JPH0227992Y2 - - Google Patents

Info

Publication number
JPH0227992Y2
JPH0227992Y2 JP1983002658U JP265883U JPH0227992Y2 JP H0227992 Y2 JPH0227992 Y2 JP H0227992Y2 JP 1983002658 U JP1983002658 U JP 1983002658U JP 265883 U JP265883 U JP 265883U JP H0227992 Y2 JPH0227992 Y2 JP H0227992Y2
Authority
JP
Japan
Prior art keywords
pipe
welding
cooling
welded
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983002658U
Other languages
Japanese (ja)
Other versions
JPS59110177U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP265883U priority Critical patent/JPS59110177U/en
Publication of JPS59110177U publication Critical patent/JPS59110177U/en
Application granted granted Critical
Publication of JPH0227992Y2 publication Critical patent/JPH0227992Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【考案の詳細な説明】 この考案は、たとえばチタン及び高合金鋼等の
突合せ溶接部の高温域加熱部分を冷却するのに用
いられる管溶接用冷却治具に関する。
[Detailed Description of the Invention] This invention relates to a cooling jig for pipe welding, which is used to cool a high-temperature heated portion of a butt weld of titanium, high alloy steel, etc., for example.

チタンや高合金鋼(オーステナイトステンレス
スチールなど)が高温で酸素や水素等と親和力の
強いのは言うまでもなく、従つて溶接で加熱され
た部分は、チタンや高合金鋼の空気による酸化
等、すなわちガスコンタミネーシヨンが起こらな
いように温度がある温度に下がるまでシールして
空気から遮断し、かつ冷却しなければならない。
ところで、従来鋼管などを回転しながらその全周
にわたつて溶接する場合、一層溶接のみならず二
層以降の溶接作業においても溶接トーチによるア
ルゴンガスシールを加熱部分に施すほかに、溶接
後のアフターシールをもアルゴンガスで行ない、
かつ溶接する面の裏面(管内)にはアルゴンガス
を大量に流してアルゴンガス雰囲気にしてバツク
シールを行なうことで鋼管の内外の空気遮断及び
冷却を図つている。
It goes without saying that titanium and high-alloy steel (such as austenitic stainless steel) have a strong affinity for oxygen, hydrogen, etc. at high temperatures. To prevent contamination, it must be sealed, isolated from air, and cooled until the temperature drops to a certain temperature.
By the way, when conventionally welding a steel pipe over its entire circumference while rotating, in addition to applying an argon gas seal to the heated part with a welding torch, not only for first-layer welding but also for welding the second layer and beyond, Seal is also done with argon gas,
In addition, a large amount of argon gas is flowed to the back side (inside the pipe) of the surface to be welded to create an argon gas atmosphere and perform back sealing, thereby blocking air inside and outside the steel pipe and cooling it.

ところが、上記従来の溶接手法では、アルゴン
ガスなどの不活性ガスを長時間流して加熱部のシ
ール及び冷却を行うために、高価な不活性ガスを
大量に必要とし、しかも高温のアルゴンガスやオ
ゾンガスを発生して作業を行なう周辺が酸素欠乏
環境となつて息苦しくなり作業衛生上問題がある
ばかりか、不活性ガスの冷却能が低いことから溶
接による歪発生の原因となりかつ冷却時間を多く
要し、したがつて連続溶接が不可能であつた。
However, the conventional welding method described above requires a large amount of expensive inert gas to seal and cool the heated part by flowing an inert gas such as argon gas for a long time, and also requires a large amount of expensive inert gas. Not only does this create an oxygen-deficient environment around the work area, making it difficult to breathe and poses a work hygiene problem, but the low cooling ability of the inert gas causes distortion during welding and requires a long cooling time. Therefore, continuous welding was impossible.

尚、溶接施工中の溶接部分に流体を冷媒として
接した状態で滞留させて溶接部分のシール及び冷
却を図ることも考えられるが、流体を滞留させる
だけでは冷却機能を発揮できず溶接特性が実際に
確保できないことが実証されている。
It is also possible to seal and cool the welded part by allowing the fluid to remain in contact with the welded part as a coolant during welding, but simply allowing the fluid to remain in the welded part will not provide the cooling function and the welding characteristics may deteriorate. It has been proven that it cannot be guaranteed.

この考案は以上の点に鑑み成されたものであつ
て、すなわちこの考案は、不活性ガスの代わり
に、冷却能の大きい冷媒としての流体をある流速
を与えて溶接施工中回転される管の溶接部分に散
布して溶接部の高温域加熱部を空気からシールす
ると同時に冷却することで、高価な不活性ガスの
使用量を大幅に減らして高温不活性ガスの発生を
防ぐことができ、かつ冷却時間を不要として連続
溶接が可能となる管溶接用冷却治具を提供するこ
とを目的とする。
This invention was developed in view of the above points.In other words, this invention uses a fluid as a refrigerant with a large cooling capacity instead of an inert gas to provide a certain flow rate to the pipes being rotated during welding. By spraying it on the welding area to seal the high-temperature heating area of the welding area from the air and cooling it at the same time, it is possible to significantly reduce the amount of expensive inert gas used and prevent the generation of high-temperature inert gas. An object of the present invention is to provide a cooling jig for pipe welding that enables continuous welding without requiring cooling time.

