JPH02280031A - Device for observing position of laser light - Google Patents

Device for observing position of laser light

Info

Publication number
JPH02280031A
JPH02280031A JP1102401A JP10240189A JPH02280031A JP H02280031 A JPH02280031 A JP H02280031A JP 1102401 A JP1102401 A JP 1102401A JP 10240189 A JP10240189 A JP 10240189A JP H02280031 A JPH02280031 A JP H02280031A
Authority
JP
Japan
Prior art keywords
laser beam
laser light
projection image
plasma
output laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1102401A
Other languages
Japanese (ja)
Other versions
JP2811739B2 (en
Inventor
Masahiro Miyagawa
宮川 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1102401A priority Critical patent/JP2811739B2/en
Publication of JPH02280031A publication Critical patent/JPH02280031A/en
Application granted granted Critical
Publication of JP2811739B2 publication Critical patent/JP2811739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To always perform the observation of position by image pickup by controlling the transmittivity of a large output laser light for confirming a position and a small output laser light for setting a position which have different wavelength by means of dichroic mirror corresponding to the sensitivity of an image pickup camera. CONSTITUTION:Incident laser light 12 consists of the large output laser light for confirming the position of plasma and small output laser light for setting the position which have different wavelength. Most of the large output laser light is reflected by 1st and 2nd dichroic mirrors 8 and 9 and most of the small output laser light is transmitted through the mirrors 8 and 9. Then, the laser light reflected by the mirror 8 is absorbed by 1st and 2nd absorption glasses 1 and 2 and the laser light reflected by the mirror 9 is absorbed by a 3rd absorption glass 3. Therefore, at the time of forming a projected image with the large output laser light, input is suppressed to the extent that image pickup is possible and at the time of forming the image with the small output laser light, transmission and absorption are suppressed. The transmission characteristic of the mirror is controlled corresponding to the sensitivity of the image pickup camera, so that the observation of position by image pickup is always performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ先位t1観測装置Iこ関し、特に核融合
反応装置で発生するプラズマに大出力レーザ光を投射し
、その投射像にもとづいてプラズマ発生位置の確認なら
びに調整を行なうレーザ光位置観測装置1こ関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a laser advanced t1 observation device I, which projects a high-power laser beam onto plasma generated in a nuclear fusion reactor, and based on the projected image. The present invention relates to a laser beam position observation device 1 for confirming and adjusting the plasma generation position.

〔従来の技術〕[Conventional technology]

核融合反応装置において発生するプラズマの位fit調
整、確認のためにプラズマに大出力レーザ光を投射し、
両者によって形成される投射像を光学系を利用して撮像
してプラズマの位置を知るレーザ光位置観測装置は近来
よく知られつつあるこのようなレーザ光位置観測装置i
lにおいては、プラスiに投射する大出力レーザ光は、
物心両面Iこわたる安全性の観点から出来る限りその運
用を抑え、従って、投射位置の設定等は小出力レーザ光
によって実施したのちこのあと実際に利用する大出力レ
ーザ光を投射するという形式で処理されている。
A high-power laser beam is projected onto the plasma to adjust and check the fit of the plasma generated in the fusion reactor.
A laser beam position observation device that detects the plasma position by capturing a projected image formed by both using an optical system is a laser beam position observation device that has become well known in recent years.
At l, the high-power laser beam projected onto plus i is
From the standpoint of physical and mental safety, we minimize its use as much as possible, and therefore set the projection position, etc. using a low-power laser beam, and then project the high-power laser beam that will actually be used. has been done.

大出力レーザ光としては、たとえば1パルス当りIT〜
30.T程度のルビーレーザ光が利用され、また小出力
レーザ光としては、九とえばヘリウム・ネオン(He−
Ne)のガスレーザの1mW前後のものが利用されてい
る。
As a high output laser beam, for example, IT~
30. A ruby laser beam of about T is used, and as a low output laser beam, for example, helium neon (He-
Ne) gas lasers with a power output of around 1 mW are used.

