JP2005071128A - Automatic guided transport vehicle and method for controlling travel thereof - Google Patents

Automatic guided transport vehicle and method for controlling travel thereof Download PDF

Info

Publication number
JP2005071128A
JP2005071128A JP2003300977A JP2003300977A JP2005071128A JP 2005071128 A JP2005071128 A JP 2005071128A JP 2003300977 A JP2003300977 A JP 2003300977A JP 2003300977 A JP2003300977 A JP 2003300977A JP 2005071128 A JP2005071128 A JP 2005071128A
Authority
JP
Japan
Prior art keywords
drive wheel
speed
wheel
traveling
rear drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003300977A
Other languages
Japanese (ja)
Inventor
Takahiro Yokomae
高広 横前
Hideji Yahagi
秀二 矢萩
Keiji Fujiwara
啓二 藤原
Yoichi Sugitomo
庸一 杉友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003300977A priority Critical patent/JP2005071128A/en
Publication of JP2005071128A publication Critical patent/JP2005071128A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of controlling a simple type automatic guided transport vehicle of the two-wheel drive type with a three-wheeler configuration so that it travels smoothly along a curved path without causing an overloaded condition. <P>SOLUTION: When the vehicle turns along a curved path, the steering angle θ of its front drive wheel 1 is detected; based on the ratio of the turning radii Rf, Rr of the front drive wheel 1 and the rear drive wheel 2 with respect to a center O of turning, which radii differ with each other correspondingly to the steering angle θ detected, and on the travel speed Vf of the front drive wheel 1, a speed command value for the rear drive wheel 2 at which the front drive wheel 1 and the rear drive wheel 2 assume the same angular velocity with respect to the center O of turning is calculated. The rear drive wheel 2 is controlled based on the speed command value calculated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車体の走行方向の中心線上の前側箇所に配設された前駆動輪および操舵輪と,走行方向の後側左右両側箇所にそれぞれ配設された後駆動輪とを備えた三輪車形態の二輪駆動方式の簡易タイプの無人搬送車の走行を制御する方法に関し、さらに詳しくは、上記無人搬送車をカーブ走行路に沿って過負荷状態となることなく円滑に旋回走行させるための走行制御方法に関するものである。   The present invention is a tricycle configuration including a front drive wheel and a steering wheel disposed at a front side location on a center line in a traveling direction of a vehicle body, and a rear drive wheel disposed at each of left and right sides on the rear side in the traveling direction. More specifically, the present invention relates to a method for controlling the traveling of a simple type automatic guided vehicle of the two-wheel drive system, and more specifically, traveling control for smoothly turning the automated guided vehicle along a curved traveling path without being overloaded. It is about the method.

従来、無人搬送システムに用いられている無人搬送車の走行制御には、自動化や省力化を目的として、コスト的および技術的に有利な無軌道の固定経路による誘導方式が一般的に採用されている。上記の固定経路は、無人倉庫や工場などの床面に誘導テープなどを貼着した誘導ラインにより設定され、無人搬送車は、誘導ラインをラインセンサにより電磁気的または光学的な検出手段で検出しながら、誘導ラインに沿って自動走行するようになっている。   Conventionally, for the purpose of automation and labor saving, a guided method using a fixed track with no track is generally adopted for the traveling control of the automatic guided vehicle used in the automatic guided system. . The above-mentioned fixed route is set by a guide line in which guide tape or the like is attached to the floor surface of an unmanned warehouse or factory, and the automatic guided vehicle detects the guide line by an electromagnetic or optical detection means by a line sensor. However, it is designed to automatically run along the guidance line.

上記無人搬送システムに用いられている無人搬送車のうちの安価な簡易タイプのものとしては、図6または図7に示すような形態となったものが一般に知られている。図6の無人搬送車は、駆動モータ51により回転駆動される一つの駆動輪50と二つの従動輪(キャスタ)52,53とが三輪車形態の配置で設けられた一輪駆動型であり、一方(図の左方)の従動輪52には、スライドやスピンを行いたい場合に、クラッチ機構54の切り換え作動により駆動モータ58の回転力が伝達されるようになっている。同図(a)は直進走行状態、同図(b)は側方へのスライド走行状態をそれぞれ示す。   As an inexpensive and simple type of automatic guided vehicles used in the automatic guided system, one having a form as shown in FIG. 6 or FIG. 7 is generally known. The automatic guided vehicle in FIG. 6 is a one-wheel drive type in which one drive wheel 50 rotated by a drive motor 51 and two driven wheels (casters) 52 and 53 are provided in a three-wheeled vehicle arrangement, The driven wheel 52 on the left side of the figure is adapted to transmit the rotational force of the drive motor 58 by switching operation of the clutch mechanism 54 when it is desired to slide or spin. FIG. 4A shows a straight traveling state, and FIG. 4B shows a side sliding state.

また、図7の無人搬送車は、車体の進行方向に沿った中心線上の前後位置に、前駆動輪駆動モータ57および後駆動輪駆動モータ58によりそれぞれ回転駆動される前駆動輪55および後駆動輪56が配設された二輪駆動型であり、走行方向の中央部における左右両側に傾斜防止用のキャスタ59,59がそれぞれ配設された構成になっており、また、図示を省略してあるが、前駆動輪55および後駆動輪56は、それぞれ操舵軸を回動中心として水平面回りに回動されることにより、走行方向を任意に変更されるようになっている。この無人搬送車をコーナー区間などのカーブ走行路に沿って旋回走行させる場合には、後駆動輪を前駆動輪に対し逆相で同一角度の操舵角に変更するように走行制御される。なお、上述の図6および図7の各無人搬送車は、簡易タイプのものであって、各駆動モータ51,57,58として、何れも小型のものが用いられている。
特開平11−327648公報
In addition, the automatic guided vehicle in FIG. 7 has front drive wheels 55 and rear drives that are rotationally driven by front drive wheel drive motors 57 and rear drive wheel drive motors 58 at front and rear positions on the center line along the traveling direction of the vehicle body. This is a two-wheel drive type in which wheels 56 are arranged, and has a structure in which casters 59 and 59 for preventing tilting are arranged on both the left and right sides in the central portion in the traveling direction, and the illustration is omitted. However, the driving direction of the front driving wheel 55 and the rear driving wheel 56 is arbitrarily changed by rotating around the horizontal plane with the steering shaft as the rotation center. When the automatic guided vehicle is turned along a curved traveling path such as a corner section, traveling control is performed so that the rear driving wheel is changed to the same steering angle in reverse phase with respect to the front driving wheel. Each of the automatic guided vehicles shown in FIGS. 6 and 7 is of a simple type, and the drive motors 51, 57, and 58 are all small.
JP 11-327648 A

しかしながら、図6の無人搬送車は、小型の駆動モータ51のみによる一輪駆動型であるから、搬送可能な被搬送物の積載重量に制限があり、例えば100kg程度に制限される。また、図7の無人搬送車は、二輪駆動型であることから、300kg程度の積載重量の被搬送物を搬送することができるが、前,後駆動輪55,56が同一線上に配置されていることから、二つのキャスタ59,59を別途必要として部品点数が多くなるのに加えて、カーブ走行路に沿って走行する場合に、後駆動輪56の操舵角を前駆動輪55の操舵角に対し逆相で同一角度に設定するために、前,後駆動輪55,56にそれぞれ操舵機構を設ける必要があり、構成の複雑化に伴ってコスト高を招いている。   However, since the automatic guided vehicle in FIG. 6 is a one-wheel drive type using only a small drive motor 51, there is a limit on the load weight of a transportable object, for example, about 100 kg. Further, since the automatic guided vehicle in FIG. 7 is a two-wheel drive type, it can transport an object to be transported with a loading weight of about 300 kg, but the front and rear drive wheels 55 and 56 are arranged on the same line. Therefore, in addition to the need for two casters 59 and 59, the number of parts is increased, and when traveling along a curve traveling path, the steering angle of the rear driving wheel 56 is set to the steering angle of the front driving wheel 55. On the other hand, in order to set the same angle in the opposite phase, it is necessary to provide a steering mechanism for each of the front and rear drive wheels 55 and 56, which increases the cost as the configuration becomes complicated.

そこで、図8に示すような無人搬送車を用いることが考えられる。この無人搬送車は、駆動モータ57,58により個々に回転駆動される二つの前,後駆動輪55,56と一つの従動輪(キャスタ)59を、図6と同様の三輪車形態の配置で設けられた二輪駆動型になっている。前駆動輪55には、操舵部(図示せず)を設け、前,後駆動輪55,56を常に同一速度で走行するように走行制御する。この無人搬送車は、三輪車形態の二輪駆動型であるから、図7の無人搬送車と比較して、構成を簡素化しながらもこれと同等程度の積載重量の被搬送物を搬送できる利点がある。   Therefore, it is conceivable to use an automatic guided vehicle as shown in FIG. This automatic guided vehicle is provided with two front and rear drive wheels 55 and 56 and one follower wheel (caster) 59 that are individually driven to rotate by drive motors 57 and 58 in a tricycle configuration similar to FIG. It has become a two-wheel drive type. The front drive wheel 55 is provided with a steering portion (not shown), and travel control is performed so that the front and rear drive wheels 55 and 56 always travel at the same speed. Since this automatic guided vehicle is a two-wheel drive type in the form of a three-wheeled vehicle, there is an advantage that it is possible to transport an object to be transported having a similar load weight while simplifying the configuration as compared with the automatic guided vehicle of FIG. .

