JPH022802A - Reverse-osmosis separation membrane treating device - Google Patents
Reverse-osmosis separation membrane treating deviceInfo
- Publication number
- JPH022802A JPH022802A JP14221888A JP14221888A JPH022802A JP H022802 A JPH022802 A JP H022802A JP 14221888 A JP14221888 A JP 14221888A JP 14221888 A JP14221888 A JP 14221888A JP H022802 A JPH022802 A JP H022802A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- layer
- separation
- water
- separation membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 96
- 238000000926 separation method Methods 0.000 title claims abstract description 43
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000001301 oxygen Substances 0.000 claims abstract description 22
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 22
- 229920000642 polymer Polymers 0.000 claims abstract description 14
- 238000007872 degassing Methods 0.000 claims description 32
- -1 polydimethylsiloxane Polymers 0.000 abstract description 13
- 239000004205 dimethyl polysiloxane Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 abstract description 7
- 229920000728 polyester Polymers 0.000 abstract description 3
- 229920002301 cellulose acetate Polymers 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000035699 permeability Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、電子工業や製薬工業などに用いる超純水など
を得るための、水の純化処理技術に関する。さらに詳し
くは、供給水を逆浸透分離膜モジュールと、脱気膜モジ
ュールとで処理し、供給水の軟水化をし、かつ溶存ガス
を除去する逆浸透分離膜処理装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to water purification technology for obtaining ultrapure water and the like for use in the electronic industry, pharmaceutical industry, and the like. More specifically, the present invention relates to a reverse osmosis separation membrane treatment device that processes feed water using a reverse osmosis separation membrane module and a degassing membrane module, softens the feed water, and removes dissolved gas.
[従来の技術]
逆浸透分離膜処理装置は原水中の塩類、微粒子、有機化
合物などを有効に排除する手段として有用である。その
ため電子工業や製薬工業、原子力発電など多くの用途で
実用化されている。しかし逆浸透膜では原水中の溶存酸
素や炭酸などの気体を除去することができず、この溶存
気体が多いと好ましくない問題を発生させる。したがっ
てこの溶存気体を除去するため、従来から真空槽を用い
た例(特開昭58〜14905号公報、特開昭58−1
01784号公報、特開昭58−186490号公報な
ど)、多孔質の脱気膜を用いた例(実開昭57−357
95号公報、特開昭62−273095号公報)など、
いくつかの技術が提案されている。[Prior Art] A reverse osmosis separation membrane treatment device is useful as a means for effectively removing salts, fine particles, organic compounds, etc. from raw water. Therefore, it has been put into practical use in many applications such as the electronic industry, pharmaceutical industry, and nuclear power generation. However, reverse osmosis membranes cannot remove gases such as dissolved oxygen and carbonic acid from raw water, and undesirable problems occur when there are a large amount of these dissolved gases. Therefore, in order to remove this dissolved gas, vacuum chambers have been conventionally used (JP-A-58-14905, JP-A-58-1).
01784, Japanese Unexamined Patent Publication No. 58-186490, etc.), examples using porous degassing membranes (Japanese Utility Model Application No. 57-357, etc.)
No. 95, Japanese Unexamined Patent Publication No. 62-273095), etc.
Several techniques have been proposed.
[発明が解決しようとする課題]
しかし、前記した真空脱気槽を用いる例にあってはコス
トが高く小型化できないという問題点があった。[Problems to be Solved by the Invention] However, in the case of using the vacuum degassing tank described above, there is a problem that the cost is high and miniaturization is not possible.
また従来の多孔質膜を用いた脱気膜処理は、細孔の間に
いわゆる水垢や無機物、その他の固形物が付着しやすく
、このような夾雑物が付着すると、目詰まりが起きたり
、細孔付近が親水化して水が透過しやすくなるという問
題点があった。In addition, with conventional degassing membrane treatment using porous membranes, so-called water scale, inorganic substances, and other solid substances tend to adhere between the pores. There was a problem in that the vicinity of the pores became hydrophilic, making it easier for water to pass through.
本発明は、このような従来の欠点を解消するものであっ
て、脱気膜として、少なくとも多孔質支持体層と、その
上に設けた高分子均質層または緻密層からなる気体骨!
膜、もしくはその中間体を使用し、これと逆浸透膜とを
直列に配置することにより、全体として比較的小型で、
かつ安価な逆浸透分離膜装置を提供することを目的とし
ている。The present invention solves these conventional drawbacks, and uses a gas bone as a degassing membrane consisting of at least a porous support layer and a homogeneous polymer layer or a dense layer provided thereon!
