JPH02279941A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH02279941A
JPH02279941A JP1102147A JP10214789A JPH02279941A JP H02279941 A JPH02279941 A JP H02279941A JP 1102147 A JP1102147 A JP 1102147A JP 10214789 A JP10214789 A JP 10214789A JP H02279941 A JPH02279941 A JP H02279941A
Authority
JP
Japan
Prior art keywords
temperature
fan
refrigerant
outdoor unit
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1102147A
Other languages
Japanese (ja)
Inventor
Toshihiro Kizawa
木沢 敏浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1102147A priority Critical patent/JPH02279941A/en
Publication of JPH02279941A publication Critical patent/JPH02279941A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable execution of a wide-range heating operation being excellent in an operation efficiency and free from noise or a signal by controlling a speed of rotation of a fan of an outdoor unit in accordance with a speed of reduction in the speed of rotation determined by calculating a rising speed of temperature, when a temperature based on a temperature signal is a second temperature or above which is lower than a first temperature, and by making changeover to a peak cut control when said temperature is the first temperature or above. CONSTITUTION:A microcomputer 11 of an indoor unit reads a refrigerant temperature detection signal from a thermistor T for detecting the high-pressure side temperature of a refrigerant and delivers the signal to a microcomputer 12 of an outdoor unit. When the high-pressure side temperature of the refrigerant based on the read temperature signal is a second temperature or above, the microcomputer 12 of the outdoor unit calculates a speed of change in the speed of rotation of a fan of the outdoor unit and others and controls the speed of rotation of a fan motor 14 of the outdoor unit. When the high-pressure side temperature of the refrigerant based on the temperature signal read in a control switching means is a first temperature or above which is higher than the second temperature, at least two of a heater, a fan of the indoor unit, a compressor and the fan of the outdoor unit are controlled sequentially and a peak cut control for lowering the high-pressure side pressure of the refrigerant is conducted.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、空気調和機における暖房過負荷時のピーク
カット制御に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to peak cut control during heating overload in an air conditioner.

〈従来の技術〉 従来、空気調和機における暖房過負荷時のピークカット
制御方法として次のようなものがある。
<Prior Art> Conventionally, there are the following peak cut control methods for an air conditioner during heating overload.

すなわち、第4図に示すように、外気温度が上昇するに
伴って冷媒の高圧側圧力が所定圧力値HPになると、ま
ず第1段階として室内熱交換器の補助ヒータをオフにす
る。そうすると、冷媒の高圧側圧力が減少して暖房を続
行することができる。
That is, as shown in FIG. 4, when the high-pressure side pressure of the refrigerant reaches a predetermined pressure value HP as the outside air temperature rises, the auxiliary heater of the indoor heat exchanger is first turned off as a first step. Then, the high-pressure side pressure of the refrigerant decreases, allowing heating to continue.

ところが更に外気温度が上昇して再度冷媒の高圧側圧力
が上記所定圧力値HPになると室内ユニットのファンの
回転数のタップを高速側に切り替え、さらに運転を続行
して冷媒の高圧側圧力が所定圧力値HPになると圧縮機
の容量制御を行う。そして、さらに運転を続行して冷媒
の高圧側圧力が所定圧力値HPに達すると、初めて室外
ユニットのファンの回転数のタップを低速側あるいは停
止に切り替え、さらに運転を続行して冷媒の高圧側圧力
が所定圧力値HPに達すると圧縮機の運転を停止するの
である。このように、補助ヒータ、室内ユニットのファ
ンおよび圧縮機等の各部をステップ的に制御する間は室
外ユニットのファンの回転数を一定にしておくので、比
較的低い外気温度において圧縮機が停止されてしまい、
運転範囲が狭いという問題がある。したがって、起動時
において、外気温度が高い場合には圧縮機停止に至る時
間が短く、圧縮機が発停を縁り返してしまう。
However, when the outside temperature rises further and the high-pressure side pressure of the refrigerant reaches the predetermined pressure value HP again, the tap for the rotation speed of the fan of the indoor unit is switched to the high-speed side, and operation is continued to bring the high-pressure side pressure of the refrigerant to the predetermined value. When the pressure value HP is reached, the capacity of the compressor is controlled. Then, when the operation is continued and the pressure on the high pressure side of the refrigerant reaches the predetermined pressure value HP, the tap for the rotation speed of the fan of the outdoor unit is switched to the low speed side or stopped for the first time, and the operation is continued further and the high pressure side of the refrigerant When the pressure reaches a predetermined pressure value HP, the operation of the compressor is stopped. In this way, the rotation speed of the outdoor unit fan is kept constant while each part such as the auxiliary heater, indoor unit fan, and compressor is controlled in steps, so the compressor is stopped at relatively low outside temperatures. I ended up
There is a problem that the driving range is narrow. Therefore, at startup, if the outside air temperature is high, the time until the compressor stops is short, and the compressor repeatedly starts and stops.

