JPH02280047A - One-chip semiconductor biosensor - Google Patents

One-chip semiconductor biosensor

Info

Publication number
JPH02280047A
JPH02280047A JP1100223A JP10022389A JPH02280047A JP H02280047 A JPH02280047 A JP H02280047A JP 1100223 A JP1100223 A JP 1100223A JP 10022389 A JP10022389 A JP 10022389A JP H02280047 A JPH02280047 A JP H02280047A
Authority
JP
Japan
Prior art keywords
circuit
source
differential amplifier
field effect
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1100223A
Other languages
Japanese (ja)
Inventor
Akio Kaneyoshi
昭雄 兼吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1100223A priority Critical patent/JPH02280047A/en
Publication of JPH02280047A publication Critical patent/JPH02280047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To reduce the area of an external circuit, and also, to inhibit the influence of an external noise by integrating a source follower circuit for driving an FET of a sensor part, a differential amplifier for inputting each source potential and a differentiating circuit. CONSTITUTION:A source follower circuit 2 supplies a constant-voltage and a constant-current to between a drain 5 and a source 7 of an enzyme film (EN) FET, and between a drain 6 and a source 8 of an (RE) FET for reference, respectively and drives the ENFET and the REFET. Also, a differential amplifier 3 inputs a source potential difference of the ENFET and the REFET, and a differentiating circuit 4 inputs an output voltage of the differential amplifier 3 and outputs an output speed of a sensor to a signal output terminal 10. In such a way, by integrating an analog circuit required for a semiconductor biosensor to one chip, an external circuit becomes unnecessary, an area of the external circuit becomes unnecessary, and also, the influence by an external noise is suppressed to the minimum.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はセンサ部とセンサ駆動回路と差動増幅器と微
分回路とを1千・ンプに集積化したアナログ回路内蔵型
の1チップ半導体ノくイオセンサに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a one-chip semiconductor device with a built-in analog circuit that integrates a sensor section, a sensor drive circuit, a differential amplifier, and a differentiation circuit into a 1,000-amp unit. Regarding iosensor.

[従来の技術] 従来の半導体バイオセンサは、2つの電界効果トランジ
スタからなるセンサ部のみを有し、外部回路によってセ
ンサ部を駆動させ、センサ出力信号を外部回路に出力し
ている。すなわち、2つの電界効果トランジスタのソー
ス舎ソース間の電位差であるセンサ出力信号を、外部回
路に備えられている差動増幅器に入力し、A/D変換器
によってデジタル化し、マイクロコンピュータによって
計算、制御を行っている。
[Prior Art] A conventional semiconductor biosensor has only a sensor section made up of two field effect transistors, drives the sensor section by an external circuit, and outputs a sensor output signal to the external circuit. That is, the sensor output signal, which is the potential difference between the sources of two field effect transistors, is input to a differential amplifier provided in an external circuit, digitized by an A/D converter, and calculated and controlled by a microcomputer. It is carried out.

[発明が解決しようとする課題] 従来の半導体バイオセンサは、上述のような構成のため
、■外部回路におけるアナログ系回路の面積が大きくな
る、■アナログ′・デジタル混在によってノイズが増加
する、■回路パターン内のグランド(アース)線の引き
回しが限定されるという欠点がある。
[Problems to be Solved by the Invention] Conventional semiconductor biosensors have the above-mentioned configuration, so that: ■ The area of the analog circuit in the external circuit increases; ■ Noise increases due to the mixture of analog' and digital; ■ There is a drawback that the routing of the ground (earth) line within the circuit pattern is limited.

また、バイオセンサと被測定物が反応し、センサ出力が
増大して定常状態に達するまでには数10秒必要なため
、この時間の間はセンサと被測定物との反応を待たなけ
ればならないという欠点がある。
Additionally, it takes several tens of seconds for the biosensor and the object to be measured to react, the sensor output increases, and reaches a steady state, so it is necessary to wait for the reaction between the sensor and the object to be measured during this time. There is a drawback.

[課題を解決するための手段] この発明によるアナログ回路内蔵型1チ・ツブ半導体バ
イオセンサは、 参照用電界効果トランジスタと酵素膜電界効果トランジ
スタとからなるセンサ部と、 前記電界効果トランジスタを駆動させるためのソースフ
ォロワ回路と、 前記電界効果トランジスタの各ソース電位を入力とする
差動増幅器と、 前記差動増幅器の出力を入力とする微分回路とを1チッ
プに集積化したことを特徴とする。
[Means for Solving the Problems] A one-chip semiconductor biosensor with a built-in analog circuit according to the present invention includes: a sensor section consisting of a reference field effect transistor and an enzyme membrane field effect transistor; and a sensor section that drives the field effect transistor. The present invention is characterized in that a source follower circuit for, a differential amplifier receiving each source potential of the field effect transistor as input, and a differentiating circuit receiving the output of the differential amplifier as input are integrated on one chip.