したがつて、この目的を達成するためにこの考
案の管溶接用冷却治具は、冷媒を被溶接管内に導
く冷却導管と、該冷却導管に設けられて冷却導管
により導かれた冷媒を溶接部の裏面に向けて所定
の流速で散布するための吹出しノズルと、該吹出
しノズルの両側位置に設けられて上記被溶接管の
内面と共に上記冷媒の滞留空間を形成する一方及
び他方の遮蔽部材と、溶接部で熱交換を行なつた
冷媒を上記滞留空間から排出する排出路とを具備
する管溶接用治具において、上記吹出しノズル
は、上記被溶接管における周方向の溶接部の一部
に向くように設けられ、上記遮蔽部材は、溶接施
工における上記被溶接管の回転に伴い上記吹出し
ノズルに対して回転するように構成されているこ
とを特徴とする。
Therefore, in order to achieve this purpose, the cooling jig for pipe welding of this invention includes a cooling conduit that guides the refrigerant into the pipe to be welded, and a cooling jig that is installed in the cooling conduit and directs the refrigerant guided by the cooling conduit to the welding part. a blowout nozzle for spraying at a predetermined flow rate toward the back surface of the refrigerant; one and the other shielding members provided on both sides of the blowout nozzle to form a retention space for the refrigerant together with the inner surface of the welded pipe; In the pipe welding jig, the pipe welding jig is provided with a discharge path for discharging the refrigerant that has undergone heat exchange at the welded part from the retention space, and the blowing nozzle is directed toward a part of the welded part in the circumferential direction of the pipe to be welded. The shielding member is configured to rotate with respect to the blow-off nozzle as the pipe to be welded rotates during welding.

以下、図示の一実施例によりこの考案を説明す
る。
This invention will be explained below with reference to an illustrated embodiment.

第1図は、この考案に係る管溶接用冷却治具
(以下、冷却治具という)を示し、第2図と第3
図は、この冷却治具が被溶接管としての管T,T
の突合せられた溶接部W付近に挿入された状態を
示している。
Figure 1 shows the cooling jig for pipe welding (hereinafter referred to as the cooling jig) according to this invention, and Figures 2 and 3 show the cooling jig for pipe welding (hereinafter referred to as the cooling jig).
The figure shows that this cooling jig is used for pipes T and T as pipes to be welded.
It shows the state where it is inserted near the butted weld W.

被溶接管としての管T,Tは、オーステナイト
ステンレスステイール、ハイニツケルステイール
などの高合金鋼のほか、たとえばチタンで成形さ
れたものでもよい。
The pipes T, T as the pipes to be welded may be made of high alloy steel such as austenitic stainless steel or high nickel steel, or may be made of, for example, titanium.

まず、上記冷却治具を説明すると、第1図に示
すように一端側が開口された円筒状を成し、溶接
部Wをシールしかつ冷却する冷媒としての液体、
例えば冷却水を排出する冷媒排出管としての排出
管1と、該排出管1内に軸方向に沿つて内挿保持
され、上記冷却水を外部より溶接部W付近まで導
く冷却導管2と、排出管1の閉鎖された他端側に
回転自在に取り付けられ該排出管1内の冷却水を
外部に排出する回転排出ジヨイント管3と、上記
冷却導管2の冷却水入口2aと反対側の冷却水放
出口2b側に固設されて冷却導管2と接続開口さ
れた円筒形のタンク4と、該タンク4の外周に突
出して設けられてタンク4内の冷却水を鉛直上方
の溶接部W内面に導く吹出しノズル5と、可撓性
材料、たとえばシリコン材などで円盤状に成形さ
れ、直径方向が排出管1の軸方向と直交するよう
にして、タンク4に回転及び着脱自在に取り付け
られた一方の遮蔽部材としての遮蔽パツキン6
と、該遮蔽パツキン6と同様に可撓性材料で円盤
状に成形され、上記一方の遮蔽パツキン6と対向
するように排出管1の外周に着脱自在に固定され
た他方の遮蔽部材としての遮蔽パツキン7と、を
有しており、上記遮蔽パツキン6,7の直径D
は、管T,Tの内径dより大とされている。
First, to explain the cooling jig, it has a cylindrical shape with one end open as shown in FIG.
For example, a discharge pipe 1 as a refrigerant discharge pipe for discharging cooling water, a cooling conduit 2 which is inserted and held in the discharge pipe 1 along the axial direction and guides the cooling water from the outside to the vicinity of the welded part W, A rotating discharge joint pipe 3 which is rotatably attached to the other closed end of the pipe 1 and discharges the cooling water in the discharge pipe 1 to the outside, and a cooling water on the side opposite to the cooling water inlet 2a of the cooling conduit 2. A cylindrical tank 4 is fixedly installed on the discharge port 2b side and has an opening connected to the cooling conduit 2, and a cylindrical tank 4 is provided protruding from the outer periphery of the tank 4 to direct the cooling water in the tank 4 to the inner surface of the welded part W vertically above. A blow-off nozzle 5 is formed into a disc shape from a flexible material such as a silicone material, and is rotatably and detachably attached to the tank 4 with its diameter direction perpendicular to the axial direction of the discharge pipe 1. Shielding gasket 6 as a shielding member
and a shield as the other shielding member, which is formed into a disk shape from a flexible material similarly to the shielding packing 6 and is removably fixed to the outer periphery of the discharge pipe 1 so as to face the one of the shielding packings 6. and a diameter D of the shielding gaskets 6 and 7.
is larger than the inner diameter d of the tubes T, T.