By using a membrane or its intermediate and arranging it and a reverse osmosis membrane in series, the overall system is relatively small.
The purpose of the present invention is to provide an inexpensive reverse osmosis separation membrane device.
[課題を解決するための手段] 上記目的を達成するため本発明は下記の構成からなる。[Means to solve the problem] In order to achieve the above object, the present invention consists of the following configuration.
「(1) 逆浸透分離膜モジュールと、脱気膜モジュ
ールとを、被処理水ラインに直列に設けた分離膜処理装
置において、前記脱気膜は少なくとも多孔質支持体層と
、その上に設けた高分子均質層または緻密層からなるこ
とを特徴とする分離膜処理装置。(1) In a separation membrane treatment device in which a reverse osmosis separation membrane module and a degassing membrane module are installed in series in a water line to be treated, the degassing membrane is provided on at least a porous support layer and a porous support layer. A separation membrane processing device comprising a homogeneous polymer layer or a dense layer.
(2) 脱気膜の酸素分離係数αが1.3以上である
ことを特徴とする請求項第(1)項の分離膜処理装置[
ただしα=QO2/QN2を示す]。(2) The separation membrane treatment apparatus according to claim (1), wherein the degassing membrane has an oxygen separation coefficient α of 1.3 or more.
However, α=QO2/QN2].
(3) 逆浸透膜を用いた分離装置の濃縮水流出側に
エゼクタの駆動水側を接続するとともに、脱気膜を用い
た脱気装置の吸引配管にエゼクタの吸引側を接続し、逆
浸透装置の濃縮水の残圧を用いて脱気装置を真空にする
ことを特徴とする請求項第(1)項の分離膜処理装置。(3) Connect the driving water side of the ejector to the concentrated water outflow side of the separation device that uses a reverse osmosis membrane, and connect the suction side of the ejector to the suction piping of the deaeration device that uses a degassing membrane. The separation membrane treatment apparatus according to claim 1, wherein the deaerator is evacuated using the residual pressure of the concentrated water in the apparatus.
」
逆浸透分離膜モジュールに使用される逆浸透膜としては
いかなるものも用いることができる。たとえば酢酸セル
ロース系非対称性膜、ポリアミド系複合合成膜(例えば
、特開昭62−121603号公報、特開昭62−20
1606号公報、特開昭55−147106号公報)等
が例示される。” Any reverse osmosis membrane can be used for the reverse osmosis separation membrane module. For example, cellulose acetate-based asymmetric membranes, polyamide-based composite synthetic membranes (for example, JP-A-62-121603, JP-A-62-20)
1606, JP-A-55-147106), etc.
逆浸透分離膜モジュールの形態としてはいかなるタイプ
のものであってもよく、スパイラルモジュール、中空糸
モジュール、あるいは平膜モジュール等が例示される。The reverse osmosis separation membrane module may be of any type, such as a spiral module, hollow fiber module, or flat membrane module.
脱気膜モジュールの脱気膜は、少なくとも多孔質支持体
層と、その上に設けた高分子均質層または緻密層からな
る。図面を用いてそのモデルを示すと、第1図のように
なる。すなわち第1図の番号1は高分子均質層または緻
密層を示し、番号2は多孔質支持体層である。多孔質支
持体層2の下には、平膜の場合はタフタ織物などの補強
層があるのが好ましいが、中空糸の場合はとくに補強層
は必要でない、高分子均質層とは、多孔質支持体層2の
高分子材料と同一、または別な高分子材料で構成される
層をいい、少なくとも2層を別々に製造するものをいう
、緻密層とは、多孔質支持体層2の高分子材料と同じ高
分子材料で構成される層をいい、1工程で製造するもの
をいう。The degassing membrane of the degassing membrane module consists of at least a porous support layer and a polymer homogeneous layer or dense layer provided thereon. The model is shown in Figure 1 using a drawing. That is, number 1 in FIG. 1 indicates a polymer homogeneous layer or dense layer, and number 2 indicates a porous support layer. In the case of a flat membrane, it is preferable to have a reinforcing layer such as taffeta fabric under the porous support layer 2, but in the case of hollow fibers, a reinforcing layer is not particularly necessary. A dense layer refers to a layer made of the same polymeric material as that of the support layer 2 or a different polymeric material, and refers to a layer in which at least two layers are manufactured separately. A layer made of the same polymeric material as the molecular material, and manufactured in one process.