また、インバータ機においては、室外ユニットのファン
の回転数を一定にしておき、圧縮機用の電動機の周波数
を制御することによって、圧縮機の吐出圧力の上昇に対
処している。ところが、圧縮機用の電動機が低い周波数
で駆動されること?こなるため、室外騒音および振動等
が発生ずると共一 ンモータ2を再び回転させるようにしている。
Furthermore, in an inverter machine, the increase in the discharge pressure of the compressor is dealt with by keeping the rotational speed of the fan of the outdoor unit constant and controlling the frequency of the electric motor for the compressor. However, is it true that the electric motor for the compressor is driven at a low frequency? Therefore, when outdoor noise, vibration, etc. occur, the motor 2 is rotated again.

〈発明が解決しようとする課題〉 しかしながら、」1記従来の室外ユニットの2つのファ
ンを駆動する2つのファンモニタのうち、いずれか一方
のファンモータの回転を停止してピークカット制御を行
う空気調和機においては、冷媒の高圧側圧力が所定圧力
に達した場合には、単に冷媒の高圧側圧力の上昇速度に
応じて第1フアンモータlあるいは第2フアンモータ2
を停止するようにしているので、室外熱交換器に送風さ
れる風量を2段階にしか制御できず、外気温度の上昇に
よる冷媒の高圧側圧力上昇にきめ細かく対処できないと
いう問題がある。
<Problems to be Solved by the Invention> However, "1. Among the two fan monitors that drive the two fans of the conventional outdoor unit, the rotation of one of the fan motors is stopped to perform peak cut control. In the harmonizer, when the high-pressure side pressure of the refrigerant reaches a predetermined pressure, the first fan motor 1 or the second fan motor 2 is simply activated depending on the rising speed of the high-pressure side pressure of the refrigerant.
However, since the air volume blown to the outdoor heat exchanger can only be controlled in two stages, there is a problem in that it is not possible to precisely deal with the rise in pressure on the high-pressure side of the refrigerant due to the rise in outside air temperature.

そこで、この発明の目的は、運転効率が良く騒音や信号
がなく、広範囲な暖房運転を可能にすると共に、冷媒の
高圧側圧力の上昇に対してきめ細かくピークカット制御
を行うことができる空気調和機を提供することにある。
SUMMARY OF THE INVENTION Therefore, the purpose of this invention is to provide an air conditioner that is highly efficient in operation, free of noise and signals, capable of wide-range heating operation, and capable of performing detailed peak cut control against increases in the pressure on the high-pressure side of the refrigerant. Our goal is to provide the following.

〈課題を解決するための手段〉 上記目的を達成するため、この発明は、第1図に、年間
エネルギー効率が悪くなるという問題かある。
<Means for Solving the Problems> In order to achieve the above object, this invention has the problem of poor annual energy efficiency as shown in FIG.

そこで、室外ユニッ)・のファンの回転数を制御するこ
とによって、冷媒の高圧側圧力の上昇に対処するように
した空気調和機が提案されている(実公昭62−145
18号公報)。この空気調和機の室外ユニットは第1フ
アンと第2フアンの2つのファンを有する。第5図に示
すように、通常暖房運転時には第1フアンモータ接触器
3および第2フアンモータ接触器4が励磁され、第1フ
アンモータ1および第2フアンモータ2が駆動される。
Therefore, an air conditioner has been proposed that copes with the increase in the pressure on the high-pressure side of the refrigerant by controlling the rotation speed of the fan in the outdoor unit.
Publication No. 18). The outdoor unit of this air conditioner has two fans, a first fan and a second fan. As shown in FIG. 5, during normal heating operation, the first fan motor contactor 3 and the second fan motor contactor 4 are excited, and the first fan motor 1 and the second fan motor 2 are driven.