第4図は従来のレーザ光位置観測装置の一例を示す縦断
面図である。この装置はレーザ光の一部を反射し残りの
約50%を透過し残りを吸収する第1の吸収ガラスlと
、第1の吸収ガラス1を透過したレーザ光を吸収する第
2の吸収ガラス2と、第2の吸収ガラス2を反射したレ
ーザ光の大部分を吸収し一部を透過する@3の吸収ガラ
ス3と、第3の吸収ガラス3を透過したレーザ光の一部
を透過し一部を反射する半透過鏡5と、半透過鏡5を反
射し九レーザ光を吸収する第4の吸収ガラス4と、半透
過鏡5を透過したレーザ光の位置を表示するスクリーン
6と、スクリーン6に表示されたレーザ光位置を半透過
鏡5の反射によって観測する撮像カメラ7を備えて構成
され核融合反応装置のプラズマ発生部に設けた複数の入
力窓から大出力レーザ光を投射し、反対側の出力窓から
出力される出光を入射レーザ光12として受光して目盛
付きのスクリーン6に投射像を映出し撮像カメラ7で撮
像する。また、大出力レーザ光の位置設定、経時変化に
対する位置確認は、プラズマを発生しない状態で小出力
レーザを入力窓から出力窓を通して入射レーザ光12と
して得て、同様にしてその投射像を得る。
FIG. 4 is a longitudinal sectional view showing an example of a conventional laser beam position observation device. This device consists of a first absorbing glass l that reflects part of the laser beam, transmits about 50% of the remaining laser beam, and absorbs the rest, and a second absorbing glass l that absorbs the laser beam that has passed through the first absorbing glass l. 2, the absorption glass 3 of @3 which absorbs most of the laser beam reflected by the second absorption glass 2 and transmits a part of it, and the absorption glass 3 of @3 which transmits a part of the laser beam which has passed through the third absorption glass 3. a semi-transmissive mirror 5 that reflects a portion of the laser beam; a fourth absorption glass 4 that reflects the semi-transmissive mirror 5 and absorbs the laser beam; a screen 6 that displays the position of the laser beam that has passed through the semi-transmissive mirror 5; It is equipped with an imaging camera 7 that observes the laser beam position displayed on a screen 6 by reflection from a semi-transparent mirror 5, and projects high-output laser beams from a plurality of input windows provided in the plasma generation section of the fusion reactor. , the output light outputted from the output window on the opposite side is received as incident laser light 12, and a projected image is projected onto a screen 6 with a scale and captured by an imaging camera 7. Further, to set the position of the high-power laser beam and confirm the position with respect to changes over time, a low-power laser is obtained as the incident laser beam 12 from the input window through the output window without generating plasma, and a projected image thereof is obtained in the same manner.

ところで、上述した従来のレーザ光位置観測装置は、た
とえば大出力レーザ光としてルビーレーザを用い、小出
力レーザ光としてHe−Ne・レーザを用いる場合、波
長694.3nmで1パルス当り1〜30.7のルビー
レーザによる大出力レーザ光と波長632.8nmでC
Wの0.1 mW〜10 m ’vVのHe−Neレー
ザによる小出力レーザ光の両方をける各部の吸収特性と
撮像カメラの撮像感度を茨記して示す特性図である。第
5図に示す如く、波長694.3n7F+  のルビー
レーザ光の場合には、各吸収ガラス、半透過鏡、スクリ
ーン等による反射、透過によって失なわれるエネルギー
ロスにより撮像カメラ7上のエネルギ密度は14.3μ
J/c7Itとなり、撮像カメラ7の感度である0、 
4 J /iを超えるので撮像、観測することができる
By the way, in the above-mentioned conventional laser beam position observation device, when a ruby laser is used as a high output laser beam and a He-Ne laser is used as a low output laser beam, the wavelength is 694.3 nm and the frequency is 1 to 30. C
It is a characteristic diagram illustrating the absorption characteristics of each part and the imaging sensitivity of the imaging camera, both of which receive a small output laser beam from a He-Ne laser of 0.1 mW to 10 m'vV of W. As shown in FIG. 5, in the case of ruby laser light with a wavelength of 694.3n7F+, the energy density on the imaging camera 7 is 14. .3μ
J/c7It, which is the sensitivity of the imaging camera 7, 0,
Since it exceeds 4 J/i, it can be imaged and observed.