前記において多孔質支持体層の好ましい高分子としては
、ポリエステル、ポリアミド、ポリオレフィン、ポリア
クリレート、ポリメタクリレート、テフロン(ポリ4フ
ツ化エチレン)、シリコーン、ポリスルホン、ポリカー
ボネートなどが例示される。このうちとくに好ましくは
ポリスルホン、またはポリプロピレンである。多孔質支
持体層の厚さは任意のものとすることができる。好まし
くは数ミクロン−数mmである。多孔質支持体の空隙率
は10〜80%程度のものがよい。この多孔質支持体を
製造するには、−例としてポリエーテルスルホンを挙げ
ると、ジメチルポルムアミドなどの溶媒を用いてキャス
ト製°膜し、次いで水の中で溶媒を除去することにより
得られる。Preferred polymers for the porous support layer include polyester, polyamide, polyolefin, polyacrylate, polymethacrylate, Teflon (polytetrafluoroethylene), silicone, polysulfone, polycarbonate, and the like. Among these, polysulfone or polypropylene is particularly preferred. The thickness of the porous support layer can be arbitrary. Preferably it is several microns to several mm. The porous support preferably has a porosity of about 10 to 80%. This porous support can be produced by casting membranes using a solvent such as dimethylpolamide, and then removing the solvent in water, to take polyethersulfone as an example.
多孔質支持体は高分子均質膜または緻密膜を支持する機
能をはなすもので、表面の孔の大きさが約10大〜50
00人、好ましくは約10人〜1000人である。また
、気体の透過抵抗になりにくいように非対称構造を持つ
ことが好ましい。気体透過性としては、窒素透過速度で
10t−rlffi/T12・hr/atm )以上の
ものが好ましい。The porous support functions to support a homogeneous polymer membrane or a dense membrane, and the size of the pores on the surface is approximately 10 to 50.
00 people, preferably about 10 to 1000 people. In addition, it is preferable to have an asymmetric structure so that gas permeation resistance is less likely to occur. As for gas permeability, a nitrogen permeation rate of 10 t-rlffi/T12·hr/atm or more is preferable.
次に高分子均質層または緻密層の好ましい材料としては
、酸素透過係数P が、1×10−8(cm3− c
m/cm2− cmHg −sec )以上の高分子で
ある。Next, a preferable material for the polymer homogeneous layer or dense layer has an oxygen permeability coefficient P of 1 x 10-8 (cm3-c
m/cm2-cmHg-sec) or higher.
かかる高分子の具体例としては、ポリオルガノシロキサ
ン、架橋型ポリオルガノシロキサン、ポリオルガノシロ
キサン/ポリカーボネート共重合体、ポリオルガノシロ
キサン/ポリフェニレン共重合体、ポリオルガノシロキ
サン/ポリスチレン共重合体、ポリトリメチルシリルプ
ロピンなどが挙げられる。この中でも、機械的強度が高
く酸素透過係数が大きいという点で、架橋型ポリジメチ
ルシロキサンが最も好ましい。この架橋型ポリジメチル
シロキサンは、製法によって、得られる薄膜の性能が異
なり、特開昭60−257803、特願昭61−602
72、特願昭61−59269に記載されている製法に
従って得られた架橋型ポリジメチルシロキサンの薄膜が
気体透過性に優れ、ピンホールが少ないため好ましい。Specific examples of such polymers include polyorganosiloxane, crosslinked polyorganosiloxane, polyorganosiloxane/polycarbonate copolymer, polyorganosiloxane/polyphenylene copolymer, polyorganosiloxane/polystyrene copolymer, and polytrimethylsilylpropyne. Examples include. Among these, crosslinked polydimethylsiloxane is most preferred because it has high mechanical strength and a large oxygen permeability coefficient. The performance of the thin film obtained from this crosslinked polydimethylsiloxane differs depending on the manufacturing method.
A thin film of crosslinked polydimethylsiloxane obtained according to the manufacturing method described in No. 72 and Japanese Patent Application No. 61-59269 is preferred because it has excellent gas permeability and fewer pinholes.
これらは酸素分離係数α[ただし、α=QO2/QN2
]か高いからである。たとえばポリシロキサンはα=2
.0〜2.1、ポリ(4−メチル−1−ペンテン)はα
=4.0、ポリスチレンはα=8.5、ニトロセルロー
スはα10.0である。また緻密層としてはエチルセル
ロースなどを用いることができる。These are the oxygen separation coefficient α [where α=QO2/QN2
] Because it is expensive. For example, polysiloxane α=2
.. 0 to 2.1, poly(4-methyl-1-pentene) is α
=4.0, polystyrene α=8.5, and nitrocellulose α10.0. Moreover, ethyl cellulose or the like can be used as the dense layer.
