque or steering the rear wheels in a direction with a smaller driving torque depending on the magnitude of the torque difference. It was a means to do so.

尚、前記駆動トルク差検出手段は、トルクセンサで検出
した左右駆動輪の各駆動トルクの差から駆動トルク差を
求める手段であっても良いし、前記回転速度差検出手段
により検出した左右駆動輪の回転速度差の値に基づき駆
動トルク差を推定する手段であっても良い。
The drive torque difference detection means may be a means for determining the drive torque difference from the difference between the respective drive torques of the left and right drive wheels detected by a torque sensor, or the drive torque difference may be a means for determining the drive torque difference from the difference between the drive torques of the left and right drive wheels detected by a torque sensor, or the drive torque difference between the left and right drive wheels detected by the rotational speed difference detection means The drive torque difference may be estimated based on the value of the rotational speed difference between the two rotational speeds.

(作 用) 請求項1記載の操舵制御装置の作用を述べる。(for production) The operation of the steering control device according to the first aspect will be described.

車速か所定車速以下であり、左右駆動輪の回転速度差か
所定値以上であるという判断条件によりスプリットμ路
走行時であることが検出され、このスプリットμ路走行
検出時には、制御手段の操舵制卸部において、駆動トル
ク差検出手段による駆動トルク差の大きさに応じて前輪
を駆動トルクの大きい方向に転舵させるか、後輪を駆動
トルクの小さい方向に転舵させるかの少なくとも一方の
操舵制御が行なわれる。
It is detected that the vehicle is running on a split μ road based on the judgment conditions that the vehicle speed is less than a predetermined vehicle speed and the rotational speed difference between the left and right drive wheels is greater than a predetermined value. In the wholesale section, depending on the magnitude of the drive torque difference detected by the drive torque difference detection means, at least one of steering the front wheels in a direction with a larger drive torque and steering the rear wheels in a direction with a smaller drive torque is performed. Control takes place.

従って、前輪または後輪の少なくとも一方の転舵に基づ
くコーナリングフォースにより重心回りのヨーモメント
か発生し、しかも、このヨーモメントは左右駆動輪の駆
動トルク差により発生するヨーモーメントに対し、逆方
向でほぼ同じ大きさとなる為、重心回りでは両ヨーモー
メントか互いに打ち消される。
Therefore, a yaw moment around the center of gravity is generated due to the cornering force based on the steering of at least one of the front wheels or the rear wheels, and this yaw moment is approximately the same in the opposite direction as the yaw moment generated due to the drive torque difference between the left and right drive wheels. Because of the size, both yaw moments cancel each other out around the center of gravity.

請求項2記載の操舵制御装置の作用を述べる。The operation of the steering control device according to the second aspect will be described.

車速か所定車速以下であり、左右駆動輪の回転速度差が
所定値以上であるという判断条件によりスプリットμ路
走行時であることが検出され、このスプリットμ路走行
検出時には、制御手段の差動制限力制御部において、差
動制限力を高める制御が行なわれると同時に、操舵制御
部において、駆動トルク差検出手段による駆動トルク差
の大きさに応じて前輪を駆動トルクの大きい方向に転舵
させるか、後輪を駆動トルクの小さい方向に転舵させる
かの少なくとも一方の操舵制御が行なわれる。
Based on the judgment conditions that the vehicle speed is below a predetermined vehicle speed and the rotational speed difference between the left and right drive wheels is greater than or equal to a predetermined value, it is detected that the vehicle is running on a split μ road. In the limiting force control section, control is performed to increase the differential limiting force, and at the same time, in the steering control section, the front wheels are steered in a direction of greater drive torque in accordance with the magnitude of the drive torque difference detected by the drive torque difference detection means. At least one of the following steering control is performed: steering the rear wheels in a direction with a smaller drive torque.

従って、差動制限力を高める制御により左右輪駆動トル
クが高められ、スプリットμ路での走破性が向上する。
Therefore, by controlling to increase the differential limiting force, the left and right wheel drive torque is increased, and the drivability on the split μ road is improved.

一方、差動制限力を高める制御により左右駆動輪の駆動
トルク差によるヨーモーメントが大きく発生するが、こ
のヨーモメントは、前輪または後輪の少なくとも一方の
転舵に基づいて発生するコーナリングフォースによる重
心回りのヨーモーメントで打ち消される。
On the other hand, control to increase the differential limiting force generates a large yaw moment due to the drive torque difference between the left and right drive wheels. is canceled by the yaw moment of

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

まず、構成を特徴する 請求項1記載の発明で、更に具体的には請求項3記載の
発明に対応する第1実施例の操舵制御装置A1が適応さ
れる後輪駆動車は、第1図に示すように、エンジン】O
、トランスミッション11、プロペラシャフト12、デ
ィファレンシャル13(差動装置)、ドライブシャフト
14.15、後輪+6.17、前輪24,25、前輪転
舵用パワーシリンダー27を備えている。
First, a rear wheel drive vehicle to which the steering control device A1 of the first embodiment is applied, which is characterized by a configuration, and more specifically corresponds to the invention described in claim 3, is shown in FIG. As shown in
, a transmission 11, a propeller shaft 12, a differential 13 (differential device), a drive shaft 14, 15, rear wheels +6.17, front wheels 24, 25, and a power cylinder 27 for steering the front wheels.