外気温度の上昇に伴円冷媒の高圧側圧力が設定圧力まで
上昇したことが圧力検知器5によって検知されると、判
別回路6によって圧力の上昇速度が判別されて上昇速度
が設定速度以」二の場合には風量の多い方の第1フアン
を駆動する第1フアンモータ1を停止し、設定速度以下
の場合には第2フアンを駆動する第2フアンモータ2を
停止させる。
When the pressure detector 5 detects that the high-pressure side pressure of the refrigerant has increased to the set pressure due to the rise in outside air temperature, the discrimination circuit 6 determines the rate of pressure increase and determines whether the rate of increase is greater than or equal to the set rate. In this case, the first fan motor 1 that drives the first fan with the larger air volume is stopped, and when the speed is less than the set speed, the second fan motor 2 that drives the second fan is stopped.

そして、圧縮機の吐出圧力が再び下降すると、」1記停
止した第1フアンモータlあるいは第2ファに例示する
ように、冷媒の高圧側温度を温度検出手段Tて検出して
、冷媒の高温側の温度が第1の温度以上になると、ヒー
タ、室内ユニットのファン、圧縮機および室外ユニット
のファンの少なくとも二つを逐次制御して、冷媒の高圧
側圧力を下げるピークカット制御を行う空気調和機であ
って、上記温度検出手段Tからの温度信号を読み込んで
、この温度信号に基づく温度が上記第1の温度より低い
第2の温度以」二であれば、所定の規則に従って温度上
昇速度を算出する温度上昇速度算出手段と、上記温度上
昇速度算出手段によって算出された温度上昇速度に基づ
いて、室外ユニットのファンの回転数の減少速度を求め
、この求めた回転数減少速度に従って上記室外ユニット
のファンの回転数を制御するファン回転数制御手段と、
上記温度信号を読み込んで、この温度信号に基づく温度
が第1の温度以上であれば、上記ピークカット制御に切
り替える制御切替手段を備えたことを特徴としている。
Then, when the discharge pressure of the compressor decreases again, the temperature on the high pressure side of the refrigerant is detected by the temperature detection means T, and the high pressure side temperature of the refrigerant is When the side temperature reaches a first temperature or higher, at least two of the heater, the indoor unit fan, the compressor, and the outdoor unit fan are sequentially controlled to perform peak cut control to lower the high-pressure side pressure of the refrigerant. reads the temperature signal from the temperature detection means T, and if the temperature based on the temperature signal is equal to or higher than the second temperature lower than the first temperature, the temperature increase rate is determined according to a predetermined rule. Based on the temperature increase rate calculated by the temperature increase rate calculation means and the temperature increase rate calculated by the temperature increase rate calculation means, the decrease rate of the rotation speed of the fan of the outdoor unit is determined, and the rotation speed decrease rate of the fan of the outdoor unit is determined according to the determined rotation speed decrease rate. fan rotation speed control means for controlling the rotation speed of the fan of the unit;
The present invention is characterized by comprising a control switching means that reads the temperature signal and switches to the peak cut control if the temperature based on the temperature signal is equal to or higher than the first temperature.

〈作用〉 温度検出手段Tからの温度信号が温度上昇速度算出手段
に読み込まれ、この読み込まれた温度信号に基づく冷媒
の高圧側温度が第2の温度以」二であれば所定の規則に
従って温度上昇速度が算出される。そして、ファン回転
数制御手段によって、上記温度上昇速度算出手段で算出
された温度上昇速度に基づいて室外ユニットのファンの
回転数の減少速度が求められ、この求められた回転数減
少速度に従って室外ユニットのファンの回転数が制御さ
れる。
<Operation> The temperature signal from the temperature detection means T is read into the temperature increase rate calculation means, and if the high pressure side temperature of the refrigerant based on the read temperature signal is equal to or higher than the second temperature, the temperature is adjusted according to a predetermined rule. The climbing speed is calculated. Then, the fan rotation speed control means determines the speed of decrease in the rotation speed of the fan of the outdoor unit based on the temperature rise rate calculated by the temperature rise speed calculation means, and the outdoor unit according to the obtained rotation speed decrease speed. The rotation speed of the fan is controlled.