多孔質支持体上に架橋型ポリジメチルシロキサンから成
る均質膜を設ける方法としては、具体的には下記のイ〜
ハに示すような方法がある。Specifically, the method for providing a homogeneous membrane made of cross-linked polydimethylsiloxane on a porous support is as follows.
There is a method as shown in c.
イ、特開昭60−257803に示されている、末端に
シラノール基を有するポリジメチルシロキサンと四官能
以上のシラン架橋剤、または四官能以上のシロキサン架
橋剤を溶媒に混合して得られた溶液を多孔質支持体上に
塗工して得る方法。B. A solution obtained by mixing polydimethylsiloxane having a silanol group at the end with a tetrafunctional or higher functional silane crosslinking agent, or a tetrafunctional or higher functional siloxane crosslinking agent as shown in JP-A No. 60-257803. A method obtained by coating on a porous support.
口、特願昭61−60272で示されている、側鎖の末
端がアミノ変成されたポリオルガノシロキサンと、側鎖
の末端がインシアネ−1・変成されたポリオルガノシロ
キサンを溶媒に混合して得られた溶液を多孔質支持体上
に塗工して得る方法。This is obtained by mixing a polyorganosiloxane in which the end of the side chain is amino-modified and a polyorganosiloxane in which the end of the side chain is incyane-1 modified, as shown in Japanese Patent Application No. 61-60272. A method in which the solution is coated onto a porous support.
ハ、特願昭61−59269で示されている、側鎖の末
端がシラノール変成されたポリオルガノシロキサンとシ
ラン架橋剤またはシロキサン架橋剤を溶媒に混合した溶
液を多孔質支持体上に塗工して得る方法。C. Coating a solution of a polyorganosiloxane whose side chain ends have been modified with silanol and a silane crosslinking agent or a siloxane crosslinking agent in a solvent as shown in Japanese Patent Application No. 61-59269 onto a porous support. How to get it.
高分子均質膜または緻密膜の膜厚は、気体透過性の点で
、薄いほど好ましいが、ピンホールの発生を考え合せる
と極度に薄いものは適当ではない。The thinner the polymer homogeneous membrane or dense membrane is, the more preferable it is from the viewpoint of gas permeability, but it is not appropriate to make it extremely thin in view of the occurrence of pinholes.
上記記載された製法に従えば、膜厚が0.1μm程度ま
でピンホールフリーの薄膜を作成することが可能である
ため011μmに近いほど好ましい。According to the manufacturing method described above, it is possible to create a pinhole-free thin film with a thickness of about 0.1 μm, so it is preferable that the thickness be closer to 0.1 μm.
本発明の脱気膜全体としては、気体を透過させる膜であ
ればいかなる膜でもよい。たとえば、酸素濃縮膜を例に
とると、酸素分離係数αが1.3以上であることが好ま
しい。分離効率が高いからである。酸素分離係数αは1
.5以上であればさらに好ましく、とくには2.0以上
である。参考までに従来技術の多孔質の脱気膜の酸素分
離係数αは1.0またはそれ以下のものである。The entire degassing membrane of the present invention may be any membrane that allows gas to permeate therethrough. For example, taking an oxygen concentrating membrane as an example, it is preferable that the oxygen separation coefficient α is 1.3 or more. This is because separation efficiency is high. Oxygen separation coefficient α is 1
.. It is more preferable if it is 5 or more, particularly 2.0 or more. For reference, the oxygen separation coefficient α of the porous degassing membrane of the prior art is 1.0 or less.
前記した多孔質支持体と高分子均質層の組み合わせの代
表的例としては、特開昭53−86684号公報があり
、多孔質支持体と緻密層の組み合わせの例としては、特
開昭52−55719号公報、特開昭58−95525
号公報などがある。A typical example of a combination of a porous support and a homogeneous polymer layer is JP-A-53-86684, and an example of a combination of a porous support and a dense layer is JP-A-52-86684. Publication No. 55719, JP 58-95525
There are publications, etc.
本発明においてこのような気体分離膜、とくに酸素濃縮
膜を用いるのは、水中の溶存酸素を特異的に除去できる
からである。たとえば多孔質支持体にポリスルホンを用
い、高分子均質層にポリシロキサンを用いた脱気膜を用
いて、40 torr程度の減圧で、原水中の溶存酸素
は1/8程度以下に減少する。The reason why such a gas separation membrane, particularly an oxygen concentrator membrane, is used in the present invention is that dissolved oxygen in water can be specifically removed. For example, by using a degassing membrane using polysulfone as the porous support and polysiloxane as the polymer homogeneous layer, dissolved oxygen in raw water is reduced to about 1/8 or less by reducing the pressure to about 40 torr.