そして、ドライバーのハンドル操作によるメカニカルな
前輪操舵とは別に、前記前輪転舵用パワシリンダー27
への油圧制御により前輪24゜25の転舵方向を制御す
る操舵制御は、外部油圧源30からの加圧油を前輪転舵
制御バルブ39を介して前輪転舵用パワーシリンダー2
7に導くことで行なわれる。
In addition to the mechanical front wheel steering by the driver's steering wheel operation, the front wheel steering power cylinder 27
Steering control that controls the steering direction of the front wheels 24 and 25 is performed by applying pressurized oil from an external hydraulic source 30 to the front wheel steering power cylinder 2 through a front wheel steering control valve 39.
This is done by leading to 7.

また、前記前輪転舵制御バルブ39に駆動信号を出力す
るコントローラ33(制御手段)バルブ駆動回路を含む
電子制御回路であって、このコントローラ33には、車
速検出部331 (車速検出手段)と、駆動輪回転速度
差検出部332(回転速度差検出手段)と、駆動トルク
差検出部333(駆動トルク差検出手段)と、前輪操舵
制御部334(操舵制御部)とを備えている。
Further, a controller 33 (control means) that outputs a drive signal to the front wheel steering control valve 39 is an electronic control circuit including a valve drive circuit, and this controller 33 includes a vehicle speed detection section 331 (vehicle speed detection means); It includes a drive wheel rotation speed difference detection section 332 (rotation speed difference detection means), a drive torque difference detection section 333 (drive torque difference detection means), and a front wheel steering control section 334 (steering control section).

前記車速検出部331には、右前輪速センサ35と左前
輪速センサ36から、右前輪速NFnと左前輪速N F
Lの検出信号が入力される。
The vehicle speed detection unit 331 receives a right front wheel speed NFn and a left front wheel speed NFn from a right front wheel speed sensor 35 and a left front wheel speed sensor 36.
A detection signal of L is input.

前記駆動輪回転速度差検出部332には、右後輪速セン
サ37と左後輪速センサ38から、右後輪速NIIRと
左後輪速NRLの検出信号が入力される。
Detection signals of the right rear wheel speed NIIR and the left rear wheel speed NRL are inputted to the drive wheel rotational speed difference detection section 332 from the right rear wheel speed sensor 37 and the left rear wheel speed sensor 38 .

前記駆動トルク差検出部333には、右後輪駆動トルク
センサ40と左後輪駆動トルクセンサ41から右後輪駆
動トルクTRと左後輪駆動トルクTLの検出信号が入力
される。
The drive torque difference detection section 333 receives detection signals of the right rear wheel drive torque TR and the left rear wheel drive torque TL from the right rear wheel drive torque sensor 40 and the left rear wheel drive torque sensor 41.

次に、第1実施例の作用を説明する。Next, the operation of the first embodiment will be explained.

第2図に示すフローチャート図に基づきコントローラ3
3での制御作動の流れを述べる。
Controller 3 based on the flowchart shown in FIG.
The flow of control operation in 3 will be described.

ステップ100では、右前輪速NFnと左前輪速N、L
と右後輪速N1IRと左後輪速NnLと右後輪駆動トル
クT、と左後輪駆動トルクT1−とが読み込まれる。
In step 100, the right front wheel speed NFn and the left front wheel speed N, L are determined.
, right rear wheel speed N1IR, left rear wheel speed NnL, right rear wheel drive torque T, and left rear wheel drive torque T1- are read.

ステップ101では、非駆動輪である前輪24.25の
平均速度により車速Vが下2の演算式により演算で求め
られる。
In step 101, the vehicle speed V is calculated from the average speed of the front wheels 24.25, which are non-driving wheels, using the equation shown below.

■−%(NFR+NrL) ステップ102では、車速Vが設定車速V。以下の低車
速時かどうかか判断される。
-% (NFR+NrL) In step 102, the vehicle speed V is the set vehicle speed V. It is determined whether the vehicle speed is as low as below.

ステップ103では、左右後輪16.17の回転速度差
1Nnn  Nn、lが設定値ε以上かどうかが判断さ
れる。
In step 103, it is determined whether the rotational speed difference 1Nnn Nn,l between the left and right rear wheels 16,17 is greater than or equal to a set value ε.

即ち、ステップ102による車速条件とステップ103
とによる回転速度差条件によりスプリットμ路走行時か
どうかがか判断され、V≦Voで、且つ、lNl1□−
Nn、l≧εの時には、スプリットμ路走行時であると
してステップ104へ進み、右後輪駆動トルクTRと左
後輪駆動トルク下、との大小関係が判断され、更に、T
n>TLの時にはステップ105へ進み、また、T、<
TLの時にはステップ106へ進み、それぞれのステッ
プで前輪転舵角6Fか求められる。
That is, the vehicle speed condition in step 102 and step 103
It is determined whether or not the vehicle is running on a split μ road based on the rotational speed difference condition, and if V≦Vo and lNl1□−
When Nn, l≧ε, it is assumed that the vehicle is running on a split μ road, and the process proceeds to step 104, where the magnitude relationship between the right rear wheel drive torque TR and the left rear wheel drive torque lower is determined, and further, T
When n>TL, the process advances to step 105, and when T,<
When it is TL, the process proceeds to step 106, and in each step, the front wheel turning angle of 6F is determined.

ここで、T n > T tの時の前輪転舵角δ、の求
め方について、第3図に基づいて述べる。
Here, a method for determining the front wheel turning angle δ when T n > T t will be described based on FIG. 3.

左右後輪16.17にトルク差が生じている場合、車両
に働く重心回りのヨーモーメントMは、tr  TRT
L M = −(−−−)       ・・・■r   
r 但し、trはトレッド幅である。
When there is a torque difference between the left and right rear wheels16.17, the yaw moment M around the center of gravity acting on the vehicle is tr TRT
L M = −(−−−) ・・・■r
r However, tr is the tread width.