この状態において、上記温度信号が制御切替手段に読み
込まれ、この読み込まれた温度信号に基づく冷媒の高圧
側温度が上記第2の温度より高い第1の温度以」二であ
れば、ヒータ、室内ユニットのファン、圧縮機および室
外ユニットのファンの少なくとも二つを逐次制御して冷
媒の高圧側圧力を下げるピークカット制御が行われる。
In this state, the temperature signal is read into the control switching means, and if the high-pressure side temperature of the refrigerant based on the read temperature signal is equal to or higher than the first temperature higher than the second temperature, the heater Peak cut control is performed by sequentially controlling at least two of the fan of the unit, the compressor, and the fan of the outdoor unit to lower the high-pressure side pressure of the refrigerant.

したがって、上記ピークカット制御に入る前に、冷媒の
高圧側温度の上昇速度に応じた減少速度で室外ユニット
のファンの回転数をリニア制御する温度Tcが検知され
、この検知された冷媒の高圧側温度Tcが第1の設定温
度Tc、以上か否かが判別される。その結果、冷媒の高
圧側温度Tcが第2の設定温度Tc+以上であればステ
ップS2に進む。
Therefore, before entering the peak cut control, the temperature Tc at which the rotation speed of the fan of the outdoor unit is linearly controlled at a rate of decrease corresponding to the rate of increase in the temperature on the high pressure side of the refrigerant is detected, and the temperature Tc is detected on the high pressure side of the detected refrigerant. It is determined whether the temperature Tc is equal to or higher than the first set temperature Tc. As a result, if the high pressure side temperature Tc of the refrigerant is equal to or higher than the second set temperature Tc+, the process proceeds to step S2.

ステップS2で、第1図にお()る記憶部13に記憶さ
れた変換式に基づいて、冷媒の高圧側温度Tcの上昇速
度ΔTcが算出される。
In step S2, the rate of increase ΔTc of the high-pressure side temperature Tc of the refrigerant is calculated based on the conversion formula stored in the storage unit 13 shown in FIG.

ステップS3で、記憶部13に記憶された冷媒の高圧側
温度Tcの上昇速度ΔTcとファンモータ14の回転数
の減少速度との関係を表すテーブルに基づいて、ファン
モータ14の回転数の減少速度が求められ、この求めら
れた減少速度に従って、ファンモータI4の回転数が減
少される。
In step S3, the rate of decrease in the rotational speed of the fan motor 14 is determined based on the table representing the relationship between the rate of increase ΔTc of the high-pressure side temperature Tc of the refrigerant and the rate of decrease in the rotational speed of the fan motor 14, which is stored in the storage unit 13. is determined, and the rotation speed of the fan motor I4 is decreased in accordance with the determined decreasing speed.

ステップS4で、室内ユニットのマイコン11からの冷
媒温度検出信号に基づいて冷媒の高圧側温度Tcが検知
され、この検知された冷媒の高圧側温度Tcが、上記第
2の設定温度Tc、より高い第1の設定温度Tc7以上
か否かが判別される。その結果第1の設定温度TC2以
上であればステップことができる。
In step S4, the high pressure side temperature Tc of the refrigerant is detected based on the refrigerant temperature detection signal from the microcomputer 11 of the indoor unit, and the detected high pressure side temperature Tc of the refrigerant is higher than the second set temperature Tc. It is determined whether the temperature is equal to or higher than the first set temperature Tc7. As a result, if the temperature is higher than the first set temperature TC2, the step can be performed.

〈実施例〉 以下、この発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図はこの発明に係る室外ユニットのファンの回転数
制御のブロック図である。室内ユニットのマイコン11
は、冷媒の高圧側温度検出用のザーミスタTからの冷媒
温度検出信号を読み取って室外ユニットのマイコン12
に送出する。そうすると、室外ユニットのマイコン12
は後に詳述するようにして、室外ユニットのファンの回
転数変化速度等を算出して室外ユニットのファン用のフ
ァンモータ14の回転数を制御する。
FIG. 1 is a block diagram of the rotation speed control of the fan of the outdoor unit according to the present invention. Indoor unit microcomputer 11
reads the refrigerant temperature detection signal from thermistor T for detecting the temperature on the high pressure side of the refrigerant and sends it to the microcomputer 12 of the outdoor unit.
Send to. Then, the microcomputer 12 of the outdoor unit
As will be described in detail later, the rotation speed of the fan motor 14 for the fan of the outdoor unit is controlled by calculating the speed of change in the rotation speed of the fan of the outdoor unit.