[実施例] 以下、この発明の一実施例を図面を参照しながら説明す
る。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、この発明によるアナログ回路内蔵型1チップ
半導体バイオセンサ1の一実施例のブロック図である。
FIG. 1 is a block diagram of an embodiment of a one-chip semiconductor biosensor 1 with a built-in analog circuit according to the present invention.

同図において、ソースフォロワ回路2は、酵素膜電界効
果トランジスタ(以下、ENFETという)のドレイン
5とソース7の間と、参照用電界効果トランジスタ(以
下、REFETという)のドレイン6とソース8との間
のそれぞれに、定電圧と定電流を供給し、ENFETと
REFETとを駆動させる。
In the figure, a source follower circuit 2 is connected between the drain 5 and source 7 of an enzyme membrane field effect transistor (hereinafter referred to as ENFET) and between the drain 6 and source 8 of a reference field effect transistor (hereinafter referred to as REFET). A constant voltage and a constant current are supplied between each of them to drive the ENFET and REFET.

被測定物とENFETとの反応が進むと、ENFETの
ソース電位VEと、REFETのソース電位vRとの差
が増大する。この電位差は被測定物の濃度と比例する。
As the reaction between the object to be measured and the ENFET progresses, the difference between the source potential VE of the ENFET and the source potential vR of the REFET increases. This potential difference is proportional to the concentration of the object to be measured.

差動増幅器3は、この電位差(VE−VR)を人ツノと
し、α倍した電圧α(VE−vR)を出力する。
The differential amplifier 3 uses this potential difference (VE-VR) as a human horn and outputs a voltage α (VE-vR) multiplied by α.

微分回路4は、この差動増幅器3の出力電圧を入力とし
、センサの出力速度 α(VE−VR)/Δ1 (1は時間)を出力し、これ
が信号出力端子10より得られる。
The differentiating circuit 4 inputs the output voltage of the differential amplifier 3 and outputs the sensor output speed α(VE-VR)/Δ1 (1 is time), which is obtained from the signal output terminal 10.

この電圧は、参照電極端子11を基準としており、参照
電極端子11は被測定物を含む液体の電位を検知する参
照電極9と短絡されている。
This voltage is based on the reference electrode terminal 11, and the reference electrode terminal 11 is short-circuited to the reference electrode 9 that detects the potential of the liquid containing the object to be measured.

第2図(a)は、同−時間上に示したセンサの出力特性
図である。時間の経過とともに差動増幅器3の出力電圧
α(VE  VR)は増大し、時刻Aで定常状態に達し
、それ以上増大しなくなる。
FIG. 2(a) is an output characteristic diagram of the sensor shown above at the same time. The output voltage α (VE VR) of the differential amplifier 3 increases with the passage of time, reaches a steady state at time A, and no longer increases.

第2図(b)はセンサの出力速度特性図である。FIG. 2(b) is an output speed characteristic diagram of the sensor.

時間の経過とともに出力速度α(VE−vR)/Δtは
急激に増大し、時刻Bでピークに達した後、減少して行
く。
As time passes, the output speed α(VE-vR)/Δt increases rapidly, reaches a peak at time B, and then decreases.

この出力速度のピーク値は、差動出力の定常値と比例関
係にあるため被測定物を含む液体の濃度とも比例関係に
ある。そして、時刻A〉時刻Bの関係が常に成り立つた
め、被測定物の濃度を従来のように差動出力から知る場
合に比べて迅速に知ることができ、例えば約10程度度
で知ることが可能である。
The peak value of this output speed is in a proportional relationship with the steady value of the differential output, and is therefore also in a proportional relationship with the concentration of the liquid containing the object to be measured. Since the relationship of time A> time B always holds, the concentration of the object to be measured can be determined more quickly than in the conventional method using differential output, for example, it is possible to determine the concentration within about 10 degrees. It is.

[発明の効果] 以上説明したように、この発明によ、t′Lば、半導体
バイオセンサに必要なアナログ回路を内蔵させたことに
よって、外部回路部分が不要となり、外部回路の面積が
減り、その実装密度が下げられる。
[Effects of the Invention] As explained above, according to the present invention, by incorporating the necessary analog circuits into the semiconductor biosensor, an external circuit part becomes unnecessary, the area of the external circuit is reduced, Its packaging density is reduced.

また、内蔵するアナログ回路を集積化する曇とによって
外来雑音の影響を極めて最小限に押さえることができる
Furthermore, the influence of external noise can be minimized by integrating the built-in analog circuits.