従来酸素濃縮膜の濃縮の原理は、空気中の酸素をいった
ん膜中に溶解し、これを透過側に拡散するという考えか
たが定説である。したがってこの膜を水中の脱気に使用
しても、飽和水蒸気中のわずかな溶存酸素の除去は分離
効率が悪いと考えるのが普通の当業者の予想である。し
かしながら実際は前記のとおり極めて分離効率がよく、
さらに長期安定性に優れるという予期できない効果を奏
することがわかった。The conventional principle of concentrating oxygen concentrating membranes is that oxygen in the air is once dissolved in the membrane and then diffused to the permeate side. Therefore, it is expected by those skilled in the art that even if this membrane is used for degassing water, the removal efficiency of a small amount of dissolved oxygen in saturated steam will be poor. However, in reality, as mentioned above, the separation efficiency is extremely high;
Furthermore, it was found that it has an unexpected effect of being excellent in long-term stability.
このような脱気膜モジュールの形態として、スパイラル
モジュール、中空系モジュール、あるいは平膜モジュー
ル等が例示される。Examples of the form of such a degassing membrane module include a spiral module, a hollow module, and a flat membrane module.
上述したような、逆浸透分離膜モジュールおよび脱気膜
モジュールは、被処理水ラインに直列に設けられる限り
、いずれのモジュールが上流側に置かれてもよい。As long as the reverse osmosis separation membrane module and the deaeration membrane module as described above are provided in series in the water line to be treated, either module may be placed on the upstream side.
さらに本発明においては、逆浸透膜を用いた分離装置の
濃縮水流出側にエゼクタの駆動水側を接続するとともに
、脱気膜を用いな脱気装置の吸引配管にエゼクタの吸引
側を接続し、逆浸透装置の濃縮水の残圧を用いて脱気装
置を真空にすることが好ましい。回収エネルギーを有効
に使えるからである。Furthermore, in the present invention, the driving water side of the ejector is connected to the concentrated water outflow side of the separation device using a reverse osmosis membrane, and the suction side of the ejector is connected to the suction piping of the deaeration device using a degassing membrane. Preferably, the residual pressure of concentrated water in the reverse osmosis device is used to evacuate the degassing device. This is because the recovered energy can be used effectively.
本発明に係る純水用脱気装置は、被処理水中の炭酸ガス
等を除去して、本装置に接続される後段のイオン交換器
の負荷を軽減させたり、薬液の処理を軽減または省略で
きる用途の他、水中の溶存ガスを除去して無泡水を製造
する用途等に用いられる。The deaerator for pure water according to the present invention can remove carbon dioxide gas, etc. from the water to be treated, reduce the load on the ion exchanger connected to the device in the subsequent stage, and reduce or omit the processing of chemical solutions. In addition to other uses, it is also used to remove dissolved gases from water to produce bubble-free water.
[実施例] 以下の実施例によって本発明をさらに詳細に説明する。[Example] The invention will be explained in further detail by the following examples.
膜性能の測定方法並びに効果の評価方法は次の通りであ
る。The method for measuring membrane performance and evaluating the effect is as follows.
気体分離性の測定は下記のとおりとした。Gas separation was measured as follows.
また、脱気膜の性能は、気体分離膜を隔てて、−次側の
圧力を2atm、二次側の圧力を1 atmにし、気体
(酸素または窒素)透過速度を精密膜流量計5F−10
1(スタンダード・テクノロジー社製)で測定した。In addition, the performance of the degassing membrane was determined by setting the pressure on the downstream side to 2 atm and the pressure on the secondary side to 1 atm across the gas separation membrane, and measuring the gas (oxygen or nitrogen) permeation rate using a precision membrane flowmeter 5F-10.
1 (manufactured by Standard Technology).
酸素透過速度Q。2(単位はぜ/ m2・hr −at
mである。)を気体透過性能とし、酸素透過速度と窒素
透過速度QN2(単位はmVm2− hr −atmで
ある。)の比である分離係数αを気体分離性能の評価基
準とした。Oxygen permeation rate Q. 2 (unit gap/m2・hr -at
It is m. ) was taken as the gas permeation performance, and the separation coefficient α, which is the ratio of the oxygen permeation rate to the nitrogen permeation rate QN2 (unit: mVm2-hr-atm), was taken as the evaluation criterion for the gas separation performance.