第2図は室外ユニットのマイコン12において実施され
る暖房過負荷時のピークカット制御のフローチャートで
ある。以下、第2図に従って暖房過負荷時のピークカッ
ト制御動作について詳細に説明する。
FIG. 2 is a flowchart of peak cut control performed in the microcomputer 12 of the outdoor unit during heating overload. Hereinafter, the peak cut control operation during heating overload will be explained in detail with reference to FIG.

ステップS1で、室内ユニットのマイコン11からの冷
媒温度検出信号に基づいて冷媒の高圧側S5に進み、そ
うでなければステップS1に戻る。
In step S1, the process proceeds to the high pressure side S5 of the refrigerant based on the refrigerant temperature detection signal from the microcomputer 11 of the indoor unit, and if not, the process returns to step S1.

ステップS5で、室外ユニットのファンによる風量が最
小になるようにファンモータI4の回転数が設定される
と共に、補助ヒータ、室内ユニットのファンおよび圧縮
機を逐次制御して、冷媒の高圧側圧力を下げるピークカ
ット制御(以下、従来のピークカット制御と言う)に入
り暖房過負荷時のピークカット制御動作を終了する。
In step S5, the rotation speed of the fan motor I4 is set so that the air volume by the fan of the outdoor unit is minimized, and the auxiliary heater, the fan of the indoor unit, and the compressor are sequentially controlled to control the high-pressure side pressure of the refrigerant. It enters peak cut control to lower the temperature (hereinafter referred to as conventional peak cut control) and ends the peak cut control operation at the time of heating overload.

第3図は第2図のフローチャートに従って、ファンモー
タI4の回転数を制御して暖房過負荷時のピークカット
制御を実施した場合における外気温度と冷媒の高圧側圧
力との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the outside air temperature and the high-pressure side pressure of the refrigerant when the rotation speed of the fan motor I4 is controlled to perform peak cut control during heating overload according to the flowchart in FIG. 2. .

第3図において、暖房時に外気温度が上昇すると高圧側
冷媒の圧力および温度が上昇する。そして、外気温度が
T、に達すると冷媒の高圧側温度が上記第2の設定温度
Tc、に達して、第2図におけるステップ81〜ステツ
プS4で、冷媒の高圧側温度Tcの上昇速度ΔTcに応
じた減少速度によって、室外ユニットのファンのファン
モータ14の回転数がリニア制御されて減少される。そ
の結果、外気温塵T1から外気温度T、までは冷媒の高
圧側圧力の値が略一定(HP、)となる。
In FIG. 3, when the outside air temperature rises during heating, the pressure and temperature of the high-pressure side refrigerant rise. Then, when the outside air temperature reaches T, the high pressure side temperature of the refrigerant reaches the second set temperature Tc, and in steps 81 to S4 in FIG. The rotation speed of the fan motor 14 of the fan of the outdoor unit is linearly controlled and reduced according to the corresponding reduction speed. As a result, from the outside air temperature T1 to the outside air temperature T, the value of the high pressure side pressure of the refrigerant is approximately constant (HP, ).

さらに、外気温度がT、まで上昇すると、再び高圧側冷
媒の圧力および温度が上昇する。そして、上述のように
冷媒の高圧側温度が第1の設定温度TC2に達する(そ
の際に、冷媒の高圧側圧力の値はHP2に達する)とフ
ァンモータ14の回転が停止されて室内ユニットのファ
ンの風量が最小値に保たれると共に、上記従来のピーク
カット制御に入るのである。
Furthermore, when the outside air temperature rises to T, the pressure and temperature of the high-pressure side refrigerant rise again. Then, as described above, when the high pressure side temperature of the refrigerant reaches the first set temperature TC2 (at that time, the value of the high pressure side pressure of the refrigerant reaches HP2), the rotation of the fan motor 14 is stopped and the indoor unit The air volume of the fan is maintained at the minimum value, and the conventional peak cut control described above is entered.