一方、波長63Slnmのレーザ光の場合には、撮像カ
メラ7上のエネルギ密度は0.36 n Wlcrdと
なり、撮像カメラ7の感度0.2μW/fflを下まわ
ってしまうので撮像観測ができないこととなる。
On the other hand, in the case of a laser beam with a wavelength of 63 Slnm, the energy density on the imaging camera 7 is 0.36 nWlcrd, which is less than the sensitivity of the imaging camera 7 of 0.2 μW/ffl, so imaging and observation cannot be performed. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のレーザ光位置観測装置は、その光学系が
プラズマ位置観測用の大出力レーザ光と、この大出力レ
ーザ光の位置設定、確認用の小出力レーザ光のいずれI
こ対しても吸収性を有しているので、両レーザ光のエネ
ルギーと、撮像カメラの感度の組合せによって小出力レ
ーザ光の投射像が撮像できず、従って撮像以外の方法で
大出力レーザ光に対する位置設定、確認を行なうことが
必要となるという欠点がある。
The above-mentioned conventional laser beam position observation device has an optical system that uses both a high-power laser beam for plasma position observation and a low-power laser beam for position setting and confirmation of this high-power laser beam.
Since it also has absorption properties, it is not possible to capture the projection image of the low-power laser light due to the combination of the energy of both laser lights and the sensitivity of the imaging camera, and therefore, it is impossible to capture the projection image of the low-power laser light by a method other than imaging. This method has the disadvantage that it is necessary to perform position setting and confirmation.

本発明の目的は上述した欠点を除去し、小出力レーザ光
の撮像を常時可能とするレーザ光位障測定装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a laser light position disturbance measuring device that can constantly capture images with low-power laser light.

〔課題8解決するための手段〕 本発明のレーザ光位置観測装置は、核融合反応装置にお
けるプラズマの発生位置確認のため大出力の第1のレー
ザ光を前記プラズマに投射し撮像可能な光学系によって
前記プラズマの位負Jこ対応した第1の投射像を得る第
1の投射像形成手段と、前記プラズマの発生を停止した
状態のほかは#I紀第1のレーザ光を投射する場合と同
じ状態で@化第1のレーザ光の投射位#設定用の/J%
出力の第2のレーザ光を投射し前記光学系によってその
投射像を第2の投射像として得る第2の投射像形成手段
と、前記第1の投射像形成手段1こよる第10投射像形
成の場合の前記光学系に対する入力を撮像可能の程度ま
で抑圧するとともに前記第2の投射像形成手段tこよる
第2の投射像形成の場合の前記光学系に対する入力を撮
像可能の程度まで透過せしめるようにダイクロイックミ
ラーで制御する撮像レベル制御手段とを備えて構成され
る。
[Means for Solving Problem 8] The laser beam position observation device of the present invention includes an optical system capable of projecting a high-output first laser beam onto the plasma and imaging it in order to confirm the generation position of plasma in a nuclear fusion reactor. a first projection image forming means that obtains a first projection image corresponding to the potential of the plasma by /J% for setting the projection position of the first laser beam in the same state.
a second projection image forming means for projecting an output second laser beam and obtaining the projection image as a second projection image by the optical system; and a tenth projection image forming means by the first projection image forming means 1. In this case, the input to the optical system is suppressed to the extent that an image can be taken, and the input to the optical system in the case of forming a second projection image by the second projection image forming means t is transmitted to the extent that the image can be taken. The camera is configured to include an imaging level control means controlled by a dichroic mirror as shown in FIG.

〔実施例〕〔Example〕

次に、図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

第1図に示す実施例は、第1の吸収ガラス1、第2の吸
収ガラス2、第3の吸収ガラス3、第4の吸収ガラス4
、半透過鏡5、スクリーン6、撮像カメラ7のほか、本
発明に直接かかわる第1のダイクロイック(dichr
oic)ミラー8および第2のダイクロイックミラー9
、ならびに反射鏡IOを備えた筐体11として構成され
る。
The embodiment shown in FIG. 1 includes a first absorption glass 1, a second absorption glass 2, a third absorption glass 3, and a fourth absorption glass 4.
, a semi-transparent mirror 5, a screen 6, an imaging camera 7, and a first dichroic (dichr) directly related to the present invention.
oic) mirror 8 and second dichroic mirror 9
, and a casing 11 including a reflecting mirror IO.