これを打ち消す為のヨーモメントM°を発生させるのに
必要な前輪転舵角δ、は、タイヤ特性を荷重に対するコ
ーナリングパワーの基準値が概略CPであると近似する
と、 YL=Cp−WL・δ。
The front wheel steering angle δ required to generate the yaw moment M° to cancel this is calculated as follows: YL=Cp-WL・δ, if the tire characteristics are approximated by assuming that the standard value of cornering power with respect to the load is approximately CP.

Y R= Cp −W n・δ。YR=Cp-Wn・δ.

M’ ”a ・(Y L + Y R)     ”’
■但し、YL、Y、はコーナリングフォース、aは重心
位置から前輪車軸位置までの距離である。
M' ``a ・(Y L + Y R) '''
■However, YL and Y are cornering forces, and a is the distance from the center of gravity position to the front wheel axle position.

M=M″を満足させるには、前記式■=■として前輪転
舵角δ、を求めると、 二K・ (TR−TL)   K、定数となる。
In order to satisfy M=M'', the front wheel turning angle δ is calculated using the above equation (■=■), and becomes a constant of 2K·(TR-TL)K.

ステップ107及びステップ108では、前輪24.2
5を後輪駆動トルクの大群い転舵方向(T n > T
 Lの時には右転舵、T、<T、の時には左転舵)であ
って、ステップ105またはステップ106で求めた前
輪転舵角61が得られる操舵指令信号(i)が前輪転舵
制御バルブ39に出力される。
In step 107 and step 108, the front wheel 24.2
5 is the large steering direction of the rear wheel drive torque (T n > T
When L, the steering is to the right; when T, <T, the steering is to the left), and the steering command signal (i) that provides the front wheel steering angle 61 obtained in step 105 or step 106 is the front wheel steering control valve. 39.

そして、ステップ109及びステップ110では、舵取
られ現象の防止制御を示すFLAG−3= 1が設定さ
れる。
Then, in steps 109 and 110, FLAG-3=1 is set, which indicates control to prevent the steering phenomenon.

また、ステップ102,103の制御条件の1つでも満
足していない時には、ステップ111へ進み、FLAG
−S= 1かどうかが判断され、FLAG−5=1の時
にはステップ112において前輪を元の位置に戻す指令
信号が出力される。
Further, if even one of the control conditions in steps 102 and 103 is not satisfied, the process proceeds to step 111, and the FLAG
It is determined whether -S=1, and when FLAG-5=1, a command signal is output in step 112 to return the front wheels to their original positions.

尚、スラップ113ではFLAG−5= 1がFLAG
−3= 0に書き換えられる。
In addition, in slap 113, FLAG-5 = 1 is FLAG
-3 = rewritten to 0.

以上説明したように、第1実施例の操舵制御装置A1に
あっては、以下に述べる効果が得られる。
As explained above, the steering control device A1 of the first embodiment provides the following effects.

■ 車速Vが設定車速V。以下であり、左右駆動輪の回
転速度差が設定値ε以上であるスプリットμ路走行時に
は、コントローラ33において、前輪24.25を駆動
トルクの大きい方向に転舵させる操舵制御が行なわれる
為、左右後輪16.17の駆動トルク差(路面伝達トル
ク差)によるヨモーメントMが、前輪24.25の転舵
に基づいて発生するコーナリングフォースY R,Y 
Lによる重心回りのヨーモーメントM゛で打ち消され、
スプリットμ路走行による舵取られ現象を防止すること
が出来る。
■Vehicle speed V is the set vehicle speed V. When traveling on a split μ road where the rotational speed difference between the left and right drive wheels is greater than or equal to the set value ε, the controller 33 performs steering control to steer the front wheels 24, 25 in the direction of greater drive torque. The yaw moment M due to the drive torque difference (road surface transmission torque difference) between the rear wheels 16.17 is the cornering force Y R, Y generated based on the steering of the front wheels 24.25.
It is canceled by the yaw moment M around the center of gravity due to L,
It is possible to prevent the steering phenomenon caused by traveling on a split μ road.

■ 操舵制御を行なうにあたって、駆動トルク差TR−
TLlを演算し、この値に応じた前輪転舵角ろ、が得ら
れるように制御している為、駆動トルク差によるヨーモ
ーメントに対して前輪転舵によるヨーモーメントの過大
や過小が無く、有効かつ確実にスプリットμ路走行によ
る舵取られ現象の防止が達成される。
■ When performing steering control, drive torque difference TR-
Since TLl is calculated and control is performed to obtain a front wheel steering angle according to this value, the yaw moment due to front wheel steering is neither too large nor too small compared to the yaw moment due to the drive torque difference, and is effective. Moreover, the steering phenomenon caused by traveling on a split μ road can be reliably prevented.

次に、第4図乃至第6図を用いて、同じく請求項1記我
の発明で、更に具体的には請求項4記載の発明に対応す
る第2実施例の操舵制御装置A2を説明する。
Next, with reference to FIGS. 4 to 6, a steering control device A2 according to a second embodiment of the present invention will be described. .

基本的な構成及び作用は、前述した第1実施例と同じで
ある。ここでは、第1実施例と共通する構成要素には同
一の番号を付し、その説明は省略する。
The basic structure and operation are the same as the first embodiment described above. Here, the same numbers are given to the same components as in the first embodiment, and the explanation thereof will be omitted.

先ず、構成を説明する。First, the configuration will be explained.