このように、暖房過負荷時におけるピークカット制御に
おいて、上記従来のピークカット制御に入る前に、室外
ユニットのマイコン12によって冷媒の高圧側温度Tc
の上昇速度ΔTcに応じて室外ユニットのファンのファ
ンモータ14の回転数を減少するようにしている。した
がって、外気温度T3まで冷媒の高圧側圧力の値をHP
 2以下に押さえることができ、従来のピークカット制
御に入って圧縮機が停止されるまで広範囲な暖房運転を
可能にできるのである。また、上記室外ユニットのマイ
コン12は冷媒の高圧側温度Tcの上昇速度ΔTcに応
じてファンモータ14の回転数をリニア制御するように
しているので、冷媒の高圧側圧力の上昇に対してきめ細
かくピークカット制御を行うことができるのである。
In this way, in peak cut control during heating overload, before entering the conventional peak cut control, the high pressure side temperature Tc of the refrigerant is controlled by the microcomputer 12 of the outdoor unit.
The number of rotations of the fan motor 14 of the fan of the outdoor unit is decreased in accordance with the rising speed ΔTc of the fan. Therefore, the value of the high pressure side pressure of the refrigerant is changed to HP until the outside air temperature T3.
2 or less, enabling a wide range of heating operation until the conventional peak cut control is entered and the compressor is stopped. In addition, the microcomputer 12 of the outdoor unit linearly controls the rotation speed of the fan motor 14 according to the rate of increase ΔTc of the high-pressure side temperature Tc of the refrigerant. Cutting control can be performed.

また、上述のような制御を行うことによって、次のよう
な効果が生じる。すなわち、」1記従来のピークカット
制御に入る前に、室外ユニットのファンの回転数制御を
行うようにしているので、外気温度がT3以上になって
従来のピークカット制御に入った場合に、補助ヒータオ
フや室内ユニットのファンの回転数の変化によるドラフ
ト感の変化に伴う不快感を少なくできる。また、この発
明をインバータ機に用いた場合は、外気温度T5までは
圧縮機用の電動機の周波数を一定の効率の良い周波数に
維持できるために、室外騒音および振動等が発生せず年
間エネルギー効率も良くなるのである。
Further, by performing the above-described control, the following effects are produced. In other words, 1. Before entering the conventional peak cut control, the rotation speed of the fan of the outdoor unit is controlled, so when the outside temperature exceeds T3 and the conventional peak cut control is entered, It is possible to reduce the discomfort caused by changes in draft feeling caused by turning off the auxiliary heater or changing the rotation speed of the indoor unit fan. In addition, when this invention is applied to an inverter machine, the frequency of the compressor motor can be maintained at a constant and efficient frequency until the outside temperature T5. It will also get better.

上記実施例においては、冷媒の高圧側温度Tcの上昇速
度ΔTcからファンモータ14の回転数〜11 の減少速度を求める場合には、記憶部J3に記憶された
テーブルに従って求めるようにしている。
In the embodiment described above, when the rate of decrease in the rotational speed of the fan motor 14 to 11 is determined from the rate of increase ΔTc of the high-pressure side temperature Tc of the refrigerant, the rate of decrease in the rotational speed of the fan motor 14 is determined according to a table stored in the storage section J3.

しかしながら、この発明はこれに限定されるものではな
く、冷媒の高圧側温度Tcの上昇速度ΔTcとファンモ
ータI4の回転数の減少速度との関係式を記憶部I3に
記憶しておき、この関係式に基づいてファンモータ14
の回転数を制御してもよい 上記実施例においては、冷媒の高圧側温度Tcの上昇速
度ΔTcに基づいて室外ユニットのファンの回転数を制
御するようにしているが、高圧側冷媒回路の圧力の上昇
速度に基づいて室外ユニットのファンの回転数を制御す
るようにしても同し効果が得られる。したがって、この
発明の温度検出手段には、圧力を検出して温度を検出す
るものも含み、温度上昇を圧力上昇に読み代えたものも
、この発明の範囲に含まれるのである。
However, the present invention is not limited to this, and a relational expression between the rate of increase ΔTc of the high-pressure side temperature Tc of the refrigerant and the rate of decrease in the rotational speed of the fan motor I4 is stored in the storage unit I3, and this relationship is stored in the storage unit I3. Fan motor 14 based on the formula
In the above embodiment, the rotation speed of the fan of the outdoor unit is controlled based on the rate of increase ΔTc of the high-pressure side temperature Tc of the refrigerant. The same effect can be obtained by controlling the rotation speed of the fan of the outdoor unit based on the rising speed of the outdoor unit. Therefore, the temperature detection means of the present invention includes those that detect temperature by detecting pressure, and those in which temperature rise is replaced with pressure rise are also included within the scope of this invention.