ところが、この無人搬送車では、例えば、コーナー区間などのカーブ走行路に沿って走行する場合に、前,後駆動輪55,56が同一線上に配設されていないことから、これらの旋回半径が互いに相違して、前,後駆動輪55,56間に速度差が生じるのに対し、前,後駆動輪55,56を同一速度で走行するように走行制御するので、図の左方向回りに旋回走行する場合に後駆動輪56が過負荷状態となり、且つ図の右方向回りに旋回走行する場合に前駆動輪55過負荷状態となるので、その過負荷状態となる駆動輪55,56または駆動モータ57,58の少なくとも一方に滑りが生じて円滑に旋回走行するのが困難になるとともに、過負荷状態が頻繁に発生するのに伴って、走行系または駆動系の寿命を短縮する結果を招き易い。   However, in this automatic guided vehicle, for example, when traveling along a curved traveling path such as a corner section, the front and rear drive wheels 55 and 56 are not arranged on the same line. Although the speed difference between the front and rear drive wheels 55 and 56 is different from each other, the front and rear drive wheels 55 and 56 are controlled to travel at the same speed. The rear drive wheel 56 is overloaded when turning, and the front drive wheel 55 is overloaded when turning clockwise in the figure. As a result, slipping occurs in at least one of the drive motors 57 and 58, making it difficult to smoothly turn, and as a result of frequent occurrence of an overload state, the life of the travel system or the drive system is shortened. Easy to invite.

本発明は、上記従来の課題に鑑みてなされたもので、三輪車形態となった二輪駆動方式の簡易タイプの無人搬送車を、過負荷状態を発生させることなく、カーブ走行路に沿って円滑に走行させるように制御できる方法を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems, and a two-wheel drive simple automatic guided vehicle in the form of a three-wheeled vehicle can be smoothly moved along a curve traveling path without causing an overload state. The object is to provide a method that can be controlled to run.

上記目的を達成するために、請求項1に係る発明の無人搬送車の走行制御方法は、車体の走行方向の中心線上の前側箇所に配設された前駆動輪と、走行方向の後側左右両側箇所のそれぞれに配設され、少なくとも一方を後駆動輪とする車輪とを備え、前記前駆動輪にのみ操舵部が設けられた無人搬送車の走行を制御するに際して、カーブ走行路に沿って旋回走行をする際に、前記前駆動輪と前記後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の速度指令値を算出し、この算出した速度指令値に基づき前記後駆動輪を走行制御することを特徴としている。   In order to achieve the above object, a traveling control method for an automatic guided vehicle according to a first aspect of the present invention includes a front drive wheel disposed at a front position on a center line in a traveling direction of a vehicle body, and rear left and right traveling directions. When controlling the traveling of the automatic guided vehicle that is provided at each of the both side portions, and at least one of which is a rear driving wheel, the steering unit is provided only on the front driving wheel, along the curve traveling path When turning, the front drive wheel and the rear drive wheel calculate the speed command value of the rear drive wheel with the same angular velocity with respect to the turning center, and based on the calculated speed command value, the rear drive wheel It is characterized by running control.

請求項2に係る発明は、前記前駆動輪の操舵角を検出し、その検出した操舵角に対応して異なる前記前駆動輪と後駆動輪との旋回中心に対する各々の旋回半径の比と前記前駆動輪の走行速度とに基いて、後駆動輪の速度指令値を算出するようになっている。   The invention according to claim 2 detects the steering angle of the front driving wheel, and the ratio of the respective turning radii with respect to the turning center of the front driving wheel and the rear driving wheel, which differ according to the detected steering angle, and the Based on the traveling speed of the front driving wheel, the speed command value of the rear driving wheel is calculated.

請求項3に係る発明は、操舵角が所定の設定角度よりも大きいか否かの判別を常時行い、その判別結果が前記設定角度よりも小さい場合に、前駆動輪と後駆動輪とを同一の走行速度で走行させるように制御し、前記判別結果が前記設定角度よりも大きい場合に、前記前駆動輪と前記後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の指令速度値を算出して、その算出した速度指令値に基いて前記後駆動輪を走行制御するようになっている。   The invention according to claim 3 always determines whether or not the steering angle is larger than a predetermined set angle, and when the determination result is smaller than the set angle, the front drive wheel and the rear drive wheel are the same. When the determination result is larger than the set angle, the command speed of the rear drive wheel is such that the angular speed of the front drive wheel and the rear drive wheel with respect to the turning center is the same. A value is calculated, and the rear drive wheel is controlled to travel based on the calculated speed command value.

請求項4に係る発明は、前駆動輪と後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の走行速度である速度指令値を前記前駆動輪の走行速度を基準速度として求めるための補正係数を、異なる操舵角毎に予め算出してテーブルに記憶しておき、カーブ走行路に沿って旋回走行するときに、前記前駆動輪の走行速度と操舵角とを検出したしたのち、その算出した操舵角に対応する補正係数を前記テーブルから読み出し、前記前駆動輪の走行速度と補正係数とに基づく演算を行って前記後駆動輪の速度指令値を算出するようになっている。   According to a fourth aspect of the present invention, a speed command value, which is a traveling speed of the rear driving wheel having the same angular speed with respect to the turning center of the front driving wheel and the rear driving wheel, is obtained using the traveling speed of the front driving wheel as a reference speed. The correction coefficient is calculated in advance for each different steering angle, stored in a table, and after traveling along the curve traveling path, the traveling speed and the steering angle of the front drive wheel are detected. The correction coefficient corresponding to the calculated steering angle is read from the table, and the speed command value of the rear drive wheel is calculated by performing a calculation based on the traveling speed of the front drive wheel and the correction coefficient. .

請求項5に係る発明は、操舵角をθ、後駆動輪と従動輪との間隔であるトレッドをT、前駆動輪と前記後駆動輪との間隔であるホィールベースをW、前記前駆動輪の走行速度をVfとしたときに、異なる各前記操舵角θ毎の補正係数を、Vf×〔cosθ−T×sinθ/(2W)〕の式から予め算出してテーブルに設定記憶するようになっている。   The invention according to claim 5 is characterized in that the steering angle is θ, the tread that is the distance between the rear drive wheel and the driven wheel is T, the wheel base that is the distance between the front drive wheel and the rear drive wheel is W, and the front drive wheel When the traveling speed of the vehicle is Vf, a different correction coefficient for each steering angle θ is calculated in advance from the equation Vf × [cos θ−T × sin θ / (2 W)] and stored in the table. ing.

請求項6に係る発明では、無人搬送車への電源投入時または無人搬送車の走行が不安定になったときに、操舵角が原点に復帰したのを検出したか否かの判別を行い、原点復帰を検出するまで、前駆動輪および後駆動輪を予め設定した低速度でそれぞれ走行させる制御を行うようになっている。   In the invention according to claim 6, when turning on the power to the automatic guided vehicle or when the automatic guided vehicle becomes unstable, it is determined whether or not it is detected that the steering angle has returned to the origin, Until the return to origin is detected, control is performed so that the front drive wheel and the rear drive wheel travel at a preset low speed, respectively.

請求項7に係る発明は、被搬送物の積載重量の大小に伴って変化する前,後駆動輪のタイヤ変形量を求めたのち、そのタイヤ変形量に応じて変化する旋回中心に対する前記前,後駆動輪の旋回半径の見掛け上の差を算出し、前記前駆動輪の走行速度に基づき算出した後駆動輪の指令速度値を、前記算出した旋回半径の見掛け上の差に基づいて補正するようになっている。   According to a seventh aspect of the present invention, the front of the turning center that changes in accordance with the amount of tire deformation, after the tire deformation amount of the rear drive wheel is obtained before changing with the load weight of the conveyed object, An apparent difference in the turning radius of the rear driving wheel is calculated, and the command speed value of the rear driving wheel calculated based on the traveling speed of the front driving wheel is corrected based on the calculated apparent difference in the turning radius. It is like that.

請求項8に係る発明は、荷重計測手段により被搬送物の積載重量を計測して、その計測した積載重量に基づき前,後駆動輪のタイヤ変形量を算出するようになっている。   In the invention according to claim 8, the load weight of the conveyed object is measured by the load measuring means, and the tire deformation amount of the front and rear drive wheels is calculated based on the measured load weight.

請求項9に係る発明は、被搬送物の積載重量をロードセルにより計測するようになっている。   In the invention according to claim 9, the load weight of the conveyed object is measured by the load cell.

また、請求項10に係る発明の無人搬送車は、車体の走行方向の中心線上の前側箇所に配設された前駆動輪と、走行方向の後側左右両側箇所のそれぞれに配設され、少なくとも一方を後駆動輪とする車輪と、前記前駆動輪にのみ設けられた操舵部と、カーブ走行路に沿って旋回走行をする際に、前記前駆動輪と前記後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の速度指令値を算出して、前記算出した速度指令値に基づき走行制御する前記後駆動輪を制御装置とを備えていることを特徴としている。   Further, the automatic guided vehicle of the invention according to claim 10 is disposed at each of the front drive wheel disposed at the front side position on the center line in the traveling direction of the vehicle body and at both the left and right side positions at the rear side in the traveling direction. A wheel having one of the rear drive wheels, a steering unit provided only on the front drive wheel, and a turning center of the front drive wheel and the rear drive wheel when turning along a curve travel path. A control device is provided for controlling the rear drive wheel that calculates a speed command value of the rear drive wheel having the same angular velocity and performs traveling control based on the calculated speed command value.