第4図中、゛ディファレンシャル13は、内部に左右駆
動輪の差動を制限する公知の粘性クラッチ50を有する
In FIG. 4, the differential 13 has a known viscous clutch 50 therein that limits the differential movement between the left and right drive wheels.

ここで、粘性クラッチ50の特性は、第6図に示すよう
に、回転速度差INRRNnLlと駆動トルク差ITA
TLIが実験的に所定の関係を持つ事が知られている。
Here, the characteristics of the viscous clutch 50 are as shown in FIG.
It is known experimentally that TLI has a certain relationship.

本実施例は、この公知の特性を利用したものであり、第
1実施例の駆動トルク差検出部333に代え、回転速度
差検出部332により検出した左右駆動輪の回転速度差
1Nnn  NnLlの値に基づき駆動トルク差1Tn
−T、lを推定する駆動トルク差推定検出部335を設
けている。
The present embodiment utilizes this known characteristic, and uses the value of the rotation speed difference 1Nnn NnLl between the left and right drive wheels detected by the rotation speed difference detection unit 332 instead of the drive torque difference detection unit 333 of the first embodiment. Drive torque difference 1Tn based on
- A driving torque difference estimation and detection section 335 is provided to estimate T and l.

次に、第5図に示すフローチャート図に基づきコントロ
ーラ33での制御作動の流れを述べる。
Next, the flow of control operations in the controller 33 will be described based on the flowchart shown in FIG.

構成と同様に第1実施例と共通するステップについては
同一番号を付してその説明を省略する。
Similar to the configuration, steps that are common to those in the first embodiment are given the same numbers and their explanations will be omitted.

ステップ150では、右前輪速NFRと左前輪速N、L
と右後輪速N。Rと左後輪速N8.−とが読み込まれる
In step 150, the right front wheel speed NFR and the left front wheel speed N, L are determined.
and right rear wheel speed N. R and left rear wheel speed N8. - is read.

ステップ154では、右後輪速NRRと左後輪速NnL
とを比較してどちらの車輪がスリップしているか、つま
り、左右どちらの路面μが低いかを判断する。
In step 154, the right rear wheel speed NRR and the left rear wheel speed NnL are determined.
It is determined which wheel is slipping, that is, which wheel has a lower road surface μ, the left or right.

そして、左後輪側の路面μが低いと判断したらステップ
155.ステップ107へ進み、ステップ151で推定
した駆動トルク差ITLI−TL+に応じて前輪を右転
舵する。
If it is determined that the road surface μ on the left rear wheel side is low, step 155. Proceeding to step 107, the front wheels are steered to the right according to the drive torque difference ITLI-TL+ estimated in step 151.

同様に、ステップ154で右後輪側の路面μが低いと判
断したらステップ156.ステップ10Bへ進み前輪を
左転舵する。
Similarly, if it is determined in step 154 that the road surface μ on the right rear wheel side is low, step 156. Proceed to step 10B and steer the front wheels to the left.

尚、13がコンベンショナルなものであっても実験的に
回転速度差l N nn  N RL lに対する駆動
トルク差1TR−T、lの特性は求まるので、本特性を
駆動トルク差推定検出部335にデータとして初期設定
しておくことにより、本第2実施例と同様な操舵制御が
可能である。
Note that even if 13 is a conventional one, the characteristics of the drive torque difference 1TR-T,l with respect to the rotational speed difference lNnnNRLl can be determined experimentally, so this characteristic is dataed to the drive torque difference estimation detection unit 335. By initially setting as , it is possible to perform steering control similar to that of the second embodiment.

次に、第7図及び第8図により、請求項2記載の発明で
、更に具体的には請求項3記載の発明に対応する第3実
施例の操舵制御装置A3について説明する。
Next, with reference to FIGS. 7 and 8, a steering control device A3 according to a third embodiment of the present invention will be described.

まず、構成を説明する。First, the configuration will be explained.

第3実施例の操舵制御装置A3が適応される後輪駆動車
は、第4図に示すように、エンジン10、トランスミッ
ション11、プロペラシャフト12、ディファレンシャ
ル13、ドライブシャフト14.+5、後輪16.17
、後輪転舵用パワーシリンダー19(後輪転舵アクチュ
エータ)、サイドロッド20,2+、ナックル22,2
3、前輪24,25、差動制限クラッチ26、前輪転舵
用パワーシリンダー27(前輪転舵アクチュエータ)を
備えている。
As shown in FIG. 4, a rear wheel drive vehicle to which the steering control device A3 of the third embodiment is applied includes an engine 10, a transmission 11, a propeller shaft 12, a differential 13, a drive shaft 14. +5, rear wheel 16.17
, rear wheel steering power cylinder 19 (rear wheel steering actuator), side rods 20, 2+, knuckles 22, 2
3, front wheels 24, 25, a differential limiting clutch 26, and a front wheel steering power cylinder 27 (front wheel steering actuator) are provided.