脱気膜としては、多孔質支持体材料にポリエーテルスル
ホン(アモコ社、旧ユニオンカーバイト社製P−350
0)を用い、溶媒にジメチルホルムアミドを用いて、ポ
リエステルタフタ上にキャストし水中で脱溶媒して多孔
質層とした。この上に特開昭62−140620号公報
に記載されている方法でポリジメチルシロキサンの均質
膜を形成した。この脱気膜の分離係数αは2.0であっ
た。As a degassing membrane, polyether sulfone (P-350 manufactured by Amoco, formerly Union Carbide) was used as a porous support material.
0) and dimethylformamide as a solvent, it was cast onto polyester taffeta and the solvent was removed in water to form a porous layer. A homogeneous film of polydimethylsiloxane was formed thereon by the method described in JP-A-62-140620. The separation coefficient α of this degassing membrane was 2.0.
逆浸透膜は東し株式会社製品のUTC−70(架橋ポリ
アラミド)を用いた。As the reverse osmosis membrane, UTC-70 (crosslinked polyaramid) manufactured by Toshi Co., Ltd. was used.
実施例1
第2図は、本発明の一実施例に係る純水用逆浸透膜処理
装置のプロセス図である。Example 1 FIG. 2 is a process diagram of a reverse osmosis membrane treatment device for pure water according to an example of the present invention.
この実施例に係るフローシートは、被処理水ラインの上
流側に逆浸透分離膜モジュールらが、下流側に脱気膜モ
ジュール6が設けられている。原水(供給水)3は供給
ポンプ4で昇圧され、逆浸透分離膜モジュール5で脱塩
処理され、次いで脱気膜モジュール6で溶存酸素が除去
され、精製水はライン7から収り出す。逆浸透分離膜モ
ジュール5は4インチの直径のスパイラルモジュールを
用い、直列に1本用いた。また原水の併給圧力は5 K
g/−とした。原水の供給量は1]1/分であった。ま
゛:脱気膜モジュール6の透過ガス流路側に前記逆浸透
膜を用いた分離装置の濃縮水流出側にエゼクタ8の駆動
水側を接続するとともに、脱気膜を用いた脱気装置の吸
引配管にエゼクタ8の吸引側を接続し、逆浸透装置の濃
縮水の残圧を用いて脱気装置を真空(真空度40 to
rr)にした。In the flow sheet according to this embodiment, a reverse osmosis separation membrane module and the like are provided on the upstream side of the water line to be treated, and a degassing membrane module 6 is provided on the downstream side. Raw water (feed water) 3 is pressurized by a supply pump 4, desalted by a reverse osmosis separation membrane module 5, dissolved oxygen is removed by a degassing membrane module 6, and purified water is discharged from a line 7. As the reverse osmosis separation membrane module 5, a spiral module with a diameter of 4 inches was used, and one module was used in series. The combined pressure of raw water is 5K.
g/-. The feed rate of raw water was 1]1/min. M: The driving water side of the ejector 8 is connected to the concentrated water outlet side of the separation device using the reverse osmosis membrane to the permeate gas flow path side of the degassing membrane module 6, and the driving water side of the ejector 8 is connected to the permeate gas flow path side of the degassing membrane module Connect the suction side of the ejector 8 to the suction pipe, and use the residual pressure of concentrated water in the reverse osmosis device to vacuum the deaerator (degree of vacuum 40 to
rr).
このように構成することにより、被処理水に溶存してい
る各種の気体が、脱気膜6を介して収り除かれる。とく
に溶存酸素は81)I)mが11)I)m以下に減少し
た。さらに長期安定性にも優れていた。With this configuration, various gases dissolved in the water to be treated are contained and removed via the degassing membrane 6. In particular, dissolved oxygen decreased from 81)I)m to below 11)I)m. Furthermore, it had excellent long-term stability.
[発明の効果]
本発明は、脱気膜として、少なくとも多孔質支持体層と
、その上に設けた高分子均質層または緻密層からなる気
体分離膜、もしくはその中間体を使用し、これと逆浸透
膜とを直列に配置することにより、全体として比較的小
型で、かつ安価な逆浸透分離膜装置を提供することがで
きた。[Effects of the Invention] The present invention uses, as a degassing membrane, a gas separation membrane consisting of at least a porous support layer and a homogeneous polymer layer or a dense layer provided thereon, or an intermediate thereof; By arranging the reverse osmosis membranes in series, it was possible to provide a reverse osmosis separation membrane device that is relatively compact and inexpensive as a whole.