〈発明の効果〉 以上より明らかなように、この発明の空気調和機は、温
度上昇速度算出手段、ファン回転数制御手段および制御
切替手段を備えて、」1記温度上昇速度算出手段によっ
て、温度検出手段からの温度信号に基づく冷媒の高圧側
温度が第2の温度以上であれば所定の規則に従って温度
上昇速度を算出し、上記ファン回転数制御手段によって
、算出された上記温度上昇速度に基づいて室外ユニット
のファンの回転数の減少速度を求めて上記室外ユニット
のファンの回転数を制御し、上記制御切替手段によって
、上記温度信号に基づく冷媒の高圧側温度が上記第2の
温度より高い第1の温度以上であれば、ヒータ、室内ユ
ニットのファン、圧縮機および室外ユニットのファンの
少なくとも二つを逐次制御して、冷媒の高圧側圧力を下
げる従来のピークカット制御を行うようにしたので、上
記従来のピークカット制御に入る前に室外ユニットのフ
ァンの回転数を制御して、冷媒の高圧側圧力の上昇を押
さえることができる。したがって、運転効率が良く騒音
や振動がなく、広範囲な暖房運転を可能にできる。また
、上記ファン回転数制御手段によって、冷媒の高圧側温
度の上昇速度に応じて室外ユニットのファンの回転数を
リニア制御するので、冷媒の高圧側圧力の上昇に対して
きめ細かく新しい方式のピークカット制御を行うことか
できる。
<Effects of the Invention> As is clear from the above, the air conditioner of the present invention is equipped with a temperature increase rate calculation means, a fan rotation speed control means, and a control switching means, and the temperature increase rate calculation means described in 1. If the high-pressure side temperature of the refrigerant based on the temperature signal from the detection means is equal to or higher than the second temperature, a temperature increase rate is calculated according to a predetermined rule, and the fan rotation speed control means calculates the temperature increase rate based on the calculated temperature increase rate. the rotation speed of the fan of the outdoor unit is controlled by determining the rate of decrease in the rotation speed of the fan of the outdoor unit, and the control switching means causes the high pressure side temperature of the refrigerant based on the temperature signal to be higher than the second temperature. If the temperature is above the first temperature, at least two of the heater, indoor unit fan, compressor, and outdoor unit fan are sequentially controlled to perform conventional peak cut control to lower the high pressure side pressure of the refrigerant. Therefore, before entering the conventional peak cut control described above, the rotation speed of the fan of the outdoor unit can be controlled to suppress an increase in the pressure on the high pressure side of the refrigerant. Therefore, the heating operation can be performed over a wide range of areas with good operating efficiency and no noise or vibration. In addition, the fan rotation speed control means linearly controls the rotation speed of the fan of the outdoor unit according to the rate of increase in the temperature on the high pressure side of the refrigerant, allowing for a new method of finely tuned peak cutting in response to increases in the pressure on the high pressure side of the refrigerant. Can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係るファンモータの回転数制御のブ
ロック図、第2図は暖房過負荷時のピークカット制御の
フローチャート、第3図は第2図のフローチャートに基
づく暖房過負荷時のピークカット制御における外気温度
と冷媒の高圧側圧力との関係図、第4図は従来のピーク
カット制御における外気温度と冷媒の高圧側圧力との関
係図、第5図は従来の空気調和機にお(Jるファン制御
のブロック図である。 11・・・室内ユニットのマイコン、 12 室外ユニットのマイコン、 I3 ・記憶部、14・・・ファンモータ。
Fig. 1 is a block diagram of fan motor rotation speed control according to the present invention, Fig. 2 is a flowchart of peak cut control during heating overload, and Fig. 3 is a peak peak cut control during heating overload based on the flowchart of Fig. 2. Figure 4 is a diagram of the relationship between outside air temperature and refrigerant high pressure side pressure in cut control. Figure 4 is a diagram showing the relationship between outside air temperature and refrigerant high pressure side pressure in conventional peak cut control. Figure 5 is a diagram showing the relationship between outside air temperature and refrigerant high pressure side pressure in conventional peak cut control. (It is a block diagram of fan control. 11... Microcomputer of indoor unit, 12 Microcomputer of outdoor unit, I3 - Storage section, 14... Fan motor.