ダイクロイックミラー8.9は、いわば光に対するフィ
ルタであり、いずれも同一特性の透過率対波長特性を有
する。
The dichroic mirrors 8.9 are, so to speak, filters for light, and all have the same transmittance versus wavelength characteristics.

第1図の実施例では、入射レーザ光12として提供され
る2つのレーザ光は、Ne−Heレーザとルビーレーザ
をそれぞれ位置設定、確認用の小出力レーザ光ならびに
プラズマ位置観測用の大出力レーザ光として利用し、こ
れら2つのレーザ光の透過率対波長特性は第2図に示す
とおりである。
In the embodiment shown in FIG. 1, the two laser beams provided as the incident laser beam 12 are a low-power laser beam for position setting and confirmation of a Ne-He laser and a ruby laser, and a high-power laser beam for plasma position observation. When used as light, the transmittance versus wavelength characteristics of these two laser beams are shown in FIG.

すなわち、第1のダイクロイックミラー8と第2のダイ
クロイックミラーは、第2図に示すように、波長694
.3nmのルビーレーザ光に対しては、0、5%透過9
9.5%反射、波長632..8nT11のHe−Ne
レーザ光に対しては、73%透過27%反射特性を有す
る。
That is, the first dichroic mirror 8 and the second dichroic mirror have a wavelength of 694, as shown in FIG.
.. For 3 nm ruby laser light, 0.5% transmission9
9.5% reflection, wavelength 632. .. 8nT11 He-Ne
For laser light, it has 73% transmission and 27% reflection characteristics.

入射レーザ光12は、第1のダイクロイックミラー8、
第2のダイクロイックミラー9を透過し、反射@110
で反射され、半透過鏡5を透過し、スクリーン6上に表
示される。この像を#L像カメラ7が半透過鏡50反射
によって観測する。
The incident laser beam 12 passes through a first dichroic mirror 8,
Transmitted through the second dichroic mirror 9 and reflected @110
The light is reflected by the mirror, passes through the semi-transparent mirror 5, and is displayed on the screen 6. This image is observed by the #L image camera 7 through reflection from the semi-transmissive mirror 50.

撮像カメラ7に入射レーザ光が結像する壕での過程の波
長別の数値例を第3図に示す。
FIG. 3 shows an example of numerical values for each wavelength of the process in the trench where the incident laser beam forms an image on the imaging camera 7.

波長694.3nmのルビーレーザ光の場合には、撮像
カメラ7上のエネルギ密度は4.4μJ/crlとなり
、本実施例で利用する撮像カメラ7の感度0.4μJ/
crAを上まわるので撮像観測することができる。
In the case of ruby laser light with a wavelength of 694.3 nm, the energy density on the imaging camera 7 is 4.4 μJ/crl, and the sensitivity of the imaging camera 7 used in this example is 0.4 μJ/crl.
Since it exceeds crA, it can be imaged and observed.

波長63Z8nmのHe−Neレーザ光の場合にも、撮
像カメラ7上のエネルギ密度は4.7μW/crI(!
:なり撮像カメラ7の感度0.2μW/iを十分上まわ
るので同様に撮像観測することができる。
Even in the case of He-Ne laser light with a wavelength of 63Z8 nm, the energy density on the imaging camera 7 is 4.7 μW/crI (!
: Since the sensitivity of the imaging camera 7 is sufficiently higher than 0.2 μW/i, imaging and observation can be carried out in the same manner.

また、第1のダイクロイックミラー8で反射したレーザ
光のエネルギーの約50%を第1の吸収ガラス1で吸収
し、残りのエネルギーを第2の吸収ガラスで吸収する。
Further, about 50% of the energy of the laser beam reflected by the first dichroic mirror 8 is absorbed by the first absorption glass 1, and the remaining energy is absorbed by the second absorption glass.

さらに、第2のダイクロイックミラー9で反射したレー
ザ光のエネルギーは第3の吸収ガラスで吸収する。
Furthermore, the energy of the laser beam reflected by the second dichroic mirror 9 is absorbed by the third absorption glass.