また、装置の小型化により、被処理水の脱気をオンライ
ンで行うことができるので、本発明は、比較的小規模の
純水用脱気装置として好適である。Further, since the device is downsized and the water to be treated can be degassed online, the present invention is suitable as a relatively small-scale deaerator for pure water.
第1図は本発明に使用する脱気膜の一例の断面図を示す
。第2図は本発明の実施例に係る純水用逆浸透膜処理装
置の構成の概略を示したブロック図である。
1:高分子均質層、または緻密層
2:多孔質支持体層
5:逆浸透分離膜モジュール
6:脱気膜モジュール
8:エジェクタ
出願人 東 し 株 式 会 社
第2FIG. 1 shows a cross-sectional view of an example of a degassing membrane used in the present invention. FIG. 2 is a block diagram schematically showing the configuration of a reverse osmosis membrane treatment device for pure water according to an embodiment of the present invention. 1: Polymer homogeneous layer or dense layer 2: Porous support layer 5: Reverse osmosis separation membrane module 6: Degassing membrane module 8: Ejector Applicant Azuma Shi Co., Ltd. Company No. 2
Claims (3)
を、被処理水ラインに直列に設けた分離膜処理装置にお
いて、前記脱気膜は少なくとも多孔質支持体層と、その
上に設けた高分子均質層または緻密層からなることを特
徴とする分離膜処理装置。(1) In a separation membrane treatment device in which a reverse osmosis separation membrane module and a degassing membrane module are installed in series in a water line to be treated, the degassing membrane is provided at least on a porous support layer and on the porous support layer. A separation membrane processing device characterized by comprising a polymer homogeneous layer or a dense layer.
を特徴とする請求項第(1)項の分離膜処理装置[ただ
しα=Q_O_2/Q_N_2を示す]。(2) The separation membrane processing apparatus according to claim (1), wherein the degassing membrane has an oxygen separation coefficient α of 1.3 or more [where α=Q_O_2/Q_N_2].
クタの駆動水側を接続するとともに、脱気膜を用いた脱
気装置の吸引配管にエゼクタの吸引側を接続し、逆浸透
装置の濃縮水の残圧を用いて脱気装置を真空にすること
を特徴とする請求項第(1)項の分離膜処理装置。(3) Connect the driving water side of the ejector to the concentrated water outflow side of the separation device that uses a reverse osmosis membrane, and connect the suction side of the ejector to the suction piping of the deaeration device that uses a degassing membrane. The separation membrane treatment apparatus according to claim 1, wherein the deaerator is evacuated using the residual pressure of the concentrated water in the apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63142218A JPH0638894B2 (en) | 1988-06-09 | 1988-06-09 | Reverse osmosis separation membrane treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63142218A JPH0638894B2 (en) | 1988-06-09 | 1988-06-09 | Reverse osmosis separation membrane treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH022802A true JPH022802A (en) | 1990-01-08 |
JPH0638894B2 JPH0638894B2 (en) | 1994-05-25 |
Family
ID=15310156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63142218A Expired - Fee Related JPH0638894B2 (en) | 1988-06-09 | 1988-06-09 | Reverse osmosis separation membrane treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0638894B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0225096U (en) * | 1988-08-03 | 1990-02-19 | ||
JPH02139007A (en) * | 1988-08-20 | 1990-05-29 | Nitto Denko Corp | Degassing process for dissolved gas in liquid |
US5154832A (en) * | 1990-02-27 | 1992-10-13 | Toray Industries, Inc. | Spiral wound gas permeable membrane module and apparatus and method for using the same |
US5428493A (en) * | 1992-10-02 | 1995-06-27 | Tdk Corporation | Motor starting relay device having PTC thermistors |
US6080316A (en) * | 1997-03-03 | 2000-06-27 | Tonelli; Anthony A. | High resistivity water production |
US6258278B1 (en) | 1997-03-03 | 2001-07-10 | Zenon Environmental, Inc. | High purity water production |
US6267891B1 (en) | 1997-03-03 | 2001-07-31 | Zenon Environmental Inc. | High purity water production using ion exchange |
JP2007105708A (en) * | 2005-10-17 | 2007-04-26 | Shimadzu Corp | Deaeration device and total organic carbon measuring apparatus using it |
JP2015186769A (en) * | 2014-03-26 | 2015-10-29 | Jx日鉱日石エネルギー株式会社 | Gas separator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59196706A (en) * | 1983-04-22 | 1984-11-08 | Dainippon Ink & Chem Inc | Heterogenous membrane and preparation thereof |
JPS60257803A (en) * | 1984-06-04 | 1985-12-19 | Toray Ind Inc | Permselective composite membrane |