さらに、差動出力を微分回路で微分した電圧を出力端子
に取り出すようにしたことによって被測定物の濃度を迅
速に検出することができる効果がある。
Further, by extracting the voltage obtained by differentiating the differential output with the differentiating circuit to the output terminal, there is an effect that the concentration of the object to be measured can be detected quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のブロック図、第2図はセ
ンサの出力特性を示す図である。 1・・・アナログ回路内蔵型1チップ半導体バイオセン
サ 2・・・ソースフォロワ回路 3・・・差動増幅器 4・・・微分回路 5・・・酵素膜電界効果トランジスタ(ENFET)の
ドレイン 6・・・参照用電界効果トランジスタ(REFET)の
ドレイン 7・・・ENFETのソース 8・・・REFETのソース
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing the output characteristics of the sensor. 1... One-chip semiconductor biosensor with built-in analog circuit 2... Source follower circuit 3... Differential amplifier 4... Differential circuit 5... Drain of enzyme membrane field effect transistor (ENFET) 6...・Drain 7 of reference field effect transistor (REFET)... Source 8 of ENFET... Source of REFET

Claims (1)

【特許請求の範囲】 参照用電界効果トランジスタと酵素膜電界効果トランジ
スタとからなるセンサ部と、 前記電界効果トランジスタを駆動させるためのソースフ
ォロワ回路と、 前記電界効果トランジスタの各ソース電位を入力とする
差動増幅器と、 前記差動増幅器の出力を入力とする微分回路とを1チッ
プに集積化したことを特徴とするアナログ回路内蔵型の
1チップ半導体バイオセンサ。
[Claims] A sensor section comprising a reference field effect transistor and an enzyme membrane field effect transistor; a source follower circuit for driving the field effect transistor; and input source potentials of the field effect transistors. A one-chip semiconductor biosensor with a built-in analog circuit, characterized in that a differential amplifier and a differential circuit that receives the output of the differential amplifier as input are integrated on one chip.
JP1100223A 1989-04-21 1989-04-21 One-chip semiconductor biosensor Pending JPH02280047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100223A JPH02280047A (en) 1989-04-21 1989-04-21 One-chip semiconductor biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100223A JPH02280047A (en) 1989-04-21 1989-04-21 One-chip semiconductor biosensor

Publications (1)

Publication Number Publication Date
JPH02280047A true JPH02280047A (en) 1990-11-16

Family

ID=14268295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100223A Pending JPH02280047A (en) 1989-04-21 1989-04-21 One-chip semiconductor biosensor

Country Status (1)

Country Link
JP (1) JPH02280047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502277B2 (en) 2003-08-29 2013-08-06 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184540A (en) * 1982-04-21 1983-10-28 Mitsubishi Electric Corp Biochemical detecting element and method for measuring concentration of compound using the same
JPS6413447A (en) * 1987-07-08 1989-01-18 Hitachi Ltd Ion selection electrode processing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184540A (en) * 1982-04-21 1983-10-28 Mitsubishi Electric Corp Biochemical detecting element and method for measuring concentration of compound using the same
JPS6413447A (en) * 1987-07-08 1989-01-18 Hitachi Ltd Ion selection electrode processing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502277B2 (en) 2003-08-29 2013-08-06 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor using the same
US8766326B2 (en) 2003-08-29 2014-07-01 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor
US8772099B2 (en) 2003-08-29 2014-07-08 Japan Science And Technology Agency Method of use of a field-effect transistor, single-electron transistor and sensor
US9506892B2 (en) 2003-08-29 2016-11-29 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor using the same

Similar Documents

Publication Publication Date Title
ATE144661T1 (en) CLASS-D OUTPUT AMPLIFIER IN BICMOS FOR HEARING AID
DE69630730D1 (en) Analogabtastpfadzelle
JPS5995420A (en) Mos type sensor
DE59310033D1 (en) Hearing aid
JPH02280047A (en) One-chip semiconductor biosensor
ATE324598T1 (en) EVALUATION CIRCUIT AND SIGNAL PROCESSING METHOD
JPS59122923A (en) Pressure transmitting device
JPS635255A (en) Method for compensating offset of semiconductive biosensor
Haemmerli et al. Electrical characteristics f K+ and Cl− fet microelectrodes
KR910015181A (en) Outline emphasis circuit of color signal
JP2749146B2 (en) 2-wire analog / digital simultaneous signal output circuit
JPH04265852A (en) Output signal processing circuit of semiconductor biosensor
JPS6210156B2 (en)
JP2757457B2 (en) Electrocardiogram R-wave detection circuit
JPS6029673A (en) Surface potential sensor
JPS6290564A (en) Apparatus for detecting surface potential
Seo et al. A Signal Process Circuit for ISFET Biosensor and A Desitgn for Their One-Chip Integration
JPS6410142A (en) Zero point and temperature compensating circuit
JPS62135779A (en) Measuring circuit for threshold voltage of fet
JPH0156385B2 (en)
SU572699A1 (en) Coulometric titration apparatus
JPS62170756A (en) Engine controller
JPS63195562A (en) Electrode biasing device for biosensor
JPS55162053A (en) Ph measuring device incorporating temperature display part
JPS54128251A (en) Mute circuit