Claims (1)

【特許請求の範囲】[Claims] (1)冷媒の高圧側温度を温度検出手段(T)で検出し
て、冷媒の高温側の温度が第1の温度以上になると、ヒ
ータ、室内ユニットのファン、圧縮機および室外ユニッ
トのファンの少なくとも二つを逐次制御して、冷媒の高
圧側圧力を下げるピークカット制御を行う空気調和機で
あって、 上記温度検出手段(T)からの温度信号を読み込んで、
この温度信号に基づく温度が上記第1の温度より低い第
2の温度以上であれば、所定の規則に従って温度上昇速
度を算出する温度上昇速度算出手段と、 上記温度上昇速度算出手段によって算出された温度上昇
速度に基づいて、室外ユニットのファンの回転数の減少
速度を求め、この求めた回転数減少速度に従って上記室
外ユニットのファンの回転数を制御するファン回転数制
御手段と、 上記温度信号を読み込んで、この温度信号に基づく温度
が第1の温度以上であれば、上記ピークカット制御に切
り替える制御切替手段を備えたことを特徴とする空気調
和機。
(1) When the temperature on the high pressure side of the refrigerant is detected by the temperature detection means (T) and the temperature on the high temperature side of the refrigerant exceeds the first temperature, the heater, indoor unit fan, compressor, and outdoor unit fan are activated. An air conditioner that performs peak cut control to lower the high pressure side pressure of the refrigerant by sequentially controlling at least two of them, the air conditioner reading a temperature signal from the temperature detection means (T),
If the temperature based on this temperature signal is equal to or higher than a second temperature lower than the first temperature, a temperature increase rate calculation means calculates the temperature increase rate according to a predetermined rule; A fan rotation speed control means that determines the speed of decrease in the rotation speed of the fan of the outdoor unit based on the temperature rise speed, and controls the rotation speed of the fan of the outdoor unit according to the determined rotation speed decrease speed; An air conditioner comprising control switching means that reads the temperature signal and switches to the peak cut control if the temperature based on the temperature signal is equal to or higher than the first temperature.
JP1102147A 1989-04-20 1989-04-20 Air-conditioner Pending JPH02279941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1102147A JPH02279941A (en) 1989-04-20 1989-04-20 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102147A JPH02279941A (en) 1989-04-20 1989-04-20 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH02279941A true JPH02279941A (en) 1990-11-15

Family

ID=14319633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102147A Pending JPH02279941A (en) 1989-04-20 1989-04-20 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH02279941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072847A3 (en) * 1999-07-28 2002-07-24 Johnson Controls Technology Company Apparatus and method for intelligent control of the fan speed air-cooled condensers
CN105042770A (en) * 2015-07-02 2015-11-11 珠海格力电器股份有限公司 Control method and device for air conditioner heating startup

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072847A3 (en) * 1999-07-28 2002-07-24 Johnson Controls Technology Company Apparatus and method for intelligent control of the fan speed air-cooled condensers
US6594554B1 (en) 1999-07-28 2003-07-15 Johnson Controls Technology Company Apparatus and method for intelligent control of the fan speed of air-cooled condensers
CN105042770A (en) * 2015-07-02 2015-11-11 珠海格力电器股份有限公司 Control method and device for air conditioner heating startup

Similar Documents

Publication Publication Date Title
KR0145021B1 (en) Outdoor fan rotating speed variable airconditioner
JP4265601B2 (en) Air conditioner
JPS60142140A (en) Air conditioner
KR100367748B1 (en) Air conditioner
JP3597053B2 (en) Air conditioner
JPH02279941A (en) Air-conditioner
JPS6349640Y2 (en)
JPS6277539A (en) Inverter air conditioner
KR20000037566A (en) Method for controlling inverter compressor of air conditioner
JP2581337B2 (en) Dew condensation avoidance device for air conditioners
JP3754582B2 (en) Air conditioner control device
JPH07310959A (en) Air conditioner
JPH05346257A (en) Air conditioner
JPH062918A (en) Controller for air conditioner
JPH03129238A (en) Controlling method for air flow of air conditioner
JPS5927145A (en) Air conditioner
JP2831706B2 (en) Air conditioner
JPH0533987A (en) Controlling method for air conditioner
JPH01237373A (en) Frequency control device of air conditioner
JPH07234046A (en) Air conditioner
JP2945731B2 (en) Air conditioner
JPH0518618A (en) Method of controlling operation of air conditioner
JP4224915B2 (en) Air conditioner
JP2870928B2 (en) Air flow control method for air conditioner
JPS6021697Y2 (en) air conditioner