JPS6245318A (en) * | 1985-08-23 | 1987-02-27 | Dainippon Ink & Chem Inc | Preparation of gas separation membrane |
JPS62273095A (en) * | 1986-05-21 | 1987-11-27 | Japan Organo Co Ltd | Water treatment plant |
JPS63258605A (en) * | 1987-04-15 | 1988-10-26 | Dainippon Ink & Chem Inc | Membrane-type gas/liquid contact device |
-
1988
- 1988-06-09 JP JP63142218A patent/JPH0638894B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59196706A (en) * | 1983-04-22 | 1984-11-08 | Dainippon Ink & Chem Inc | Heterogenous membrane and preparation thereof |
JPS60257803A (en) * | 1984-06-04 | 1985-12-19 | Toray Ind Inc | Permselective composite membrane |
JPS6245318A (en) * | 1985-08-23 | 1987-02-27 | Dainippon Ink & Chem Inc | Preparation of gas separation membrane |
JPS62273095A (en) * | 1986-05-21 | 1987-11-27 | Japan Organo Co Ltd | Water treatment plant |
JPS63258605A (en) * | 1987-04-15 | 1988-10-26 | Dainippon Ink & Chem Inc | Membrane-type gas/liquid contact device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0225096U (en) * | 1988-08-03 | 1990-02-19 | ||
JPH02139007A (en) * | 1988-08-20 | 1990-05-29 | Nitto Denko Corp | Degassing process for dissolved gas in liquid |
US5154832A (en) * | 1990-02-27 | 1992-10-13 | Toray Industries, Inc. | Spiral wound gas permeable membrane module and apparatus and method for using the same |
US5428493A (en) * | 1992-10-02 | 1995-06-27 | Tdk Corporation | Motor starting relay device having PTC thermistors |
US6080316A (en) * | 1997-03-03 | 2000-06-27 | Tonelli; Anthony A. | High resistivity water production |
US6258278B1 (en) | 1997-03-03 | 2001-07-10 | Zenon Environmental, Inc. | High purity water production |
US6267891B1 (en) | 1997-03-03 | 2001-07-31 | Zenon Environmental Inc. | High purity water production using ion exchange |
JP2007105708A (en) * | 2005-10-17 | 2007-04-26 | Shimadzu Corp | Deaeration device and total organic carbon measuring apparatus using it |
JP2015186769A (en) * | 2014-03-26 | 2015-10-29 | Jx日鉱日石エネルギー株式会社 | Gas separator |
Also Published As
Publication number | Publication date |
---|---|
JPH0638894B2 (en) | 1994-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0448973B1 (en) | Spiral wound gas permeable membrane module and apparatus and method for using the same | |
US5078755A (en) | Method of removing dissolved gas from liquid | |
US6770202B1 (en) | Porous membrane | |
US4243701A (en) | Preparation of gas separation membranes | |
KR101819090B1 (en) | Separation membrane, separation membrane element and separation membrane production method | |
JP5613911B2 (en) | Multilayer microfiltration membrane | |
EP1778388B1 (en) | Membrane gaz seperation | |
EP2659952A1 (en) | Separation membrane element | |
JP6694326B2 (en) | Composite membrane | |
EP0408769A1 (en) | Deaerating film and deaerating method | |
CN109906113B (en) | Gas separation membrane, gas separation membrane element, and gas separation method | |
US20190247800A1 (en) | Composite semipermeable membrane | |
JP2014231059A (en) | Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using it, immersion filtration device, and immersion filtration method | |
JPH022802A (en) | Reverse-osmosis separation membrane treating device | |
KR20130030954A (en) | Thin film composite membrane and method for preparing the same | |
CN110662598A (en) | Gas separation membrane, gas separation membrane element, gas separation device, and gas separation method | |
CN111491720B (en) | Gas separation membrane, gas separation membrane element, and gas separation method | |
Strathman et al. | Development of synthetic membranes for gas and vapor separation | |
JPH06134210A (en) | Deaeration film module | |
JP2017213501A (en) | Composite semipermeable membrane and method for producing composite semipermeable membrane | |
CA2367547A1 (en) | Porous membrane | |
JPH0632239Y2 (en) | Small boiler with separation membrane treatment device | |
CN108430612B (en) | Composite semipermeable membrane | |
JPH0760082A (en) | Method and apparatus for adjusting specific resistance of ultrapure water | |
JP3151817B2 (en) | Composite porous membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |