JPH02280602A - Travel controller of unmanned vehicle - Google Patents

Travel controller of unmanned vehicle

Info

Publication number
JPH02280602A
JPH02280602A JP1101417A JP10141789A JPH02280602A JP H02280602 A JPH02280602 A JP H02280602A JP 1101417 A JP1101417 A JP 1101417A JP 10141789 A JP10141789 A JP 10141789A JP H02280602 A JPH02280602 A JP H02280602A
Authority
JP
Japan
Prior art keywords
travel distance
travel
motor
difference
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1101417A
Other languages
Japanese (ja)
Other versions
JP2674203B2 (en
Inventor
Hajime Kokune
古久根 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP1101417A priority Critical patent/JP2674203B2/en
Publication of JPH02280602A publication Critical patent/JPH02280602A/en
Application granted granted Critical
Publication of JP2674203B2 publication Critical patent/JP2674203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To prevent positional shift of the center of turning by performing speed change control of right and left motors such that there is no difference of traveling distance between right and left drive wheels. CONSTITUTION:Upon reception of a turning command signal from a travel command value 15, a CPU 12 provides rotary speed command values having the same magnitude in opposite directions to right and left motors 2, 3 through a pair of motor drive circuits 16, 17 in order to perform turning. Pulse signals corresponding to the traveling distance of drive wheels 4, 5 are fed from pulse encoders 18, 19 to the CPU 12. The CPU 12 calculates the difference of traveling distance between the drive wheels 4, 5 based on the pulse signals and controls the rotary speed of the motors 2, 3 such that the difference is eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は無人車の走行制御装置に係り、詳しくは旋回
走行の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a travel control device for an unmanned vehicle, and more particularly to a control device for turning travel.

[従来の技術] 従来、この種の走行制御装置を備えた無人車として、例
えば第7図に実線で示すように、車体31の下側中央に
て進行方向に対して左右対称位置に配設された駆動用の
左側モータ32及び右側モータ33と、それら各モータ
32..33に駆動連結された左側駆動輪3−4及び右
側駆動輪35と、それら各駆動輪34.35の前後両側
に配設されたキャスタ36.37とを備えた4輪式の無
人車が知られている。
[Prior Art] Conventionally, as an unmanned vehicle equipped with this type of travel control device, for example, as shown by the solid line in FIG. A left motor 32 and a right motor 33 for driving, and each of these motors 32 . .. A four-wheeled unmanned vehicle is known which is equipped with a left drive wheel 3-4 and a right drive wheel 35 that are drive-coupled to a wheel 33, and casters 36 and 37 that are disposed on both sides of the drive wheels 34 and 35. It is being

この無人車には、第6図に示すように中央処理装置(C
PtJ)38、制御プログラムを記憶した続出し専用メ
モリ (ROM)39、CPO38の演算結果等を一時
記憶する読出し及び書き替え可能なメモリ(RAM)4
0からなる走行制御装置が備え付けられている。又、そ
のCPU38には外部の走行指令部41から旋回走行(
スピンターン)を指示する旋回指令信号等の各種指令(
8号が入力されるようになっている。
This unmanned vehicle has a central processing unit (C) as shown in Figure 6.
PtJ) 38, continuous read only memory (ROM) 39 that stores control programs, readable and rewritable memory (RAM) 4 that temporarily stores calculation results of CPO 38, etc.
A travel control device consisting of 0 is equipped. Further, the CPU 38 is instructed to perform turning travel (
Various commands (such as turning command signals that instruct spin turns)
No. 8 is now input.

そして、CPU3Bは走行指令部41から旋回指令信号
を入力した時、旋回走行を行うために一対のモータ駆動
回路42.43を介して左右の各モータ32,33の回
転比及び回転速度(この場合には回転方向が互いに正反
対で、かつ互いに同一回転速度となる)の指令値をRO
M39に記憶されたデータに基いて割り出し、その割り
出した指令値に従って各モータ32.33を回転制御す
る。このとき、各モータ32,33の回転数、即ち回転
速度は各モータ32.33に対応して設けられたタコジ
ェネレータ44,45にて検出され、CPU38はそれ
ら各タコジェネレータ44.45の検出信号を各モータ
32,33の回転制御のためのフィードバックデータと
して入力する。即ち、CPU3Bは各タコジェネレータ
44.45の検出値が前記割り出した多旨令値になるよ
うに各モータ32,33を回転制御すると共に、各モー
タ32.33の回転速度を一敗させるように制御する。
When the CPU 3B receives a turning command signal from the travel command section 41, the CPU 3B sends the rotation ratio and rotation speed of the left and right motors 32, 33 (in this case The rotation directions are exactly opposite to each other, and the rotation speed is the same).
It is determined based on the data stored in M39, and the rotation of each motor 32, 33 is controlled according to the determined command value. At this time, the number of rotations, that is, the rotational speed of each motor 32, 33 is detected by tacho generators 44, 45 provided corresponding to each motor 32, 33, and the CPU 38 outputs a detection signal of each tacho generator 44, 45. is input as feedback data for controlling the rotation of each motor 32, 33. That is, the CPU 3B controls the rotation of each motor 32, 33 so that the detected value of each tachogenerator 44, 45 becomes the determined multiple value, and also controls the rotation speed of each motor 32, 33. Control.

[発明が解決しようとする課題] ところが、前記従来の走行制御装置では、左右の各モー
タ32.33がそれぞれ別々に速度制御されているので
、各駆動輪34,35にかかる負荷が・アンバランスに
なった場合に、各駆動輪3435の走行距離に差が生じ
る虞があった。
[Problems to be Solved by the Invention] However, in the conventional travel control device, the speeds of the left and right motors 32, 33 are controlled separately, so that the load applied to each drive wheel 34, 35 is unbalanced. In this case, there was a possibility that a difference would occur in the traveling distance of each drive wheel 3435.

例えば、無人車に積載された荷物の重心の偏り、キャス
タ36.37の走行抵抗、路面の凹凸或いは各モータ3
2,33の回転特性の違い等により前記負荷のアンバラ
ンスが生じると、第8図に示すように所定の走行時間当
たりにおける各駆動輪34.35の走行距離、即ち左側
走行距離Aと右側走行距離Bとの間に差が生じるばかり
でなく、それらが正規の走行距離Cとの間で大きな誤差
Eを生じる虞があった。
For example, the deviation of the center of gravity of luggage loaded on an unmanned vehicle, the running resistance of casters 36, 37, unevenness of the road surface, or each motor 3
When the load imbalance occurs due to the difference in the rotational characteristics of wheels 2 and 33, as shown in FIG. Not only would there be a difference between them and the distance B, but there was also a risk that a large error E would occur between them and the regular running distance C.

従って、例えば第7図に示すように右側駆動輪35にか
かる負荷が左側駆動輪34にかかるそれよりも大きい場
合に旋回走行を行うと、各駆動輪34.35の走行距離
A、Bに差が生じて、旋回走行の中心が位置poから位
IPIへずれ、定位置における正確な旋回走行を行うこ
とができなくなる。
Therefore, for example, when turning is performed when the load applied to the right drive wheel 35 is greater than that applied to the left drive wheel 34, as shown in FIG. As a result, the center of turning shifts from position po to position IPI, making it impossible to accurately turn at a fixed position.

この発明は前述した事情に鑑みてなされたものであって
、その目的は、旋回走行の中心の位置ずれを未然に防止
して、定位置での旋回走行を行い得る無人車の走行制御
装置を提供することにある。
This invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a travel control device for an unmanned vehicle that can prevent the center of turning from shifting and can perform turning in a fixed position. It is about providing.

[課題を解決するための手段] 上記の目的を達成するためにこの発明においては、車体
の下側にて進行方向に対して左右対称位置に配設された
左右一対の駆動輪と、その左側駆動輪を回転駆動させる
ための左側モータと、右側駆動輪を回転駆動させるため
の右側モータとを備え、車両の旋回走行を指示する旋回
指令信号に基き、各モータを互いに正反対の方向へ回転
駆動させて各駆動輪を介して車両を旋回走行させる無人
車の走行制御装置において、左側駆動輪の走行距離を検
出する左側走行距離検出手段と、右側駆動輪の走行距離
を検出する右側走行路M検出手段と、各走行路i!1檎
出手段の検出値に基き、所定走行時間当たりにおける各
駆動輪の走行距離の差を割り出し、その差が無くなるよ
うに各モータの回転を変速制御する変速制御手段とを備
えている。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a pair of left and right drive wheels arranged at symmetrical positions with respect to the traveling direction on the underside of the vehicle body, and a pair of drive wheels on the left side thereof. Equipped with a left motor for rotationally driving the drive wheels and a right motor for rotationally driving the right side drive wheels, each motor is rotationally driven in opposite directions based on a turning command signal that instructs the vehicle to turn. In the driving control device for an unmanned vehicle that causes the vehicle to turn and travel through each drive wheel, the left driving distance detecting means detects the driving distance of the left driving wheel, and the right driving path M detects the driving distance of the right driving wheel. Detection means and each traveling route i! 1. A speed change control means is provided which determines the difference in travel distance of each drive wheel per predetermined travel time based on the detected value of the detection means, and performs speed change control of the rotation of each motor so that the difference is eliminated.

[作用] 従って、車両の旋回走行を指示する旋回指令信号に基き
、各モータを互いに逆回転駆動させて各駆動輪を介して
車両を旋回走行させる場合において、変速制御手段は左
側走行距離検出手段及び右側走行距離検出手段のそれぞ
れから各駆動輪の走行距離に相当する検出゛信号を入力
する。そして、変速制御手段は、各走行距離検出手段の
検出値に基き、所定走行時間当たりにおける各駆動輪の
走行距離の差を割り出し、その差が無(なるように各モ
ータの回転を変速制御する。
[Operation] Therefore, when the motors are driven to rotate in opposite directions to each other based on a turning command signal that instructs the vehicle to turn, and the vehicle is caused to turn through each drive wheel, the shift control means is controlled by the left travel distance detection means. Detection signals corresponding to the travel distance of each drive wheel are inputted from the right travel distance detection means and the right travel distance detection means, respectively. Then, the speed change control means determines the difference in travel distance of each drive wheel per predetermined travel time based on the detected value of each travel distance detection means, and controls the speed change of the rotation of each motor so that the difference becomes zero. .

これによって、旋回走行時における各駆動輪の走行距離
が等しくなり、旋回走行の中心が定位置に保持される。
As a result, the travel distance of each drive wheel during turning becomes equal, and the center of turning is maintained at a fixed position.

[実施例] 以下、この発明を4輪式の無人車に具体化した一実施例
を第1図〜第3図に基いて詳細に説明する。
[Embodiment] Hereinafter, an embodiment in which the present invention is embodied in a four-wheeled unmanned vehicle will be described in detail with reference to FIGS. 1 to 3.

第2図は無人車の下側を示し、車体1の下側中央にて進
行方向に対して左右対称位置には、駆動用の左側モータ
2及び右側モータ3がそれぞれ配設され、それら各モー
タ2,3には左側駆動輪4及び右側駆動輪5がそれぞれ
駆動連結されている。
Fig. 2 shows the lower side of the unmanned vehicle, where a left motor 2 and a right motor 3 for driving are respectively disposed at symmetrical positions with respect to the traveling direction at the center of the lower side of the vehicle body 1. A left drive wheel 4 and a right drive wheel 5 are connected to drive wheels 2 and 3, respectively.

又、各駆動輪4,5の前後両側にはキャスタ67がそれ
ぞれ配設されている。
Furthermore, casters 67 are provided on both the front and rear sides of each of the drive wheels 4 and 5, respectively.

この無人車に搭載された走行制御装置の電気的構成を第
1図に従って説明すると、変速制御手段としてのマイク
ロコンピュータ11はCPU12、制御プログラムを記
憶したROM13、CPU12の演算結果等を一時記憶
するRAM14からなり、CPU12はROM13に記
憶した制御プログラムに従って走行制御のための処理動
作を実行する。
The electrical configuration of the driving control device installed in this unmanned vehicle will be explained according to FIG. 1. A microcomputer 11 as a speed change control means includes a CPU 12, a ROM 13 that stores a control program, and a RAM 14 that temporarily stores calculation results of the CPU 12. The CPU 12 executes processing operations for driving control according to the control program stored in the ROM 13.

又、CPIJ12は旋回走行を指示する旋回指令信号、
直進走行を指示する直進指令信号、右折を指示する右折
指令信号及び左折を指示する左折指令信号等の各種指令
信号を外部の走行指令部15から入力する。
In addition, CPIJ12 is a turning command signal that instructs turning movement,
Various command signals are inputted from an external travel command unit 15, such as a straight-ahead command signal that instructs to go straight, a right-turn command signal that instructs a right turn, and a left-turn command signal that instructs a left turn.

更に、CPU12は走行指令部15からの旋回指令信号
を入力したとき、旋回走行を行うために一対のモータ駆
動回路16.17を介して左右の各モータ2,3の回転
比及び回転速度(この場合には回転方向が互いに正反対
で、かつ互いに同一回転速度となる)の指令値をROM
13に記憶されたデータに基いて割り出し、その割り出
した指令値に従って各モータ2.3を回転制御する。
Furthermore, when the CPU 12 receives a turning command signal from the travel command section 15, the CPU 12 determines the rotation ratio and rotation speed of the left and right motors 2 and 3 (this In this case, the rotation directions are exactly opposite to each other and the rotation speed is the same).
The rotation of each motor 2.3 is controlled in accordance with the determined command value.

左右の各モータ2.3には、それらの回転量、即ち各駆
動輪4,5の走行距離に相当する数のパルス信号を出力
する左側走行距離検出手段及び右側走行距離検出手段と
しての一対のパルスエンコーダ18.19が接続されて
いる。そして、CPU12は旋回指令信号が入力された
とき、各パルスエンコーダ18.19から各駆動輪4.
5の走行距離に相当する数のパルス信号を入力する。
Each of the left and right motors 2.3 has a pair of left travel distance detection means and right travel distance detection means that output a number of pulse signals corresponding to the amount of rotation thereof, that is, the travel distance of each drive wheel 4, 5. Pulse encoders 18, 19 are connected. When the CPU 12 receives the turning command signal, the CPU 12 outputs the information from each pulse encoder 18, 19 to each driving wheel 4.
Input the number of pulse signals corresponding to the traveling distance of 5.

そして、CPU12は各パルスエンコーダ18゜19か
らのパルス信号に基き、所定走行時間当たりにおける各
駆動輪4,5の走行距離の差を割り出し、その差を無く
すための各モータ2,3の変速値を演算してその演算さ
れた変速値に基いて、各モータ2.3の回転速度を指示
するための新たな指令値を決定し、その指令値に従って
各モータ2.3の回転速度を制御する。
Based on the pulse signals from each pulse encoder 18, 19, the CPU 12 determines the difference in travel distance of each drive wheel 4, 5 per predetermined travel time, and determines the speed change value of each motor 2, 3 to eliminate the difference. Based on the calculated speed change value, a new command value for instructing the rotation speed of each motor 2.3 is determined, and the rotation speed of each motor 2.3 is controlled according to the command value. .

又、CPLI 12は各パルスエンコーダ18.19か
らのパルス信号を時間微分して各駆動輪4,5の実際の
回転速度を割り出し、その割り出した実際の回転速度を
各モータ2,3を回転制御するためのフィードバックデ
ータとして入力する。即ち、CPU12は前記実際の回
転速度が前記決定された指令値になるように各モータ2
.3の回転速度を制御する。
Further, the CPLI 12 time-differentiates the pulse signals from each pulse encoder 18 and 19 to determine the actual rotational speed of each drive wheel 4, 5, and uses the determined actual rotational speed to control the rotation of each motor 2, 3. input as feedback data for That is, the CPU 12 controls each motor 2 so that the actual rotational speed becomes the determined command value.
.. Control the rotation speed of 3.

次に、上記のように構成した走行制御装置の作用につい
て第3図のグラフに従って説明する。
Next, the operation of the travel control device configured as described above will be explained with reference to the graph of FIG. 3.

今、左右の各駆動輪4,5にかかる負荷がアンバランス
の場合において、走行指令部15から旋回指令信号が出
力されると、無人車の旋回走行が行われる。
Now, when the loads on the left and right drive wheels 4 and 5 are unbalanced, when a turning command signal is output from the driving command unit 15, the unmanned vehicle starts turning.

つまり、CPU12は各モータ2,3を互いに正反対の
方向へ同じ速度で回転駆動させるための指令値Nl、N
2を各モータ駆動回路16.17を介して各モータ2,
3に出力する。これによって、各駆動輪4,5が走行を
開始して、第3図に示すように各駆動輪4.5の走行距
離、即ち左側走行距離A及び右側走行距離Bが時間tQ
からの経時に伴って増大する。
In other words, the CPU 12 uses command values Nl and N for rotating the motors 2 and 3 in opposite directions at the same speed.
2 to each motor 2 via each motor drive circuit 16.17.
Output to 3. As a result, each of the driving wheels 4 and 5 starts running, and as shown in FIG.
It increases with the passage of time.

そして、各駆動輪4.5にかかる′fi、街のアンバラ
ンスにより、例えば第3図の時間t1に示すように各走
行距離A、Hに、差αが生じると(A>B)、CPL1
12はその差αを無くすべ(各モータ2.3の回転速度
を制御する。
Then, due to the unbalance of 'fi applied to each drive wheel 4.5 and the town, for example, as shown at time t1 in FIG. 3, a difference α occurs in each traveling distance A, H (A>B),
12 eliminates the difference α (controls the rotational speed of each motor 2.3).

即ち、CPU12は各走行路fiA、Bの差αに対応す
る各モータ2.3の変速値βを演算する。
That is, the CPU 12 calculates the speed change value β of each motor 2.3 corresponding to the difference α between the travel paths fiA and fiB.

そして、CPU12はその演算された変速値βを各モー
タ2,3の回転速度を制御するだめの指令値Nl、N2
に対して加算又は減算し、その演算結果に基いて各モー
タ2,3の回転速度を制御する。つまり、この場合には
、走行距離の大きい左側駆動輪4の回転速度を指示する
指令値N1から変速値βを減算した新たな指令値(Nl
−β)に従って左側モータ2を制’+ff1lする。又
、走行距離の小さい右側駆動輪5の回転速度を指示する
指令値N2に変速値βを加算した新たな指令値(N2+
β)に従って右側モータ3を制御する。
Then, the CPU 12 converts the calculated speed change value β into command values Nl and N2 for controlling the rotational speed of each motor 2, 3.
The rotational speed of each motor 2, 3 is controlled based on the calculation result. In other words, in this case, a new command value (Nl
-β), the left motor 2 is controlled +ff1l. In addition, a new command value (N2 +
The right motor 3 is controlled according to β).

これによって、第3図に示すように各走行距離A、Bは
時間tlから所定時間経過した時間t2において略等し
い走行距離となり、この時点で各走行距離A、Bの差α
が略ゼロに収束すると共に、正規の走行距離Cに近づく
。この結果、旋回走行の中心の位置ずれが未然に防止さ
れ、定位置において無人車を旋回走行させることができ
る。
As a result, as shown in FIG. 3, the distances A and B become approximately equal at time t2, which is a predetermined time after time tl, and at this point, the difference α between distances A and B is
converges to approximately zero and approaches the normal running distance C. As a result, displacement of the center of turning can be prevented, and the unmanned vehicle can be turned in a fixed position.

従って、無人車に積載される荷物の重心の偏り、キャス
タ6.7の走行抵抗、路面の凹凸或いは各モータ2,3
の特性の違い等により各駆動輪4゜5にかかる負荷がア
ンバランスになるような場合において、定位置にて正確
な旋回走行を行うことができ、旋回走行を行うために要
するスペースを最小限のスペースにすることができる。
Therefore, the deviation of the center of gravity of the load loaded on the unmanned vehicle, the running resistance of the casters 6 and 7, the unevenness of the road surface, or the motors 2 and 3
In cases where the load on each drive wheel is unbalanced due to differences in the characteristics of the space.

又、旋回走行時の位置ずれを無くせることから、無人車
の走行精度を更に高めることができ、その走行コース上
における無人車の位置制御をより正確に行うことができ
る。
Furthermore, since positional deviations during turning can be eliminated, the traveling accuracy of the unmanned vehicle can be further improved, and the position of the unmanned vehicle on the traveling course can be controlled more accurately.

尚、この発明は前記実施例に限定されるものではなく、
発明の趣旨を逸脱しない範囲において構成の一部を適宜
に変更して次のように実施することもできる。
Note that this invention is not limited to the above embodiments,
The present invention can be implemented as follows by changing a part of the structure as appropriate without departing from the spirit of the invention.

(1)前記実施例では、左側走行距離検出手段及び右側
走行距離検出手段としてパルスエンコーダ18.19を
iけ、それらパルスエンコーダ18゜19からの信号に
基いて各駆動輪4,5の走行距離A、Bの差αを割り出
すと共に、各駆動輪4゜5の回転速度を割り出すように
構成したが、第4図に示すように左側走行距離検出手段
及び右側走行距離検出手段として計測輪25,26の回
転量を検出するパルスエンコーダ27.28をそれぞれ
設け、各モータ2,3の回転速度を検出するタコジェネ
レータ29,30をそれぞれ別に設けてもよい。
(1) In the above embodiment, the pulse encoders 18 and 19 are provided as the left travel distance detection means and the right travel distance detection means, and the travel distance of each drive wheel 4 and 5 is determined based on the signals from these pulse encoders 18 and 19. The configuration is configured to determine the difference α between A and B and the rotational speed of each drive wheel 4.5, but as shown in FIG. 4, the measuring wheels 25, Pulse encoders 27 and 28 for detecting the amount of rotation of each motor 26 may be provided, and tacho generators 29 and 30 for detecting the rotational speed of each motor 2 and 3 may be provided separately.

(2)前記実施例では、車体1の下側中央の左右対称位
置にて各モータ2,3により駆動される各駆v1輪4,
5と、その前後両側に設けたキャスタ6.7とを備えた
4輪式の無人車に具体化したが、第5図に示すように車
体1の下側部寄りにて各モータ2,3により駆動される
各駆動輪4,5と、車体1の下側後寄りに設けたキャス
タ7とを備えた3輪式の無人車に具体化してもよい。
(2) In the above embodiment, each driving wheel 4, which is driven by each motor 2, 3 at a left-right symmetrical position in the lower center of the vehicle body 1,
5 and casters 6 and 7 provided on both the front and rear sides of the vehicle.As shown in FIG. The present invention may be embodied in a three-wheeled unmanned vehicle having drive wheels 4 and 5 driven by the vehicle body 1 and casters 7 provided at the lower rear of the vehicle body 1.

[発明の効果] 以上詳述したようにこの発明によれば、旋回走行の中心
の位置ずれを未然に防止することができ、定位置での正
確な旋回走行を行うことができ、延いては無人車の走行
精度を高めることができるという優れた効果を発揮する
[Effects of the Invention] As detailed above, according to the present invention, it is possible to prevent the center position of the turning movement from shifting, and it is possible to perform accurate turning movement in a fixed position. This has the excellent effect of increasing the driving accuracy of unmanned vehicles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はこの発明を具体化した一実施例を示す
図面であって、第1図は走行制御装置の電気的構成を示
すブロック図、第2図はその走行側?11装置を適用し
た無人車の下側を示す図、第3図はその無人車における
各駆動輪の走行距離の経時変化を説明するグラフである
。第4図及び第5図はこの発明を具体化した別の実施例
を示す図面であって、第4図は走行制御袋rの電気的構
成を示すブロック図、第5図は無人車の下側を示す図で
ある。第6図は従来例の走行制御装置の電気的構成を示
すブロック図、第7図はその走行制御装置を適用した無
人車の旋回走行を説明する図、第8図はその無人車にお
ける各駆動輪の走行距離の経時変化を説明するグラフで
ある。 図中、1は車体、2は左側モータ、3は右側モータ、4
は左側駆動輪、−5は右側駆動輪、11は変速制御手段
としてのマイクロコンピュータ、18.19は左側及び
右側の走行距離検出手段としてのパルスエンコーダ、2
7.28は同じ<左側及び右側の走行距離検出手段とし
てのパルスエンコーダ、Aは左側走行距離、Bは右側走
行距離、αは走行距離の差である。
1 to 3 are drawings showing an embodiment embodying the present invention, in which FIG. 1 is a block diagram showing the electrical configuration of a traveling control device, and FIG. 2 is a diagram showing the traveling side of the device. FIG. 3 is a diagram showing the lower side of an unmanned vehicle to which the No. 11 device is applied, and is a graph illustrating changes over time in the travel distance of each drive wheel in the unmanned vehicle. 4 and 5 are drawings showing another embodiment embodying the present invention, in which FIG. 4 is a block diagram showing the electrical configuration of the travel control bag r, and FIG. 5 is a diagram showing the bottom of the unmanned vehicle. It is a figure showing a side. FIG. 6 is a block diagram showing the electrical configuration of a conventional travel control device, FIG. 7 is a diagram illustrating turning travel of an unmanned vehicle to which the travel control device is applied, and FIG. 8 is a diagram showing each drive in the unmanned vehicle. It is a graph explaining the change over time in the traveling distance of a wheel. In the figure, 1 is the vehicle body, 2 is the left motor, 3 is the right motor, and 4
11 is a microcomputer as a speed change control means, 18.19 is a pulse encoder as a left and right travel distance detection means, 2 is a left drive wheel, -5 is a right drive wheel,
7.28 is the same <pulse encoders as left and right travel distance detection means, A is the left travel distance, B is the right travel distance, and α is the difference in travel distance.

Claims (1)

【特許請求の範囲】 1 車体の下側にて進行方向に対して左右対称位置に配
設された左右一対の駆動輪と、 前記左側駆動輪を回転駆動させるための左側モータと、 前記右側駆動輪を回転駆動させるための右側モータと を備え、車両の旋回走行を指示する旋回指令信号に基き
、前記各モータを互いに正反対の方向へ回転駆動させて
前記各駆動輪を介して車両を旋回走行させる無人車の走
行制御装置において、 前記左側駆動輪の走行距離を検出する左側走行距離検出
手段と、 前記右側駆動輪の走行距離を検出する右側走行距離検出
手段と、 前記各走行距離検出手段の検出値に基き、所定走行時間
当たりにおける前記各駆動輪の走行距離の差を割り出し
、その差が無くなるように前記各モータの回転を変速制
御する変速制御手段とを備えた無人車の走行制御装置。
[Scope of Claims] 1. A pair of left and right drive wheels disposed on the lower side of the vehicle body in symmetrical positions with respect to the traveling direction, a left motor for rotationally driving the left drive wheel, and the right drive. and a right motor for rotationally driving the wheels, and based on a turning command signal instructing the vehicle to turn, each of the motors is rotationally driven in opposite directions to each other to cause the vehicle to turn through the respective drive wheels. A travel control device for an unmanned vehicle, comprising: a left travel distance detection means for detecting a travel distance of the left drive wheel; a right travel distance detection means for detecting a travel distance of the right drive wheel; and each of the travel distance detection means. A driving control device for an unmanned vehicle, comprising: a speed change control means that determines the difference in travel distance of each of the drive wheels per predetermined travel time based on the detected value, and controls the speed of the rotation of each of the motors so that the difference is eliminated. .
JP1101417A 1989-04-20 1989-04-20 Driving control device for unmanned vehicles Expired - Lifetime JP2674203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1101417A JP2674203B2 (en) 1989-04-20 1989-04-20 Driving control device for unmanned vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1101417A JP2674203B2 (en) 1989-04-20 1989-04-20 Driving control device for unmanned vehicles

Publications (2)

Publication Number Publication Date
JPH02280602A true JPH02280602A (en) 1990-11-16
JP2674203B2 JP2674203B2 (en) 1997-11-12

Family

ID=14300131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1101417A Expired - Lifetime JP2674203B2 (en) 1989-04-20 1989-04-20 Driving control device for unmanned vehicles

Country Status (1)

Country Link
JP (1) JP2674203B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168107A (en) * 1982-03-29 1983-10-04 Mitsubishi Electric Corp Driving device of automatic running dolly
JPS62288909A (en) * 1986-06-09 1987-12-15 Fanuc Ltd Distance measuring instrument for unattended carriage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168107A (en) * 1982-03-29 1983-10-04 Mitsubishi Electric Corp Driving device of automatic running dolly
JPS62288909A (en) * 1986-06-09 1987-12-15 Fanuc Ltd Distance measuring instrument for unattended carriage

Also Published As

Publication number Publication date
JP2674203B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JPH0358949B2 (en)
US4424875A (en) Running control apparatus for trackless moving body
CN106458253A (en) Electric power steering device and electric power steering device control device
JPH11110042A (en) Automatic traveling controller for vehicle
JP3733642B2 (en) Vehicle control device
JPH02280602A (en) Travel controller of unmanned vehicle
JP3952548B2 (en) Method and apparatus for controlling unmanned vehicle
JP2504120B2 (en) Manual steering control method for unmanned vehicles
JPH05333928A (en) Back traveling control method for unmanned carrier
JP3498851B2 (en) Traveling distance detection device for traveling vehicles
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP2005071128A (en) Automatic guided transport vehicle and method for controlling travel thereof
JPS6111608A (en) Device for estimating steering neutral position of vehicle
JPS6378878A (en) Power steering device
JPS63184111A (en) Method for controlling steering of automatic traveling vehicle
JP3783280B2 (en) Vehicle steering control device
JPS61100812A (en) Method for controlling turning of unmanned vehicle
JP2913655B2 (en) Speed control method of automatic guided vehicle
JPH08275310A (en) Speed controller for self-traveling vehicle
JPH06255512A (en) Steering force controller
JP2004135428A (en) Apparatus and method for controlling traveling of electrical industrial vehicle
JPS6081611A (en) Unmanned carrier car
JP3941176B2 (en) Driving control method and driving control device for unmanned vehicles
JPH04238505A (en) Truck traveling control device
JPS58182716A (en) Traveling control method of automobile