そして、前記後輪転舵用パワーシリンダー19及び前輪
転舵用パワーシリンダー27への油圧制御により後輪1
6.17及び前輪24.25の転舵方向を制御する4輪
操舵制御と、前記ディファレンシャル13に内蔵した差
動制限クラッチ26に13式多板摩擦クラッチ等)の締
結力制御により左右の後輪16.17の差動側眼力Δ丁
を可変に制御する差動側眼力制御とは、共通の外部油圧
源30からの加圧油を後輪転舵制御バルブ31及び前輪
転舵制御バルブ39と差動制限制御バルブ32とを介し
て夫々後輪転舵用パワーシリンダー19及び前輪転舵用
パワーシリンダー27と差動制限クラ・ンチ26とに導
くことで行なわれる。
Then, the rear wheel 1 is controlled by hydraulic control to the rear wheel steering power cylinder 19 and the front wheel steering power cylinder 27
6.17 and the front wheels 24.25, and the engagement force control of the differential limiting clutch 26 built into the differential 13 (type 13 multi-disc friction clutch, etc.) controls the left and right rear wheels. 16.17 differential side eye power control that variably controls the differential side eye power Δt refers to the differential side eye power control that variably controls the differential side eye power Δt. This is performed by guiding the rear wheel steering power cylinder 19 and the front wheel steering power cylinder 27 to the differential limiting clutch 26 via the dynamic limiting control valve 32, respectively.

即ち、前記後輪転舵制御バルブ31及び前輪転舵制御バ
ルブ39と差動制限制御バルブ32とに駆動信号を出力
するコントローラ33には、4輪操舵制御部と差動側眼
力制御部とを兼ねる4輪操舵兼差動制限力制御部336
か設けられている。
That is, the controller 33 that outputs drive signals to the rear wheel steering control valve 31, the front wheel steering control valve 39, and the differential limiting control valve 32 also functions as a four-wheel steering control section and a differential side eye power control section. 4-wheel steering and differential limiting force control section 336
Or is provided.

次に、第3実施例の作用を説明する。Next, the operation of the third embodiment will be explained.

第8図に示すフローチャート図に基づきコントローラ3
3での制御作動の流れを述べる。
Controller 3 based on the flow chart shown in FIG.
The flow of control operation in 3 will be described.

ステップ200では、右前輪速NFRと左前輪速N、L
と右後輪速NRRと左後輪速NRLとが読み込まれる。
In step 200, the right front wheel speed NFR and the left front wheel speed N, L are determined.
, right rear wheel speed NRR, and left rear wheel speed NRL are read.

ステップ201では、非駆動輪である前輪24.25の
平均速度にまり車速Vか下言己の演算式により演算で求
められる。
In step 201, the average speed of the front wheels 24.25, which are non-driving wheels, and the vehicle speed V are calculated using the following calculation formula.

■二%(NFR+NFL) ステップ202では、車速Vが設定車速V。以下の低車
速時かどうかが判断される。
■2% (NFR+NFL) In step 202, the vehicle speed V is the set vehicle speed V. It is determined whether the vehicle is running at the following low vehicle speeds.

ステップ203では、左右後輪16.17の車輪速差!
NRp  NRL+が設定値ε以上かどうかが判断され
る。
In step 203, the wheel speed difference between the left and right rear wheels is 16.17!
It is determined whether NRp NRL+ is greater than or equal to the set value ε.

そして、V≦Voで、且つ、 NRRNRL+≧εの時
、即ちスプリットμ路走行時には、ステップ204へ進
み、差動制限力4丁を強める指令信号(i、)か差動制
限制御バルブ32に出力される。
Then, when V≦Vo and NRRNRL+≧ε, that is, when traveling on a split μ road, the process proceeds to step 204, and a command signal (i,) for increasing the four differential limiting forces is output to the differential limiting control valve 32. be done.

ステップ205では、右後輪トルクTRと左後輪トルク
TLとの大小関係が判断され、更に、TL>TRの時に
はステップ206へ進み、TR〉TLの時にはステ・ン
ブ207へ進む。
In step 205, the magnitude relationship between the right rear wheel torque TR and the left rear wheel torque TL is determined, and when TL>TR, the process proceeds to step 206, and when TR>TL, the process proceeds to step 207.

ステップ206では、前輪24.25を後輪駆動トルク
の大きい左転舵方向であって、TR,TLに基づき予め
設定した所定の前輪転舵角ろF。が得られる操舵指令信
号(i3)が前輪転舵制御バルブ39に出力され、後輪
16.17を後輪駆動トルクの大きい右転舵方向であっ
て、TR,TLに基づき予め設定した所定の前輪転舵角
δROが得られる操舵指令信号(i、)が後輪転舵制御
バルブ31に出力される。
In step 206, the front wheels 24 and 25 are steered to the left, where the rear wheel drive torque is large, and the front wheels are steered to a predetermined front wheel steering angle F that is preset based on TR and TL. A steering command signal (i3) that obtains is output to the front wheel steering control valve 39, and the rear wheels 16.17 are steered to the right with a large rear wheel drive torque, in a predetermined direction based on TR and TL. A steering command signal (i,) from which the front wheel turning angle δRO is obtained is output to the rear wheel turning control valve 31.

ステップ207では、前輪24.25を後輪駆動トルク
の大きい右転舵方向であって、TR,TLに基づき予め
設定した所定の前輪転舵角6 FDか得られる操舵指令
信号(13)が前輪転舵制御バルブ39に出力され、後
輪16.17を後輪駆動トルクの大きい左転舵方向であ
って、TR,TLに基づき予め設定した所定の前輪転舵
角δROが得られる操舵指令信号(12)が後輪転舵制
御バルブ31に出力される。
In step 207, the front wheels 24, 25 are steered to the right direction with a large rear wheel drive torque, and the steering command signal (13) obtained from the predetermined front wheel steering angle 6 FD, which is preset based on TR and TL, is sent to the right. A steering command signal outputted to the wheel steering control valve 39 to steer the rear wheels 16.17 to the left with a large rear wheel drive torque and to obtain a predetermined front wheel steering angle δRO set in advance based on TR and TL. (12) is output to the rear wheel steering control valve 31.