こうして、ルビーレーザ光による大出力レーザ光で@1
0投射像を形成する場合には、光学系に対する入射レー
ザ光を投射像の撮像可能の、程度まで抑圧し、一方、H
e−Neレーザ光による小出力レーザ光で位置設定、確
認用の第2の投射像を形成する場合(こは撮像可能とな
る程度に透過吸収を抑えるようIこ2個のダイクロイッ
クミラーの透過特性を設定することによって2つの場合
ともほぼ同一条件で撮像可能とすることができる。
In this way, @1 with high output laser light by ruby laser light.
When forming a 0 projection image, the incident laser light to the optical system is suppressed to the extent that the projection image can be captured.
When forming a second projected image for position setting and confirmation using a low-power e-Ne laser beam (in this case, the transmission characteristics of the two dichroic mirrors are adjusted to suppress transmission and absorption to the extent that imaging is possible). By setting , it is possible to capture images under substantially the same conditions in both cases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、相異る波長のプラ
ズマ位rit観測用の大出力レーザ光と、位置設定・確
認用の小出力レーザ光のそれぞれEこ対する透過率を、
いずれの場合も撮像カメラの感度に対応して撮像可能と
するように光学系の光路のダイクロイックミラーで制御
することにより、常時撮像による位置観測可能なレーザ
光位置観測装置が実現できるという効果がある。
As explained above, according to the present invention, the transmittance of the high-power laser beam for plasma level rit observation of different wavelengths and the low-power laser beam for position setting and confirmation, respectively, is
In either case, by controlling the dichroic mirror in the optical path of the optical system so that imaging is possible according to the sensitivity of the imaging camera, it is possible to realize a laser beam position observation device that can perform position observation through constant imaging. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザ光位置観測装置の一実施例の構
成を示す縦断面図、第2図は第1図の実施例におけるダ
イクロイックミラーの波長特性図、第3図は第1図の実
施例における各部の吸収を示す特性図、第4図は従来の
レーザ光位置観測装置の一例を示す縦断面図、第5図は
第4図の従来例−こおける各部の吸収を示す特性図であ
る。 1・・・・・・第1の吸収ガラス、2・・・・・・第2
の吸収ガラス、3・・・・・・第3の吸収ガラス、4・
・・・・・第4の吸収ガラス、5・−・・・・半透過鏡
、6・・・・・・スクリーン、7・・・・・・撮像カメ
ラ、8・・・・・・第1のダイクロイックミラー、9・
・・・・・第2のダイクロイックミラー10・・・・・
・反射鏡、11・・・・・・筐体、12・・・・・・入
射レーザ光。 代理人 弁理士   内 原   晋 2 ♀ g  g  3  g  c4  弓 8 2
  C+市ygJキぺ ト( 〈ま 旨く
FIG. 1 is a vertical cross-sectional view showing the configuration of an embodiment of the laser beam position observation device of the present invention, FIG. 2 is a wavelength characteristic diagram of the dichroic mirror in the embodiment of FIG. 1, and FIG. A characteristic diagram showing the absorption of each part in the example, FIG. 4 is a vertical cross-sectional view showing an example of a conventional laser beam position observation device, and FIG. 5 is a characteristic diagram showing the absorption of each part in the conventional example of FIG. 4. It is. 1...First absorption glass, 2...Second
absorption glass, 3...Third absorption glass, 4.
...Fourth absorbing glass, 5... Semi-transparent mirror, 6... Screen, 7... Imaging camera, 8... First dichroic mirror, 9.
...Second dichroic mirror 10...
-Reflector, 11... Housing, 12... Incident laser beam. Agent Patent Attorney Susumu Uchihara 2 ♀ g g 3 g c4 Yumi 8 2
C + City ygJ Kipeto (

Claims (1)

【特許請求の範囲】 核融合反応装置におけるプラズマの発生位置確認のため
大出力の第1のレーザ光を前記プラズマに投射し撮像可
能な光学系によって前記プラズマの位置に対応した第1
の投射像を得る第1の投射像形成手段と、 前記プラズマの発生を停止した状態のほかは前記第1の
レーザ光を投射する場合と同じ状態で前記第1のレーザ
光の投射位置設定用の小出力の第2のレーザ光を投射し
前記光学系によってその投射像を第2の投射像として得
る第2の投射像形成手段と、 前記第1の投射像形成手段による第1の投射像形成の場
合の前記光学系に対する入力を撮像可能の程度まで抑圧
するとともに前記第2の投射像形成手段による第2の投
射像形成の場合の前記光学系に対する入力を撮像可能の
程度まで透過せしめるようにダイクロイックミラーで制
御する撮像レベル制御手段と、 を備えて成ることを特徴とするレーザ光位置観測装置。
[Scope of Claims] In order to confirm the generation position of plasma in a nuclear fusion reactor, a first laser beam of high power is projected onto the plasma, and a first laser beam corresponding to the position of the plasma is projected by an optical system that can take an image.
a first projection image forming means for obtaining a projection image; and a first projection image forming means for setting the projection position of the first laser beam under the same conditions as when projecting the first laser beam except for the state in which generation of the plasma is stopped. a second projection image forming means that projects a second laser beam with a small output and obtains the projection image as a second projection image by the optical system; and a first projection image by the first projection image forming means. Input to the optical system in the case of formation is suppressed to the extent that an image can be taken, and input to the optical system in the case of the formation of a second projection image by the second projection image forming means is transmitted to an extent to the extent that the image can be taken. A laser beam position observation device comprising: an imaging level control means controlled by a dichroic mirror;
JP1102401A 1989-04-21 1989-04-21 Laser beam position observation device Expired - Lifetime JP2811739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1102401A JP2811739B2 (en) 1989-04-21 1989-04-21 Laser beam position observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102401A JP2811739B2 (en) 1989-04-21 1989-04-21 Laser beam position observation device

Publications (2)

Publication Number Publication Date
JPH02280031A true JPH02280031A (en) 1990-11-16
JP2811739B2 JP2811739B2 (en) 1998-10-15

Family

ID=14326425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102401A Expired - Lifetime JP2811739B2 (en) 1989-04-21 1989-04-21 Laser beam position observation device

Country Status (1)

Country Link
JP (1) JP2811739B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748646C1 (en) * 2020-10-21 2021-05-28 АКЦИОНЕРНОЕ ОБЩЕСТВО "Научно-исследовательский институт оптико-электронного приборостроения" (АО "НИИ ОЭП") Optical-electronic system of guidance and registration of adjusting radiation of multichannel laser

Also Published As

Publication number Publication date
JP2811739B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JP6954980B2 (en) Optical inspection system, optical inspection method, and laser
US6751240B2 (en) Systems for generating short-pulse laser light
TW201503514A (en) A 193nm laser and an inspection system using a 193nm laser
EP0552029B1 (en) Single focus backward Raman laser
US6624424B2 (en) VUV laser beam characterization system
WO2004054050A1 (en) Ultraviolet light source, phototherapy apparatus using ultraviolet light source, and exposure system using ultraviolet light source
JP2010008054A (en) Multi-photon excitation measuring instrument
EP0499262A2 (en) Multiple focus backward Raman laser apparatus
US20200290156A1 (en) Laser processing method and laser processing system
JPH02280031A (en) Device for observing position of laser light
EP0383586A2 (en) Laser device
JPH03261191A (en) Laser amplifying system
CN209896435U (en) Device for generating green laser based on periodic lithium niobate frequency doubling crystal (PPLN)
JP4449614B2 (en) Wavelength conversion optical system and laser apparatus
WO2001059414A1 (en) Vuv laser beam characterization system
JPS634173Y2 (en)
JP3039524B2 (en) Exposure apparatus and exposure method
JPH0423480A (en) Narrow band laser device
Kunimori et al. 4.3 Lasers and transmission/receiving optics
KR101961893B1 (en) Exposure apparatus and controlling method of exposure apparatus
JP2002223018A (en) Control system of laser wavelength and control method thereof
JPH0394989A (en) Optical processing device
JP2002148122A (en) Optical system for wavelength monitor for laser beam
JPH04119683A (en) Laser amplifier system
JP3149310B2 (en) Laser light observation device