請求項11に係る発明は、制御装置が、前駆動輪の操舵角を検出し、その検出した操舵角に対応して異なる前記前駆動輪と後駆動輪との旋回中心に対する各々の旋回半径の比と前記前駆動輪の走行速度とに基いて、後駆動輪の速度指令値を算出するよう構成されている。   According to an eleventh aspect of the present invention, the control device detects the steering angle of the front drive wheel, and sets each of the turning radii relative to the turning centers of the front drive wheel and the rear drive wheel that differ according to the detected steering angle. Based on the ratio and the traveling speed of the front driving wheel, a speed command value for the rear driving wheel is calculated.

請求項12に係る発明は、制御装置が、操舵角が所定の設定角度よりも大きいか否かの判別を行い、その判別結果が前記設定角度よりも小さい場合に、前駆動輪と後駆動輪とを同一の走行速度で走行させるように制御し、且つ前記判別結果が前記設定角度よりも大きい場合に、前記前駆動輪と前記後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の指令速度値を算出して、その算出した速度指令値に基いて前記後駆動輪を走行制御するように構成されている。   In the invention according to claim 12, the control device determines whether or not the steering angle is larger than a predetermined set angle, and when the determination result is smaller than the set angle, the front drive wheel and the rear drive wheel And the rear drive where the angular velocities with respect to the turning center of the front drive wheel and the rear drive wheel are the same when the determination result is larger than the set angle. A wheel command speed value is calculated, and the rear drive wheel is travel-controlled based on the calculated speed command value.

請求項1の発明では、三輪車形態となった二輪駆動方式の簡易タイプの安価な無人搬送車をカーブ走行路に沿って旋回走行させる際に、操舵角に相違に対応して前、後駆動輪の旋回半径が変化しても、前駆動輪と後駆動輪との旋回中心に対する角速度が互いに同一となるように後駆動輪の走行速度を可変調節するので、前駆動輪と後駆動輪との速度差に起因する過負荷状態の発生を効果的に抑制してカーブ走行路に沿って円滑に旋回走行させることができる。したがって、三輪車形態で二輪駆動方式の簡易タイプの無人搬送車に対し機構上の改造や付設を必要とせずに、既存の構成を備えた無人搬送車に対しソフトウェア上の変更を施すだけの走行制御を行うことより、比較的大きな積載重量の被搬送物を支障無く搬送することができる。   According to the first aspect of the present invention, when the simple and inexpensive automatic guided vehicle of the two-wheel drive type in the form of a three-wheeled vehicle is turned along the curve travel path, the front and rear drive wheels are adapted to the difference in the steering angle. Even if the turning radius changes, the traveling speed of the rear driving wheel is variably adjusted so that the angular speeds of the front driving wheel and the rear driving wheel with respect to the turning center are the same. The occurrence of an overload condition caused by the speed difference can be effectively suppressed, and the vehicle can smoothly turn along the curve travel path. Therefore, it is not necessary to modify or add to the mechanism of a simple automatic guided vehicle of the two-wheel drive type in the three-wheeled vehicle form, and the traveling control is simply applied to the automated guided vehicle having the existing configuration. By carrying out the above, it is possible to transport an object having a relatively large load weight without any trouble.

請求項2の発明では、前駆動輪の走行速度を基準速度として、操舵角に相違に対応して変化する前、後駆動輪の旋回半径の比により後駆動輪の速度指令値を算出するので、前駆動輪と後駆動輪との旋回中心に対する角速度が互いに同一となるように正確、且つ確実に走行制御することができる。   In the second aspect of the invention, the speed command value of the rear drive wheel is calculated based on the ratio of the turning radius of the rear drive wheel before the change in the steering angle corresponding to the difference, with the traveling speed of the front drive wheel as the reference speed. The traveling control can be performed accurately and reliably so that the angular velocities of the front drive wheel and the rear drive wheel with respect to the turning center are the same.

請求項3の発明では、一般に高速走行を小さな操舵角で行うとともに、操舵角が大きい場合に低速走行させるので、操舵角の小さな高速走行時に後駆動輪の速度指令値を極めて短時間で演算することによる制御部での演算量の負担増を無くして、制御部の処理不足に起因して不正常な走行制御を行ってしまうのを防止することができる。   In the third aspect of the invention, in general, high speed running is performed with a small steering angle, and low speed running is performed when the steering angle is large. Therefore, the speed command value of the rear drive wheel is calculated in a very short time during high speed running with a small steering angle. Accordingly, it is possible to prevent an increase in the amount of calculation in the control unit, and to prevent abnormal traveling control due to insufficient processing of the control unit.

請求項4の発明では、前駆動輪の走行速度と操舵角とを検知すれば、例えば、前駆動輪の走行速度に対し操舵角に対応する補正計数を乗算するだけのの簡単な演算により、後駆動輪の速度指令値を算出することができ、後駆動輪の速度指令値の演算処理を簡略化することができる。   In the invention of claim 4, if the traveling speed and the steering angle of the front driving wheel are detected, for example, by a simple calculation of simply multiplying the traveling speed of the front driving wheel by a correction coefficient corresponding to the steering angle, The speed command value of the rear drive wheel can be calculated, and the calculation process of the speed command value of the rear drive wheel can be simplified.

請求項5の発明では、前駆動輪の走行速度を基準速度として後駆動輪の速度指令値を算出するための補正係数を、前,後駆動輪の各々の旋回半径の比に基づいて正確に設定することができる。   In the invention of claim 5, the correction coefficient for calculating the speed command value of the rear drive wheel with the traveling speed of the front drive wheel as the reference speed is accurately determined based on the ratio of the turning radii of the front and rear drive wheels. Can be set.

請求項6の発明では、無人搬送車が走行不安定な状態、例えば、簡易タイプの無人搬送車における操舵部のエンコーダにおいて、バッテリ電源のオフ時にデータが消失してしまい、バッテリ電源が再投入された場合に、操舵機能が定常に機能する状態に回復するまで走行不安定な状態となる。そこで、操舵機能が定常に機能しない状態で無人搬送車が高速で走行するのを抑制して、駆動モータの出力が小さい状態のまま可及的速やかに定常の制御処理を行える状態に復帰させることができる。   In the invention of claim 6, in the state where the automated guided vehicle is unstable, for example, in the encoder of the steering unit in the simple automated guided vehicle, data is lost when the battery power is turned off, and the battery power is turned on again. In such a case, the vehicle becomes unstable until the steering function is restored to a normally functioning state. Therefore, it is possible to suppress the automatic guided vehicle from traveling at a high speed in a state where the steering function does not function normally, and to return to a state where the steady control process can be performed as quickly as possible while the output of the drive motor is small. Can do.

請求項7の発明では、被搬送物の積載重量が大きくなって前,後駆動輪のタイヤ変形量が大きくなった場合においても、円滑に旋回走行させることができる。 請求項8の発明では、例えば、積載重量に対する前,後駆動輪のタイヤ変形量を予め計測したデータをテーブルに記憶しておき、計測した積載重量に基づきテーブルからタイヤ変形量を読み出すことにより、タイヤ変形量に応じて変化する旋回中心に対する前,後駆動輪の旋回半径の見掛け上の差を容易、且つ正確に算出することができる。   According to the seventh aspect of the present invention, even when the load weight of the conveyed object is increased and the tire deformation amount of the front and rear drive wheels is increased, the vehicle can be smoothly turned. In the invention of claim 8, for example, data obtained by measuring the tire deformation amount of the front and rear driving wheels in advance with respect to the loaded weight is stored in a table, and the tire deformation amount is read from the table based on the measured loaded weight. It is possible to easily and accurately calculate the apparent difference between the turning radii of the front and rear drive wheels with respect to the turning center that changes according to the amount of tire deformation.

請求項9の発明では、被搬送物の積載重量を容易、且つ正確に計測することが可能となる。   According to the ninth aspect of the present invention, it is possible to easily and accurately measure the loaded weight of the conveyed object.

請求項10の発明では、三輪車形態となった二輪駆動方式の簡易タイプの安価な構造でありながら、カーブ走行路に沿って旋回走行する際に、操舵角に相違に対応して前、後駆動輪の旋回半径が変化しても、前駆動輪と後駆動輪との旋回中心に対する角速度が互いに同一となるように後駆動輪の走行速度を可変調節できるので、前駆動輪と後駆動輪との速度差に起因する過負荷状態の発生を効果的に抑制してカーブ走行路に沿って円滑に旋回走行することができる。したがって、三輪車形態で二輪駆動方式の簡易タイプの既存の構造に対して、機構上の改造や付設を必要とせずに、制御装置におけるソフトウェア上の変更を施すだけで、比較的大きな積載重量の被搬送物を支障無く搬送することができる。   The invention according to claim 10 is a simple and inexpensive structure of a two-wheel drive system in the form of a three-wheeled vehicle, but when turning along a curve traveling path, the front and rear drives corresponding to the difference in steering angle Even if the turning radius of the wheel changes, the traveling speed of the rear driving wheel can be variably adjusted so that the angular speeds of the front driving wheel and the rear driving wheel with respect to the turning center are the same. It is possible to smoothly turn along a curved road while effectively suppressing the occurrence of an overload caused by the speed difference. Therefore, the existing structure of the simple type of the two-wheel drive system in the form of a three-wheeled vehicle does not require any modification or attachment on the mechanism, and only a software change in the control device makes it possible to cover a relatively large load. Transported objects can be transported without hindrance.