次に、ステップ208及びステップ209でま、舵取ら
れ現象の防止制御を示すFLAG−S= 1が設定され
る。
Next, in steps 208 and 209, FLAG-S=1 is set indicating control to prevent the steering phenomenon.

また、ステップ202,203の制御条件の1つでも満
足していない時には、ステップ210へ進み、FLAG
−S= 1かどうかが判断され、FLAG−3=1の時
にはステップ211において差動制限力4丁を解除する
指令が出力され、更に、ステップ212において前輪2
4.25及び後輪16.17を元の位置に戻す指令信号
が出力される。
Further, if even one of the control conditions in steps 202 and 203 is not satisfied, the process proceeds to step 210, and the FLAG
-S=1 is determined, and when FLAG-3=1, a command to cancel the four differential limiting forces is output in step 211, and furthermore, in step 212, the front wheel two
A command signal is output to return the rear wheels 4.25 and 16.17 to their original positions.

そして、ステップ213ではFLAG−3= 1がFL
AG−3=0に書き換えられる。
Then, in step 213, FLAG-3=1 is FL
It is rewritten to AG-3=0.

以上説明したように、第3実施例の操舵制御装置A3に
あっては、車速Vが設定車速V。以下であり、左右後輪
の車輪速差が設定値ε以上である低速でのスプリットμ
路走行時には、コントローラ33において、差動側眼力
Δ丁を強める差動制限制御が行なわれると共に、前輪2
4.25を車輪速の小さい方向に、後輪16.17を車
輪速の大きい方向に転舵させる操舵制御が行なわれる為
、差動側眼力Δ丁の付与によって後輪16.17への駆
動トルクが高められてスプリットμ路での走破性が確保
されると共に、駆動トルクの高まりにより左右後輪16
.17の駆動トルク差により高いヨーモーメントが発生
しても、前後輪の転舵に基づいて発生するコーナリング
フォースによる重心回りの高いヨーモーメントで打ち消
され、スプリットμ路走行による舵取られ現象を防止す
ることが出来るという効果が得られる。
As explained above, in the steering control device A3 of the third embodiment, the vehicle speed V is the set vehicle speed V. below, and the wheel speed difference between the left and right rear wheels is greater than or equal to the set value ε.
When driving on a road, the controller 33 performs differential restriction control to strengthen the differential eye power Δ, and also controls the front wheels 2.
Since steering control is performed to steer the rear wheels 16.17 in the direction of lower wheel speeds and the rear wheels 16.17 in the direction of higher wheel speeds, the drive to the rear wheels 16.17 is performed by applying the differential eye power Δt. The increased torque ensures drivability on split μ roads, and the increased drive torque increases the power of the left and right rear wheels.
.. Even if a high yaw moment occurs due to the difference in drive torque of 17, it is canceled out by the high yaw moment around the center of gravity due to the cornering force generated based on the steering of the front and rear wheels, preventing the steering phenomenon caused by split μ road driving. You can get the effect that you can.

即ち、スプリットμ路での走行時に、車両スピンを発生
させることなく、走破性を高めることが出来る。
That is, when traveling on a split μ road, running performance can be improved without causing vehicle spin.

以上、実施例を図面に基づいて説明してきたか、具体的
な構成はこの実施例に限られるものではなく、本発明の
要旨を逸脱しない範囲における変更や追加等があっても
本発明に含まれる。
Although the embodiments have been described above based on the drawings, the specific configuration is not limited to these embodiments, and any changes or additions that do not depart from the gist of the present invention are included in the present invention. .

例えば、実施例では、操舵制御として、前輪制御と前後
輪制御の例を示したが。後輪のみを制御する碌にしても
良い。
For example, in the embodiment, examples of front wheel control and front and rear wheel control are shown as steering control. It may also be possible to control only the rear wheels.

また、実施例では、操舵及び差動制限力を共に油圧によ
り制御する例を示したが、電動モータにより車輪転舵制
御するものや、外部からの電磁力にまり差動制限力を得
るもの等、他の手段であっても飼い。
In addition, in the embodiment, an example was shown in which both the steering and the differential limiting force are controlled by hydraulic pressure, but there are also cases where wheel steering is controlled by an electric motor, or where the differential limiting force is obtained by an external electromagnetic force. , even by other means.

更にまた、実施例では、車速検出部や回転速度差検出部
や駆動トルク差検出部等をコントローラ内に設けた構成
としたが、これらの検出手段は、コントローラ外に別途
設けても良いことは言うまでもない。
Furthermore, in the embodiment, the vehicle speed detection section, rotational speed difference detection section, drive torque difference detection section, etc. are provided in the controller, but these detection means may be provided separately outside the controller. Needless to say.

(発明の効果) 以上説明してきたように、請求項1及び請求項2記載の
本発明の操舵制御装置にあっては、車速か所定車速以下
であり、左右駆動輪の回転速度差が所定値以上の時に、
駆動トルク差の大きさに応じて前輪を駆動トルクの大き
い方向に転舵させるか、後輪を駆動トルクの小さい方向
に転舵させるかの少なくとも一方の制御を行なう操舵制
御部を有する手段とした為、スプリットμ路の走行時に
おいて舵取られ現象を防止することが出来る効果が得ら
れる。
(Effects of the Invention) As described above, in the steering control device of the present invention according to claims 1 and 2, the vehicle speed is equal to or lower than the predetermined vehicle speed, and the rotational speed difference between the left and right driving wheels is a predetermined value. At the above time,
The means has a steering control unit that controls at least one of steering the front wheels in a direction with a larger drive torque and steering the rear wheels in a direction with a smaller drive torque depending on the magnitude of the drive torque difference. Therefore, it is possible to obtain the effect of preventing the steering phenomenon when traveling on a split μ road.

また、請求項2記載の操舵制御装置にあっては、上記効
果に加え、スプリットμ路走行時に差動制限力を強める
制御と操舵制御を同時に行なう手段とした為、車両駆動
トルクの向上と舵取られ現象の防止との両立を達成する
ことが出来る効果か得られる。
In addition to the above-mentioned effects, the steering control device according to claim 2 has a means for simultaneously performing control to increase the differential limiting force and steering control when traveling on a split μ road, thereby improving vehicle drive torque and steering control. An effect can be obtained that can achieve both the prevention of the phenomenon of being removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の操舵制御装置を示す全体
図、第2図は第1実施例装置のコントローラでの制御作
動の流れを示すフローチャート図、第3図は第1実施例
装置での舵取られ現象の防止作用説明図、第4図は本発
明の第2実施例の操舵制御装置を示す全体図、第5図は
第2実施例装置のコントローラでの制御作動の流れを示
すフローチャート図、第6図は粘性クラッチを用いた差
動装置における回転速度差と駆動トルク差との関係を示
す説明図、第7図は本発明の第3実施例の操舵制ill
装置を示す全体図、第8図は第3実施例装亘のコントロ
ーラでの制御作動の流れを示すフローチャート図、第9
図はスプリットμ路走行時における舵取られ現象の説明
図である。 AI、A2.A3・・・操舵制御装置 0・・・エンジン ト・・トランスミッション 2・・・プロペラシャフト 3・・・ディファレンシャル(差動装置)4.15・・
・ドライブシャフト 6.17・・・後輪 9・・・接輪転舵用パワーシリンダー 24.25・・・前輪 26・・・差動制限クラッチ 27・・・前輪転舵用パワーシリンダー31・・・後輪
転舵制御バルブ 32・・・差動制限制御バルブ 33・・・コントローラ(制御手段) 331・・・車速検出部(車速検出手段)332・・・
回転速度差検出部 (回転速度差検出手段) 333・・・駆動トルク差検出部 (駆動トルク差検出手段) 334・・−前輪操舵制御部(操舵制御部)335・・
・駆動トルク差推定検出部 (駆動トルク差検出手段) 336・・・4輪操舵兼差動制限力制御部(操舵制御部
、差動側眼力制御部) 39・・・前輪転舵制御バルブ 50・・・粘性クラッチ
FIG. 1 is an overall diagram showing a steering control device according to a first embodiment of the present invention, FIG. 2 is a flowchart showing the flow of control operations in the controller of the first embodiment, and FIG. 3 is a diagram showing the first embodiment. Fig. 4 is an overall view showing the steering control device according to the second embodiment of the present invention, and Fig. 5 is a flowchart of the control operation in the controller of the device according to the second embodiment. FIG. 6 is an explanatory diagram showing the relationship between the rotational speed difference and the drive torque difference in a differential device using a viscous clutch, and FIG. 7 is a steering control illumination diagram according to a third embodiment of the present invention.
FIG. 8 is a general view showing the device; FIG. 8 is a flowchart showing the flow of control operations in the controller of the device of the third embodiment; FIG.
The figure is an explanatory diagram of the steering phenomenon when traveling on a split μ road. AI, A2. A3... Steering control device 0... Engine... Transmission 2... Propeller shaft 3... Differential (differential device) 4.15...
・Drive shaft 6.17...Rear wheel 9...Power cylinder for steering wheel contact 24.25...Front wheel 26...Differential limiting clutch 27...Power cylinder for steering front wheel 31... Rear wheel steering control valve 32...differential limit control valve 33...controller (control means) 331...vehicle speed detection section (vehicle speed detection means) 332...
Rotational speed difference detection section (rotational speed difference detection means) 333... Drive torque difference detection section (drive torque difference detection means) 334...-Front wheel steering control section (steering control section) 335...
- Drive torque difference estimation detection unit (drive torque difference detection means) 336... Four-wheel steering and differential limiting force control unit (steering control unit, differential side eye power control unit) 39... Front wheel steering control valve 50.・Viscous clutch

Claims (1)