請求項11の発明では、制御装置が、前駆動輪の走行速度を基準速度として、操舵角に相違に対応して変化する前、後駆動輪の旋回半径の比により後駆動輪の速度指令値を算出するので、前駆動輪と後駆動輪との旋回中心に対する角速度が互いに同一となるように正確、且つ確実に走行制御することができる。   In the invention of claim 11, the control device uses the traveling speed of the front driving wheel as a reference speed, and changes the steering angle according to the difference between the steering angle and the speed command value of the rear driving wheel based on the ratio of the turning radius of the rear driving wheel. Therefore, traveling control can be performed accurately and reliably so that the angular velocities of the front driving wheel and the rear driving wheel with respect to the turning center are the same.

請求項12の発明では、一般に高速走行を小さな操舵角で行うとともに、操舵角が大きい場合に低速走行させるので、操舵角の小さな高速走行時に後駆動輪の速度指令値を極めて短時間で演算することによる制御装置での演算量の負担増を無くして、制御部の処理不足に起因して不正常な走行制御を行ってしまうのを防止することができる。   In the twelfth aspect of the invention, high speed running is generally performed with a small steering angle and low speed running is performed when the steering angle is large. Therefore, the speed command value of the rear drive wheel is calculated in a very short time during high speed running with a small steering angle. Accordingly, it is possible to prevent an increase in the amount of calculation in the control device, and to prevent abnormal traveling control due to insufficient processing of the control unit.

以下、本発明に係る無人搬送車の走行制御方法について、図面を参照しながら詳述する。図1は、本発明に係る走行制御方法の制御対象となる無人搬送車の概略構成を示す平面図である。この無人搬送車は、矢印で示す走行方向の中心線上の前側箇所に前駆動輪1が、且つ走行方向の後側左右箇所に後駆動輪2および従動輪3がそれぞれ配置されて、車体4の下面側に配設された三輪車形態の二輪駆動型になっている。前,後駆動輪1,2は、それぞれ前駆動輪駆動モータ7および後駆動輪駆動モータ8によって個々に回転駆動される。前駆動輪駆動モータ7はモータケースを兼ねる操舵部9内に収容されている。   Hereinafter, the traveling control method of the automatic guided vehicle according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of an automatic guided vehicle that is a control target of a traveling control method according to the present invention. This automatic guided vehicle has a front drive wheel 1 disposed at a front side position on a center line in a traveling direction indicated by an arrow, and a rear drive wheel 2 and a driven wheel 3 disposed at left and right rear positions in the traveling direction. It is a two-wheel drive type in the form of a tricycle arranged on the lower surface side. The front and rear drive wheels 1 and 2 are individually driven to rotate by a front drive wheel drive motor 7 and a rear drive wheel drive motor 8, respectively. The front drive wheel drive motor 7 is housed in a steering section 9 that also serves as a motor case.

上記操舵部9は、操舵輪10を回動中心として水平面回りに回動可能に車体4に取り付けられており、操舵輪駆動モータ11の回転がベルト12を介して操舵輪10に伝達されることによって回動される。このとき、前駆動輪1は、操舵部9と一体に回動して向きが変更されるようになっいる。また、操舵部9の前面には、床面に敷設された誘導ライン14を検出するためのラインセンサ13が取り付けられている。したがって、この無人搬送車は、構造上、図8に示したものと同一である。   The steering unit 9 is attached to the vehicle body 4 so as to be rotatable around a horizontal plane with the steering wheel 10 as a rotation center, and the rotation of the steering wheel drive motor 11 is transmitted to the steering wheel 10 via the belt 12. It is rotated by. At this time, the front drive wheel 1 is rotated integrally with the steering unit 9 to change the direction. A line sensor 13 for detecting a guide line 14 laid on the floor surface is attached to the front surface of the steering unit 9. Therefore, this automatic guided vehicle is structurally the same as that shown in FIG.

図2は上記無人搬送車の電気系構成を示す機能ブロックである。同図において、図1と同一若しくは相当するものに同一の符号を付して、重複する説明を省略する。制御装置17におけるCPUからなる制御部18は、RAM19に記憶の制御データに基づきROM20に設定記憶された制御プログラムを実行することにより、無人搬送車全体を制御する。また、制御部18は、テーブル21に予め設定記憶された補正係数を適宜読み出して後駆動輪2の速度指令値を演算し、その演算結果の速度指令値に基づき後駆動輪2の走行速度の制御を行うが、これの詳細については後述する。   FIG. 2 is a functional block showing an electric system configuration of the automatic guided vehicle. In this figure, the same or corresponding parts as in FIG. A control unit 18 including a CPU in the control device 17 controls the entire automatic guided vehicle by executing a control program set and stored in the ROM 20 based on the control data stored in the RAM 19. Further, the control unit 18 appropriately reads the correction coefficient set and stored in advance in the table 21, calculates the speed command value of the rear drive wheel 2, and based on the calculated speed command value, the travel speed of the rear drive wheel 2 is calculated. The control is performed, and details thereof will be described later.

前駆動輪駆動モータ7は、制御部18からの速度指令信号を受けたモータドライバ部22により回転制御され、後駆動輪駆動モータ8は、制御部18からの速度指令信号を受けたモータドライバ部23により回転制御され、さらに、操舵輪駆動モータ11は、制御部18から操舵角指令信号を受けたモータドライバ部24により正,逆方向に所定角度だけ回転制御される。これら各駆動モータ7,8,11が回転駆動されたときには、各々に備えられたエンコーダ7a,8a,11aから出力するエンコーダパルスが対応するモータドライバ部22,23,24にそれぞれ入力される。これらモータドライバ部22,23,24は、入力したエンコーダパルスを自体に内蔵のカウンタで計数して所定の演算を行うことにより、前,後駆動輪1,2および操舵輪10の各々の位置情報信号を算出して制御部18に対し出力する。また、制御部18には、ラインセンサ13から誘導ライン14の検出信号が入力される。   The front drive wheel drive motor 7 is rotationally controlled by a motor driver unit 22 that receives a speed command signal from the control unit 18, and the rear drive wheel drive motor 8 is a motor driver unit that receives a speed command signal from the control unit 18. The steering wheel drive motor 11 is controlled to rotate by a predetermined angle in the forward and reverse directions by the motor driver unit 24 that receives the steering angle command signal from the control unit 18. When these drive motors 7, 8, and 11 are rotationally driven, encoder pulses output from the encoders 7a, 8a, and 11a provided therein are respectively input to the corresponding motor driver units 22, 23, and 24. These motor driver units 22, 23, and 24 count the input encoder pulses with their built-in counters and perform predetermined calculations to thereby obtain positional information on the front, rear drive wheels 1 and 2, and the steered wheels 10, respectively. The signal is calculated and output to the control unit 18. Further, the detection signal of the guide line 14 is input from the line sensor 13 to the control unit 18.

この無人搬送車の通常の直進走行時には、制御部18が制御プログラムを実行しながら制御データに設定記憶された指令速度に基づく速度指令信号をモータドライバ部22,23に対し出力して、前,後駆動輪駆動モータ7,8を互いに同一速度に回転制御する。また、制御部18は、ラインセンサ13から入力する検出信号に基づいて、操舵角指令信号をモータドライバ部24に対し出力する。さらに、制御部18は、車体4の走行方向が誘導ライン14に合致するように修正するための操舵角を算出して、その算出した操舵角に基づく操舵角指令信号をモータドライバ部24に対し出力して、操舵輪駆動モータ11を介して操舵輪10を制御する。これにより、無人搬送車は誘導ラインに沿って自動走行する。   When the automatic guided vehicle travels straight forward, the control unit 18 executes a control program and outputs a speed command signal based on the command speed set and stored in the control data to the motor driver units 22 and 23. The rear drive wheel drive motors 7 and 8 are controlled to rotate at the same speed. Further, the control unit 18 outputs a steering angle command signal to the motor driver unit 24 based on the detection signal input from the line sensor 13. Further, the control unit 18 calculates a steering angle for correcting the traveling direction of the vehicle body 4 so as to match the guide line 14, and sends a steering angle command signal based on the calculated steering angle to the motor driver unit 24. The steering wheel 10 is output and controlled via the steering wheel drive motor 11. Thereby, the automatic guided vehicle travels automatically along the guide line.

つぎに、無人搬送車がコーナー区間などのカーブ走行路に沿って旋回走行する際の制御部18による走行制御について説明する。図3は、無人搬送車がカーブ走行路に沿って旋回走行する場合の走行制御を説明するための図である。同図は、車体がカーブ走行路に沿って左回りに旋回走行する場合を例示してあり、同図において、車体4の走行方向の中心線Sと前駆動輪1とがなす操舵角をθ、後駆動輪2と従動輪3との間隔であるトレッドをT、前駆動輪1と後駆動輪2との間隔であるホィールベースをW、前駆動輪1の走行速度をVf、後駆動輪2の走行速度をVr、車体4における後駆動輪2に対向する中央部の走行速度をVc、前駆動輪1の旋回半径をRf、後駆動輪2の旋回半径をRr、車体4における後駆動輪2に対向する中央部の旋回半径をRcとする。なお、操舵角θは、車体4の中心線Sに対し左回りが正で、右回りが負である。   Next, traveling control by the control unit 18 when the automatic guided vehicle travels along a curved traveling path such as a corner section will be described. FIG. 3 is a diagram for explaining travel control when the automatic guided vehicle travels along a curved travel path. This figure exemplifies a case where the vehicle body turns counterclockwise along a curve traveling path. In the figure, the steering angle formed by the center line S of the traveling direction of the vehicle body 4 and the front drive wheel 1 is represented by θ. The tread that is the distance between the rear drive wheel 2 and the driven wheel 3 is T, the wheel base that is the distance between the front drive wheel 1 and the rear drive wheel 2 is W, the traveling speed of the front drive wheel 1 is Vf, and the rear drive wheel 2 is Vr, the traveling speed of the central portion of the vehicle body 4 facing the rear driving wheel 2 is Vc, the turning radius of the front driving wheel 1 is Rf, the turning radius of the rear driving wheel 2 is Rr, and the rear driving of the vehicle body 4 is performed. Let Rc be the turning radius of the central part facing the wheel 2. The steering angle θ is positive in the counterclockwise direction and negative in the clockwise direction with respect to the center line S of the vehicle body 4.

この実施の形態の走行制御方法では、カーブ走行路に沿った旋回走行時に前、後駆動輪1,2の旋回半径Rf,Rrが相違するのに対して、各々の角速度が等しくなるように、前駆動輪1の走行速度を基準として後駆動輪2の走行速度を補正するように走行制御するものである。したがって、前,後駆動輪1,2における旋回中心Oに対する角速度が等しくなるためには、
dθ/dt=Vf/Rf=Vc/Rc=Vr/Rrの式が成立すればよい。さらに、上記式は、Vc=Vf×(Rc/Rf)=Vfd×cosθに変形できる。さらに、上記式は下記のように変形できる。
In the traveling control method according to this embodiment, the turning radii Rf and Rr of the front and rear drive wheels 1 and 2 are different when turning along a curve traveling path, whereas the angular velocities are equal to each other. Travel control is performed so that the travel speed of the rear drive wheel 2 is corrected with reference to the travel speed of the front drive wheel 1. Therefore, in order for the angular velocities with respect to the turning center O in the front and rear drive wheels 1 and 2 to be equal,
It suffices if the equation dθ / dt = Vf / Rf = Vc / Rc = Vr / Rr holds. Further, the above equation can be transformed to Vc = Vf × (Rc / Rf) = Vfd × cos θ. Furthermore, the above equation can be modified as follows.

Vr=Vc×(Rr/Rc)=(Vf×cosθ)×(Rc−T/2)/Rc=Vf×cosθ×(1−T/2Rc)
一方、tanθ=W/Rcから、Rc=W/tanθであるから、以下の式が成立する。
Vr = Vc × (Rr / Rc) = (Vf × cos θ) × (Rc−T / 2) / Rc = Vf × cos θ × (1−T / 2Rc)
On the other hand, since tan θ = W / Rc and Rc = W / tan θ, the following equation is established.

Vr=Vf×cosθ×〔1−T×tanθ/(2W)〕=Vf〔cosθ−T×sinθ/(2W)〕
すなわち、Vr=Vf〔cosθ−T×sinθ/(2W)〕の式が成立するので、カーブ走行路に沿った旋回走行時の旋回中心Oに対する前,後駆動輪,2の角速度を同一とするための後駆動輪2の走行速度Vr、つまり後駆動輪2の速度指令値は、基準速度となる前駆動輪1の走行速度Vfに、後駆動輪2の前駆動輪1に対する速度比である〔cosθ−T×sinθ/(2W)〕を乗算することにより算出することができる。ここで、トレッドTおよびホィールベースWは無人搬送車に固有のものであるから、〔cosθ−T×sinθ/(2W)〕を補正係数kと置き換えて、種々の操舵角θ毎に補正係数kの値を予め算出しておくことができる。したがって、この実施の形態では、種々の操舵角θ毎の補正係数kの値を予め算出して、その算出した補正係数kの値を操舵角θと関連付けて図2のテーブル21に設定記憶されている。
Vr = Vf × cos θ × [1-T × tan θ / (2 W)] = Vf [cos θ−T × sin θ / (2 W)]
That is, since the equation of Vr = Vf [cos θ−T × sin θ / (2W)] is established, the angular velocities of the front and rear driving wheels 2 with respect to the turning center O when turning along the curve traveling path are made the same. Therefore, the travel speed Vr of the rear drive wheel 2, that is, the speed command value of the rear drive wheel 2, is a speed ratio of the rear drive wheel 2 to the front drive wheel 1 to the travel speed Vf of the front drive wheel 1 serving as a reference speed. It can be calculated by multiplying [cos θ−T × sin θ / (2W)]. Here, since the tread T and the wheel base W are unique to the automatic guided vehicle, [cos θ−T × sin θ / (2 W)] is replaced with the correction coefficient k, and the correction coefficient k for each of various steering angles θ. Can be calculated in advance. Therefore, in this embodiment, the value of the correction coefficient k for each of various steering angles θ is calculated in advance, and the calculated value of the correction coefficient k is set and stored in the table 21 in FIG. 2 in association with the steering angle θ. ing.

つぎに、上記実施の形態の制御部18による走行制御処理について、図4および図5のフローチャートを参照しながら説明する。図4は制御部18による走行制御処理を示すフローチャートである。同図において、制御部18は、図2のモータドライバ部24から入力する位置情報信号に基づき操舵角θを算出する演算を常時行い(ステップS1)、その算出した操舵角θが所定の設定角度、例えば5°よりも大きいか否かの判別を行う(ステップS2)。   Next, the travel control process by the control unit 18 of the above embodiment will be described with reference to the flowcharts of FIGS. FIG. 4 is a flowchart showing the travel control process by the control unit 18. In the figure, the control unit 18 always performs a calculation to calculate the steering angle θ based on the position information signal input from the motor driver unit 24 in FIG. 2 (step S1), and the calculated steering angle θ is a predetermined set angle. For example, it is determined whether the angle is greater than 5 ° (step S2).

一般に、高速走行時は小さな操舵角θで走行し、カーブ走行路に沿った旋回走行時には、高速走行すると遠心力の発生に伴う影響により被搬送物への悪影響の発生や走行制御が難しくなることから、低速走行される。したがって、操舵角θが所定の設定角度と比較して小さい場合には比較的高速度で直進走行されており、操舵角が所定の設定速度と比較して大きい場合には低速度でカーブ走行路に沿った旋回走行を行う。そこで、上記所定の設定角度を高速走行と低速走行とを区別できる操舵角θを設定角度とし、この設定角度と操舵角θとを比較することにより、高速走行または低速走行の何れであるかを区別することができる。   In general, when traveling at a high speed, the vehicle travels with a small steering angle θ, and when traveling along a curved road, traveling at high speeds can cause adverse effects on the transported object and difficult to control due to the effects of centrifugal force. From low speed. Therefore, when the steering angle θ is small compared to the predetermined set angle, the vehicle travels straight at a relatively high speed, and when the steering angle is large compared to the predetermined set speed, the vehicle travels at a low speed. Turn around along. Therefore, the predetermined set angle is a steering angle θ that can distinguish between high-speed running and low-speed running, and the set angle is compared with the steering angle θ to determine whether it is high-speed running or low-speed running. Can be distinguished.

いま、無人搬送車がカーブ走行路に沿って旋回走行を開始したとすると、制御部18は、操舵角θが所定の設定角度よりも大きいと判別するので、低速走行としての制御を行う。続いて、モータドライバ部22から入力する位置情報信号に基づき前駆動輪1の走行速度Vfを算出し(ステップS3)、上述の算出した操舵角θに対応する補正係数kをテーブル21から読み出し(ステップS4)、前駆動輪1の走行速度Vfに補正係数kを乗算する演算を行って、前駆動輪1と後駆動輪2との旋回中心Oに対する各々の角速度を同一とできる後駆動輪2の走行速度Vrである速度指令値を算出する(ステップS5)。   Now, assuming that the automatic guided vehicle starts turning along a curved traveling path, the control unit 18 determines that the steering angle θ is larger than a predetermined set angle, and therefore performs control as low speed traveling. Subsequently, the traveling speed Vf of the front drive wheel 1 is calculated based on the position information signal input from the motor driver unit 22 (step S3), and the correction coefficient k corresponding to the calculated steering angle θ is read from the table 21 ( Step S4), the rear drive wheel 2 that can make the angular velocities of the front drive wheel 1 and the rear drive wheel 2 with respect to the turning center O the same by performing an operation of multiplying the traveling speed Vf of the front drive wheel 1 by the correction coefficient k. A speed command value that is the travel speed Vr of the current is calculated (step S5).

そののち、制御部18は、上記算出した後駆動輪2の速度指令値による速度指令信号をモータドライバ部23に対し出力することにより、後駆動輪駆動モータ8を回転制御して後駆動輪2を上記算出した速度指令値で走行させる。これにより、旋回中心Oに対する前駆動輪1と後駆動輪2との各々の旋回半径Rf,Rrが互いに相違するにも拘わらず、前駆動輪1と後駆動輪2との各々の旋回中心Oに対する速度差がなくなって円滑な旋回走行を行うことができ、走行および操舵の駆動系が過負荷状態となるのが効果的に抑制される。   After that, the control unit 18 outputs a speed command signal based on the calculated speed command value of the rear drive wheel 2 to the motor driver unit 23 to thereby control the rotation of the rear drive wheel drive motor 8 and thereby control the rear drive wheel 2. Is driven at the speed command value calculated above. Thereby, although the turning radii Rf and Rr of the front drive wheel 1 and the rear drive wheel 2 with respect to the turning center O are different from each other, the turning centers O of the front driving wheel 1 and the rear driving wheel 2 are different. Thus, the vehicle can smoothly turn and the driving system for traveling and steering is effectively prevented from being overloaded.

しかも、この走行制御方法では、図8で示したと同様の安価な構成で、且つ図6の無人搬送車に比較して約2.5倍の積載重量の被搬送物を搬送できる無人搬送車に対し、機構上の構成の改造や付設を一切行うことなく、ソフトウェアの変更のみによる走行制御によって効果を得ることができる。   In addition, this traveling control method has an inexpensive configuration similar to that shown in FIG. 8 and an automated guided vehicle capable of transporting an object to be transported having a load weight of about 2.5 times that of the automated guided vehicle of FIG. On the other hand, the effect can be obtained by running control only by software change without any modification or attachment of the structure on the mechanism.

そして、制御部18は、搬送が終了したと判別するまで(ステップS7)、ステップS1にリターンして、上述と同様の制御処理を実行し、高速走行時に操舵角θが設定角度よりも小さいと判別した(ステップS2)ときに、モータドライバ部22から入力する位置情報信号に基づき前駆動輪1の走行速度Vfを算出し(ステップS8)たのち、その算出した走行速度Vfに基づく速度指令信号をモータドライバ部23に対し出力し(ステップS9)て、後駆動輪2の走行速度を前駆動輪1の走行速度と同一となるように制御する(ステップS6)。このように、操舵角θが設定角度よりも小さい場合には、後駆動輪2の速度指令値を算出するための演算を行わないようにしたことにより、高速走行時に後駆動輪2の速度指令値を極めて短時間で演算するときの制御部8での演算量の負担増を無くして、制御部18の処理不足に伴う不正常な走行制御を防止することができる。   Then, the control unit 18 returns to step S1 and executes the same control process as described above until it is determined that the conveyance is finished (step S7), and if the steering angle θ is smaller than the set angle during high speed traveling. When the determination is made (step S2), the traveling speed Vf of the front drive wheel 1 is calculated based on the position information signal input from the motor driver unit 22 (step S8), and then the speed command signal based on the calculated traveling speed Vf. Is output to the motor driver unit 23 (step S9), and the traveling speed of the rear driving wheel 2 is controlled to be the same as the traveling speed of the front driving wheel 1 (step S6). As described above, when the steering angle θ is smaller than the set angle, the calculation of the speed command value for the rear drive wheel 2 is not performed. It is possible to eliminate an increase in the amount of calculation in the control unit 8 when calculating the value in an extremely short time, and to prevent abnormal traveling control due to insufficient processing of the control unit 18.

図5は、走行制御中において新たに走行速度を設定する毎に制御部18において実行される制御処理を示すフローチャートである。同図において、制御部18は、速度設定処理と操舵原点検出処理とを並列処理するのであるが、先ず、速度設定処理について説明する。制御部18は、現在設定速度が指令速度に等しくないか否かを判別し(ステップS11)、等しい場合に、等しくない状態になるのを監視する。そして、制御部18は、現在設定速度が指令速度に等しくないのを判別(ステップS11)した時点で、操舵原点検出フラグがオンであるか否かを判別する(ステップS12)。操舵原点検出フラグがオンであると判別(ステップS12)したとき、または操舵原点検出フラグがオフであると判別(ステップS12)したのちに指令速度が指定低速度と同じか指定低速度よりも小さいと判別したとき(ステップS13)には、指令速度を現在設定速度に設定し(ステップS15)てモータドライバ部22,23を介し前,後駆動輪1,2を指令速度で走行させるよう制御したのち、ステップS11にリターンして、上述と同様の制御処理を繰り返す。   FIG. 5 is a flowchart illustrating a control process executed by the control unit 18 every time a travel speed is newly set during travel control. In the figure, the control unit 18 performs the speed setting process and the steering origin detection process in parallel. First, the speed setting process will be described. The control unit 18 determines whether or not the currently set speed is not equal to the command speed (step S11), and monitors whether the current set speed is not equal when it is equal. Then, the control unit 18 determines whether or not the steering origin detection flag is ON at the time when it is determined that the currently set speed is not equal to the command speed (step S11) (step S12). When it is determined that the steering origin detection flag is on (step S12), or after it is determined that the steering origin detection flag is off (step S12), the command speed is the same as or less than the specified low speed. Is determined (step S13), the command speed is set to the currently set speed (step S15), and the front and rear drive wheels 1 and 2 are controlled to travel at the command speed via the motor driver units 22 and 23. After that, the process returns to step S11 and the same control process as described above is repeated.

また、指令速度が指定低速度よりも大きいと判別したとき(ステップS13)には、指定低速度を現在設定速度に設定し(ステップS14)てモータドライバ部22,23を介し前,後駆動輪1,2を指定低速度で走行するよう制御したのち、ステップS11にリターンして、上述と同様の制御処理を繰り返す。   When it is determined that the command speed is greater than the designated low speed (step S13), the designated low speed is set to the currently set speed (step S14) and the front and rear driving wheels are set via the motor driver units 22 and 23. After controlling to run 1 and 2 at the designated low speed, the process returns to step S11 and the same control process as described above is repeated.

一方、操舵原点検出処理では、電源がオンされた(ステップS16)時点で操舵原点検出フラグをオフする(ステップS17)。そののち、制御部18は、操舵角θの原点が検出されたか否かを判別し(ステップS18)、操舵角θの原点が検出されるのを待ち、操舵角θの原点が検出されたと判別(ステップS18)した時点で、操舵原点検出フラグをオンに設定し(ステップS19)て、操舵原点検出処理を終了する。   On the other hand, in the steering origin detection process, the steering origin detection flag is turned off (step S17) when the power is turned on (step S16). Thereafter, the control unit 18 determines whether or not the origin of the steering angle θ has been detected (step S18), waits for the origin of the steering angle θ to be detected, and determines that the origin of the steering angle θ has been detected. At the time of (step S18), the steering origin detection flag is set to ON (step S19), and the steering origin detection process is terminated.

上述の制御処理は、速度制御処理中に操舵角の原点検出フラグがオフとなって制御が不安定になった時点で行われる。例えば、本発明の制御対象とする簡易タイプの無人搬送車では、操舵輪駆動モータ11のエンコーダ11aのデータがバッテリ電源のオフ時に消失してしまい、つぎにバッテリ電源が投入された時点で原点検出フラグがオフとなる。その場合には、図5で説明した制御処理を行うことにより、操舵角θを正確に取得できない状態で無人搬送車が高速走行するのを抑制して、指定の低速度で走行させながら可及的速やかに定常の制御処理を行える状態に復帰させることができる。   The control process described above is performed when the steering angle origin detection flag is turned off during the speed control process and the control becomes unstable. For example, in the simple type automatic guided vehicle to be controlled according to the present invention, the data of the encoder 11a of the steering wheel drive motor 11 is lost when the battery power is turned off, and the origin is detected when the battery power is turned on next time. The flag is turned off. In that case, the control process described with reference to FIG. 5 is performed to suppress the automatic guided vehicle from traveling at a high speed in a state where the steering angle θ cannot be accurately acquired, and possible while traveling at a specified low speed. It is possible to quickly return to a state where steady control processing can be performed.

なお、上述の前駆動輪1の走行速度Vfと補正係数kとに基づき算出した後駆動輪2の速度指令値は、被搬送物の積載重量の大小に伴う前、後駆動輪1,2のタイヤ変形量を荷重センサなどにより計測して、そのタイヤ変形量に応じて変化する旋回中心Oに対する旋回半径Rf,Rrの見かけ上の差に基いて補正するようにすれば、さらに円滑な旋回走行を行わせることができる。ここで、荷重計測手段により被搬送物の積載重量を計測して、その計測した積載重量に基づき前,後駆動輪のタイヤ変形量を算出するに際しては、例えば、積載重量に対する前,後駆動輪のタイヤ変形量を予め計測したデータをテーブルに記憶しておき、計測した積載重量に基づきテーブルからタイヤ変形量を読み出すようにすれば、、タイヤ変形量に応じて変化する旋回中心に対する前,後駆動輪の旋回半径の見掛け上の差を容易、且つ正確に算出することができる。さらに、被搬送物の積載重量をロードセルにより計測するようにすれば、被搬送物の積載重量を容易、且つ正確に計測することができる。   Note that the speed command value of the rear drive wheel 2 calculated based on the traveling speed Vf of the front drive wheel 1 and the correction coefficient k described above is the value of the front drive wheel 1 or 2 before and after the load weight of the conveyed object. If the tire deformation amount is measured by a load sensor or the like and corrected based on the apparent difference between the turning radii Rf and Rr with respect to the turning center O that changes in accordance with the tire deformation amount, smoother cornering is possible. Can be performed. Here, when the load weight is measured by the load measuring means and the tire deformation amount of the front and rear drive wheels is calculated based on the measured load weight, for example, the front and rear drive wheels with respect to the load weight are used. If the tire deformation amount is stored in a table in advance and the tire deformation amount is read from the table based on the measured load weight, the front and rear of the turning center that changes according to the tire deformation amount can be obtained. The apparent difference in the turning radius of the drive wheel can be calculated easily and accurately. Furthermore, if the load weight of the conveyed object is measured by the load cell, the loaded weight of the conveyed object can be easily and accurately measured.

一方、前、後駆動輪1,2のタイヤ変形量に応じた補正を行わない場合は、車体4の走行方向の中央部における左右両側箇所に補助輪を設けて、上述した前,後駆動輪1,2の被搬送物の積載重量による変形を防止する手段を講じることが好ましい。   On the other hand, when correction according to the amount of tire deformation of the front and rear drive wheels 1 and 2 is not performed, auxiliary wheels are provided at both the left and right sides in the center of the traveling direction of the vehicle body 4, and the front and rear drive wheels described above are provided. It is preferable to take measures to prevent deformation due to the loaded weight of one or two objects to be conveyed.

なお、以上の実施の形態においては、後側の左右の車輪について、左側を駆動輪2とし、且つ右側を従動輪3とするとともに、左側に旋回走行する場合を例示して説明したが、本発明の権利範囲はこの限りではない。例えば、実施の形態と同様の構成において、右側に旋回走行する場合には、図3における操舵角θがマイナスの場合として算出すればよい。   In the above embodiment, the left and right wheels on the rear side have been described by exemplifying the case where the left side is the drive wheel 2 and the right side is the driven wheel 3 and the vehicle is turning left. The scope of the right of the invention is not limited to this. For example, in the same configuration as that of the embodiment, when turning to the right, the steering angle θ in FIG. 3 may be calculated as a negative value.

また、後側車輪の構成において、右側を駆動輪とし、且つ左側を従動輪としても構わない。その場合、左側への旋回走行および右側への旋回走行をそれぞれ行う際には、後駆動輪2の走行速度を上述の実施の形態の場合とは全く逆の算出方法で行うことになる。さらに、後側の左右両方の車輪が共に駆動輪である構成とすることもできる。   In the configuration of the rear wheel, the right side may be a driving wheel and the left side may be a driven wheel. In that case, when performing a left turn and a right turn, the traveling speed of the rear drive wheel 2 is calculated by a method that is completely opposite to that in the above-described embodiment. Further, both the left and right wheels on the rear side may be drive wheels.

本発明に係る無人搬送車およびこの無人搬送車の走行制御方法によれば、三輪車形態となった二輪駆動方式の簡易タイプの安価な無人搬送車をカーブ走行路に沿って旋回走行させる際に、前駆動輪と後駆動輪との旋回中心に対する角速度が互いに同一となるように後駆動輪の走行速度を可変調節するようにしたので、三輪車形態で二輪駆動方式の簡易タイプの無人搬送車に対し機構上の改造や付設を行わずに、既存の構成を備えた無人搬送車に対しソフトウェア上の変更を施すだけの走行制御を行うだけで、比較的大きな積載重量の被搬送物を支障無く搬送したい場合に好適に適用することができる。   According to the automatic guided vehicle and the traveling control method of the automatic guided vehicle according to the present invention, when a simple and inexpensive automatic guided vehicle of a two-wheel drive system in the form of a tricycle is turned along a curved traveling path, Since the traveling speed of the rear driving wheel is variably adjusted so that the angular speeds of the front driving wheel and the rear driving wheel are the same with respect to the turning center, the two-wheel drive simple type automated guided vehicle is used. Carries a relatively large load to be transported without any trouble by simply performing software control on an automated guided vehicle with an existing configuration without any modification or attachment on the mechanism. It can be suitably applied when desired.

本発明に係る走行制御方法の制御対象となる無人搬送車の概略構成を示す平面図。The top view which shows schematic structure of the automatic guided vehicle used as the control object of the traveling control method which concerns on this invention. 同上の無人搬送車の電気系構成を示す機能ブロック。The functional block which shows the electric system structure of an automatic guided vehicle same as the above. 同上の無人搬送車がカーブ走行路に沿って左側に旋回走行する場合の制御を説明するための図。The figure for demonstrating the control in case an automatic guided vehicle same as the above turns to the left along a curve driving path. 同上の無人搬送車の制御部による走行制御処理を示すフローチャート。The flowchart which shows the traveling control process by the control part of an automatic guided vehicle same as the above. 同上の無人搬送車において新たに走行速度を設定するときの制御処理を示すフローチャート。The flowchart which shows a control process when setting a travel speed newly in the automatic guided vehicle same as the above. 従来の無人搬送車の概略構成を示す平面図。The top view which shows schematic structure of the conventional automatic guided vehicle. 従来の他の無人搬送車の概略構成を示す平面図。The top view which shows schematic structure of the other conventional automatic guided vehicle. 従来のさらに他の無人搬送車の概略構成を示す平面図。The top view which shows schematic structure of the other further conventional automatic guided vehicle.

符号の説明Explanation of symbols

1 前駆動輪
2 後駆動輪
3 従動輪
4 車体
9 操舵部
18 制御部
21 テーブル
S 中心線
θ 操舵角
O 旋回中心
Rf 前駆動輪の旋回半径
Rr 後駆動輪の旋回半径
Vf 前駆動輪の走行速度
Vr 後駆動輪の走行速度
T トレッド
W ホィールベース
DESCRIPTION OF SYMBOLS 1 Front drive wheel 2 Rear drive wheel 3 Driven wheel 4 Car body 9 Steering part 18 Control part 21 Table S Center line (theta) Steering angle O Turning center Rf Turning radius of front driving wheel Rr Turning radius of rear driving wheel Vf Running of front driving wheel Speed Vr Travel speed of rear drive wheel T Tread W Wheel base

Claims (12)

車体の走行方向の中心線上の前側箇所に配設された前駆動輪と、走行方向の後 側左右両側箇所のそれぞれに配設され、少なくとも一方を後駆動輪とする車輪とを備え、前記前駆動輪にのみ操舵部が設けられた無人搬送車の走行を制御する方法であって、
カーブ走行路に沿って旋回走行をする際に、前記前駆動輪と前記後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の速度指令値を算出し、
この算出した速度指令値に基づき前記後駆動輪を走行制御することを特徴とする無人搬送車の走行制御方法。
A front drive wheel disposed at a front position on a center line in a traveling direction of the vehicle body, and a wheel disposed at each of both left and right rear positions in the traveling direction, at least one of which is a rear drive wheel. A method for controlling the travel of an automated guided vehicle in which a steering unit is provided only on a drive wheel,
Calculating a speed command value of the rear drive wheel that makes the angular velocities of the front drive wheel and the rear drive wheel the same with respect to the turn center when making a turn along a curve travel path;
A traveling control method for an automatic guided vehicle, wherein traveling control of the rear drive wheel is performed based on the calculated speed command value.
前記前駆動輪の操舵角を検出し、その検出した操舵角に対応して異なる前記前駆動輪と後駆動輪との旋回中心に対する各々の旋回半径の比と前記前駆動輪の走行速度とに基いて、後駆動輪の速度指令値を算出するようにした請求項1に記載の無人搬送車の走行制御方法。   The steering angle of the front driving wheel is detected, and the ratio of the respective turning radii to the turning center of the front driving wheel and the rear driving wheel which differ according to the detected steering angle and the traveling speed of the front driving wheel are determined. 2. The traveling control method for an automatic guided vehicle according to claim 1, wherein a speed command value for the rear driving wheel is calculated based on the driving speed. 操舵角が所定の設定角度よりも大きいか否かの判別を行い、その判別結果が前記設定角度よりも小さい場合に、前駆動輪と後駆動輪とを同一の走行速度で走行させるように制御し、
前記判別結果が前記設定角度よりも大きい場合に、前記前駆動輪と前記後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の指令速度値を算出して、
その算出した速度指令値に基いて前記後駆動輪を走行制御するようにした請求項1または2に記載の無人搬送車の走行制御方法。
It is determined whether or not the steering angle is larger than a predetermined setting angle, and when the determination result is smaller than the set angle, control is performed so that the front driving wheel and the rear driving wheel are driven at the same traveling speed. And
When the determination result is larger than the set angle, calculate a command speed value of the rear drive wheel, the angular speed of the front drive wheel and the rear drive wheel with respect to the turning center being the same,
The traveling control method for an automatic guided vehicle according to claim 1 or 2, wherein traveling control of the rear drive wheel is performed based on the calculated speed command value.
前駆動輪と後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の走行速度である速度指令値を前記前駆動輪の走行速度を基準速度として求めるための補正係数を、異なる操舵角毎に予め算出してテーブルに記憶しておき、
カーブ走行路に沿って旋回走行するときに、前記前駆動輪の走行速度と操舵角とを検出したしたのち、その算出した操舵角に対応する補正係数を前記テーブルから読み出し、
前記前駆動輪の走行速度と補正係数とに基づく演算を行って前記後駆動輪の速度指令値を算出するようにした請求項1ないし3の何れかに記載の無人搬送車の走行制御方法。
A different correction coefficient is used to obtain a speed command value, which is a traveling speed of the rear driving wheel having the same angular velocity with respect to the turning center of the front driving wheel and the rear driving wheel, using the traveling speed of the front driving wheel as a reference speed. Calculate in advance for each corner and store it in the table.
When the vehicle travels along a curved road, after detecting the traveling speed and steering angle of the front drive wheel, the correction coefficient corresponding to the calculated steering angle is read from the table,
The traveling control method for an automatic guided vehicle according to any one of claims 1 to 3, wherein a calculation based on a traveling speed of the front driving wheel and a correction coefficient is performed to calculate a speed command value for the rear driving wheel.
操舵角をθ、後駆動輪と従動輪との間隔であるトレッドをT、前駆動輪と前記後駆動輪との間隔であるホィールベースをW、前記前駆動輪の走行速度をVfとしたときに、異なる各前記操舵角θ毎の補正係数を、
Vf×〔cosθ−T×sinθ/(2W)〕の式から予め算出してテーブルに設定記憶するようにした請求項4に記載の無人搬送車の走行制御方法。
When the steering angle is θ, the tread that is the distance between the rear drive wheel and the driven wheel is T, the wheel base that is the distance between the front drive wheel and the rear drive wheel is W, and the traveling speed of the front drive wheel is Vf The correction coefficient for each different steering angle θ is
5. The traveling control method for an automatic guided vehicle according to claim 4, wherein the traveling control method is calculated in advance from an equation of Vf × [cos θ−T × sin θ / (2W)] and set and stored in a table.
無人搬送車への電源投入時または無人搬送車の走行が不安定になったときに、操舵角が原点に復帰したのを検出したか否かの判別を行い、原点復帰を検出するまで、前駆動輪および後駆動輪を予め設定した低速度でそれぞれ走行させる制御を行うようにした請求項1ないし5の何れかに記載の無人搬送車の走行制御方法。   When turning on the power to the automated guided vehicle or when the automated guided vehicle becomes unstable, it is determined whether the steering angle has been restored to the origin. The traveling control method for an automatic guided vehicle according to any one of claims 1 to 5, wherein the driving wheels and the rear driving wheels are each controlled to travel at a preset low speed. 被搬送物の積載重量の大小に伴って変化する前,後駆動輪のタイヤ変形量を求めたのち、そのタイヤ変形量に応じて変化する旋回中心に対する前記前,後駆動輪の旋回半径の見掛け上の差を算出し、前記前駆動輪の走行速度に基づき算出した後駆動輪の指令速度値を、前記算出した旋回半径の見掛け上の差に基づいて補正するようにした請求項5ないし6の何れに記載の無人搬送車の走行制御方法。   After determining the tire deformation amount of the front and rear drive wheels before changing with the load weight of the conveyed object, the apparent turning radius of the front and rear drive wheels with respect to the turning center that changes according to the tire deformation amount 7. The difference in the above is calculated, and the command speed value of the rear drive wheel calculated based on the traveling speed of the front drive wheel is corrected based on the apparent difference in the calculated turning radius. The driving control method for an automatic guided vehicle according to any one of the above. 荷重計測手段により被搬送物の積載重量を計測して、その計測した積載重量に基づき前,後駆動輪のタイヤ変形量を算出するようにした請求項7に記載の無人搬送車の走行制御方法。   8. A traveling control method for an automatic guided vehicle according to claim 7, wherein a load weight of the object to be conveyed is measured by a load measuring means, and a tire deformation amount of the front and rear drive wheels is calculated based on the measured load weight. . 被搬送物の積載重量をロードセルにより計測するようにした請求項8に記載の無人搬送車の走行制御方法。   The traveling control method for an automatic guided vehicle according to claim 8, wherein the load weight of the object to be conveyed is measured by a load cell. 車体の走行方向の中心線上の前側箇所に配設された前駆動輪と、
走行方向の後側左右両側箇所のそれぞれに配設され、少なくとも一方を後駆動輪とする車輪と、
前記前駆動輪にのみ設けられた操舵部と、
カーブ走行路に沿って旋回走行をする際に、前記前駆動輪と前記後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の速度指令値を算出して、前記算出した速度指令値に基づき走行制御する前記後駆動輪を制御装置とを備えていることを特徴とする無人搬送車。
A front drive wheel disposed at a front location on the center line in the traveling direction of the vehicle body;
A wheel disposed at each of the left and right sides on the rear side in the running direction, and at least one of the wheels as a rear drive wheel;
A steering section provided only on the front drive wheel;
When the vehicle travels along a curved traveling path, the speed command value of the rear drive wheel is calculated so that the angular speeds of the front drive wheel and the rear drive wheel are the same with respect to the turning center, and the calculated speed command is calculated. An automatic guided vehicle comprising: a control device that controls the rear driving wheel that controls traveling based on a value.
制御装置は、前駆動輪の操舵角を検出し、その検出した操舵角に対応して異なる前記前駆動輪と後駆動輪との旋回中心に対する各々の旋回半径の比と前記前駆動輪の走行速度とに基いて、後駆動輪の速度指令値を算出するよう構成されている請求項10に記載の無人搬送車   The control device detects the steering angle of the front driving wheel, and the ratio of the respective turning radii with respect to the turning center of the front driving wheel and the rear driving wheel which differ according to the detected steering angle and the traveling of the front driving wheel The automatic guided vehicle according to claim 10, wherein the automatic guided vehicle is configured to calculate a speed command value of the rear drive wheel based on the speed. 制御装置は、操舵角が所定の設定角度よりも大きいか否かの判別を行い、その判別結果が前記設定角度よりも小さい場合に、前駆動輪と後駆動輪とを同一の走行速度で走行させるように制御し、且つ前記判別結果が前記設定角度よりも大きい場合に、前記前駆動輪と前記後駆動輪との旋回中心に対する角速度が同一となる前記後駆動輪の指令速度値を算出して、その算出した速度指令値に基いて前記後駆動輪を走行制御するよ構成されている請求項10または11に記載の無人搬送車。   The control device determines whether or not the steering angle is larger than a predetermined set angle, and when the determination result is smaller than the set angle, the front drive wheel and the rear drive wheel travel at the same travel speed. When the determination result is larger than the set angle, the command speed value of the rear drive wheel is calculated so that the angular speeds of the front drive wheel and the rear drive wheel with respect to the turning center are the same. The automatic guided vehicle according to claim 10 or 11, wherein traveling control of the rear drive wheel is performed based on the calculated speed command value.
JP2003300977A 2003-08-26 2003-08-26 Automatic guided transport vehicle and method for controlling travel thereof Pending JP2005071128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300977A JP2005071128A (en) 2003-08-26 2003-08-26 Automatic guided transport vehicle and method for controlling travel thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300977A JP2005071128A (en) 2003-08-26 2003-08-26 Automatic guided transport vehicle and method for controlling travel thereof

Publications (1)

Publication Number Publication Date
JP2005071128A true JP2005071128A (en) 2005-03-17

Family

ID=34405732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300977A Pending JP2005071128A (en) 2003-08-26 2003-08-26 Automatic guided transport vehicle and method for controlling travel thereof

Country Status (1)

Country Link
JP (1) JP2005071128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256941A (en) * 2009-04-21 2010-11-11 Meidensha Corp Steering drive method and device for automated guided vehicle
EP2727448A1 (en) * 2012-10-30 2014-05-07 Deere & Company Walk behind aerator hydrostatic traction drive system
JP2020510927A (en) * 2017-09-30 2020-04-09 ベイジン ギークプラス テクノロジー カンパニー リミテッド Automatic transport unit, its motion control method, device, and automatic sorting system
CN113050713A (en) * 2021-03-08 2021-06-29 浙江中力机械股份有限公司 Handle control method and system of double-wheel differential-drive electric truck

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256941A (en) * 2009-04-21 2010-11-11 Meidensha Corp Steering drive method and device for automated guided vehicle
EP2727448A1 (en) * 2012-10-30 2014-05-07 Deere & Company Walk behind aerator hydrostatic traction drive system
JP2020510927A (en) * 2017-09-30 2020-04-09 ベイジン ギークプラス テクノロジー カンパニー リミテッド Automatic transport unit, its motion control method, device, and automatic sorting system
US11353876B2 (en) 2017-09-30 2022-06-07 Beijing Geekplus Technology Co., Ltd. Automatic conveyor unit, motion control method and apparatus therefor, and automatic sorting system
CN113050713A (en) * 2021-03-08 2021-06-29 浙江中力机械股份有限公司 Handle control method and system of double-wheel differential-drive electric truck
CN113050713B (en) * 2021-03-08 2023-12-05 浙江中力机械股份有限公司 Handle control method and system of double-wheel differential drive electric carrier

Similar Documents

Publication Publication Date Title
JP2008040936A (en) Traveling control device of automated guided vehicle
JP4264399B2 (en) Automated guided vehicle
JP2005071128A (en) Automatic guided transport vehicle and method for controlling travel thereof
JP2009223573A (en) Travel mode switching control device and method for unmanned carrier
JP2940300B2 (en) Direction indication method for autonomous guided vehicle
JP5134402B2 (en) Route change method and route change device for automated guided vehicle
JP2011123822A (en) Transfer vehicle and program
JPH05333928A (en) Back traveling control method for unmanned carrier
JP3896941B2 (en) ELECTRIC INDUSTRIAL VEHICLE TRAVEL CONTROL DEVICE AND TRAVEL CONTROL METHOD
JP7509073B2 (en) Autonomous Vehicles
JPS61259307A (en) Unmanned carrier
JP3804235B2 (en) Automated guided vehicle
JP5134403B2 (en) Automated guided vehicle, control method thereof, and driving line of automated guided vehicle
JPS6081611A (en) Unmanned carrier car
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP5346736B2 (en) Route change device and route change method for automated guided vehicle
WO2023189180A1 (en) Vehicle control device and program
JPH11161335A (en) Control system for automated guided vehicle
JP3630592B2 (en) Handling equipment
JP2002373023A (en) Automatically guided cargo vehicle
JP2002297240A (en) Automated guided vehicle
JP2814823B2 (en) Attitude control device of unmanned forklift
JP3198056B2 (en) Cargo handling vehicle
JP6076292B2 (en) Automatic guided vehicle, control device and control method thereof
JPH1011139A (en) Method and device for controlling steering of unmanned carrier