【特許請求の範囲】 1)所定の検出手段と制御手段を備え、前輪または後輪
のうち少なくとも一方の転舵角を外部からの指令で制御
出来る操舵制御装置であって、前記検出手段として、車
速を検出する車速検出手段と、差動装置を介して分配さ
れる左右駆動輪の回転速度差を検出する回転速度差検出
手段と、該左右駆動輪の駆動トルク差を検出する駆動ト
ルク差検出手段とを有し、 前記制御手段は、車速が所定車速以下であり、左右駆動
輪の回転速度差が所定値以上の時に、前記駆動トルク差
の大きさに応じて前輪を駆動トルクの大きい方向に転舵
させるか、後輪を駆動トルクの小さい方向に転舵させる
かの少なくとも一方の制御を行なう操舵制御部を有する
事を特徴とする操舵制御装置。 2)所定の検出手段と制御手段を備え、前輪または後輪
のうち少なくとも一方の転舵角を外部からの指令で制御
出来る操舵制御装置であって、前記検出手段として、車
速を検出する車速検出手段と、差動制限力可変装置を備
えた差動装置を介して分配される左右駆動輪の回転速度
差を検出する回転速度差検出手段と、該左右駆動輪の駆
動トルク差を検出する駆動トルク差検出手段とを有し、 前記制御手段は、車速が所定車速以下であり、左右駆動
輪の回転速度差が所定値以上の時に、差動制限力を高め
る制御を行なう差動制限力制御部と、この差動制限力制
御と同時に、前記駆動トルク差の大きさに応じて前輪を
駆動トルクの大きい方向に転舵させるか、後輪を駆動ト
ルクの小さい方向に転舵させるかの少なくとも一方の制
御を行なう操舵制御部を有する事を特徴とする操舵制御
装置。 3)前記駆動トルク差検出手段は、トルクセンサで検出
した左右駆動輪の各駆動トルクの差から駆動トルク差を
求める手段である事を特徴とする請求項1または請求項
2記載の操舵制御装置。 4)前記駆動トルク差検出手段は、前記回転速度差検出
手段により検出した左右駆動輪の回転速度差の値に基づ
き駆動トルク差を推定する手段である事を特徴とする請
求項1または請求項2記載の操舵制御装置。
[Scope of Claims] 1) A steering control device comprising predetermined detection means and control means and capable of controlling the steering angle of at least one of front wheels or rear wheels by an external command, the detection means comprising: Vehicle speed detection means for detecting vehicle speed; rotational speed difference detection means for detecting a rotational speed difference between left and right drive wheels distributed via a differential; and drive torque difference detection means for detecting a drive torque difference between the left and right drive wheels. means, the control means is configured to move the front wheels in a direction with greater drive torque according to the magnitude of the drive torque difference when the vehicle speed is less than or equal to a predetermined vehicle speed and the rotational speed difference between the left and right drive wheels is greater than or equal to a predetermined value. 1. A steering control device comprising a steering control section that controls at least one of steering the rear wheels in a direction with a smaller drive torque. 2) A steering control device that includes predetermined detection means and control means and is capable of controlling the steering angle of at least one of the front wheels or the rear wheels by an external command, and the detection means includes a vehicle speed detection device that detects the vehicle speed. a rotational speed difference detection means for detecting a rotational speed difference between left and right drive wheels distributed via a differential device having a variable differential limiting force device; and a drive for detecting a drive torque difference between the left and right drive wheels. torque difference detection means, and the control means performs differential limiting force control to increase the differential limiting force when the vehicle speed is below a predetermined vehicle speed and the rotational speed difference between the left and right drive wheels is above a predetermined value. and simultaneously with this differential limiting force control, depending on the magnitude of the drive torque difference, the front wheels are steered in the direction of greater drive torque, or the rear wheels are steered in the direction of smaller drive torque. A steering control device characterized by having a steering control section that performs one control. 3) The steering control device according to claim 1 or 2, wherein the drive torque difference detection means is a means for determining the drive torque difference from the difference between the respective drive torques of the left and right drive wheels detected by a torque sensor. . 4) The drive torque difference detection means is a means for estimating the drive torque difference based on the value of the rotational speed difference between the left and right drive wheels detected by the rotational speed difference detection means. 2. The steering control device according to 2.
JP17859188A 1988-07-18 1988-07-18 Steering control device Pending JPH0228064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17859188A JPH0228064A (en) 1988-07-18 1988-07-18 Steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17859188A JPH0228064A (en) 1988-07-18 1988-07-18 Steering control device

Publications (1)

Publication Number Publication Date
JPH0228064A true JPH0228064A (en) 1990-01-30

Family

ID=16051140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17859188A Pending JPH0228064A (en) 1988-07-18 1988-07-18 Steering control device

Country Status (1)

Country Link
JP (1) JPH0228064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008120A (en) * 2004-06-21 2006-01-12 Zahnradfab Friedrichshafen Ag Device and method for adjusting steering behavior of automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008120A (en) * 2004-06-21 2006-01-12 Zahnradfab Friedrichshafen Ag Device and method for adjusting steering behavior of automobile

Similar Documents

Publication Publication Date Title
JP2534730B2 (en) 4-wheel steering / Differential limiting force integrated control device
JP6476235B2 (en) Steering and control system for tricycles
CN103978972A (en) Four-wheel steered vehicle and torque distribution control methods for same
NZ262077A (en) Power steering system; servo-control produced by producing a differential torque by motors
WO2019029559A1 (en) Steering method for rim/hub-driven multi-axis vehicle
CN112319602B (en) 6X4 electric automobile chassis system capable of realizing all-wheel steering and steering control method
JPH10138785A (en) Yaw moment control device for vehicle
JPH0764221B2 (en) Differential limiting force controller
JPH02262806A (en) Electromobile
JP2552327B2 (en) Four-wheel steering control system for vehicles with limited slip differential
JPH0228064A (en) Steering control device
JP2016141221A (en) Vehicle traveling control device
JPH08207542A (en) Vehicle turning motion controller
JP2630609B2 (en) Control method of driving force distribution and rear wheel steering angle of four-wheel drive, four-wheel steering vehicle
JP2612717B2 (en) 4 wheel drive 4 wheel steering car
JP2679302B2 (en) Vehicle differential limiting control device
JP4407173B2 (en) Vehicle control device
JPH07108949A (en) Integrated control device for vehicle
JP2701308B2 (en) Differential limit torque control device
JP4244849B2 (en) Road surface friction coefficient detection controller
JP2631850B2 (en) Four-wheel steering four-wheel drive vehicle
JPH01266068A (en) Steering device for vehicle
JP2629744B2 (en) Vehicle differential limiting control device
CN114715271A (en) Automobile steering control method and automobile steering control device
JP2534729B2 (en) 4-wheel steering / Differential limiting force integrated control device