上記冷却導管2は、第4図と第5図に示すよう
に排出管1に対して回転可能とされていて排出管
1の閉鎖面1aとこれを貫く冷却導管2との間に
は液密シールS1が介在されている。また、上記回
転排出ジヨイント管3のジヨイント部3aは、液
密シールS2を介して排出管1の外周に摺動自在に
取り付けられており、このジヨイント部3a内に
位置され排出管1の全周にわたつて等間隔に形成
された排出孔1bを介して回転排出ジヨイント管
3と排出管1とが連通されている。
As shown in FIGS. 4 and 5, the cooling conduit 2 is rotatable with respect to the discharge pipe 1, and there is a liquid-tight space between the closed surface 1a of the discharge pipe 1 and the cooling conduit 2 that penetrates the closed surface 1a. Seal S 1 is interposed. Further, the joint part 3a of the rotary discharge joint pipe 3 is slidably attached to the outer periphery of the discharge pipe 1 via a liquid-tight seal S2 . The rotary discharge joint pipe 3 and the discharge pipe 1 are communicated with each other through discharge holes 1b formed at equal intervals around the circumference.

上記吹出しノズル5は、第6図と第7図に示す
ようにタンク4の外周面の任意の個所より導出さ
れた多数のノズル管8を有する。各ノズル管8の
噴出開口部8aは楕円形状に広げられて、該噴出
開口部8aの開口面積が途中管路断面積より大き
くとられていて、各噴出開口部8aはタンク4の
軸方向と直交する方向、すなわち管T,Tの溶接
部Wに沿う方向に一列に集合されて一つの吹出し
ノズル5を形成している。尚、この噴出開口部8
aの開口端は、第6図に示すようにタンク4の軸
中心と同心の半径Rの円周上に配列されている。
The blow-off nozzle 5 has a large number of nozzle pipes 8 led out from arbitrary locations on the outer peripheral surface of the tank 4, as shown in FIGS. 6 and 7. The ejection opening 8a of each nozzle pipe 8 is widened into an elliptical shape, and the opening area of the ejection opening 8a is larger than the cross-sectional area of the pipe in the middle, and each ejection opening 8a is arranged in the axial direction of the tank 4. They are assembled in a line in the orthogonal direction, that is, in the direction along the welded portion W of the tubes T, T, to form one blowout nozzle 5. In addition, this spout opening 8
The open ends of a are arranged on the circumference of a radius R concentric with the axial center of the tank 4, as shown in FIG.

次に上記一方の遮蔽パツキン6が着脱自在に取
り付けられた回転ジヨイント9は、第3図と第8
図に示すようにタンク4に固設された取付部材1
0に回転自在に係合されている。すなわち、取付
部材10の挿入穴10aには回転ジヨイント9が
挿入され、回転ジヨイント9の全周に沿つて形成
された係合溝9aには、取付部材10側に固着さ
れた半割状の係合部材11が係合されており、し
かして回転ジヨイント9と一体の遮蔽パツキン6
はタンク4に対して回転自在とされている。
Next, the rotary joint 9 to which one of the shielding gaskets 6 is removably attached is shown in FIGS. 3 and 8.
Mounting member 1 fixed to tank 4 as shown in the figure
0 is rotatably engaged. That is, the rotation joint 9 is inserted into the insertion hole 10a of the mounting member 10, and the engagement groove 9a formed along the entire circumference of the rotation joint 9 has a half-shaped engagement fixed to the mounting member 10 side. The fitting member 11 is engaged with the shielding gasket 6 which is integral with the rotating joint 9.
is rotatable with respect to the tank 4.

尚、上記排出管1と冷却導管2の間の排出部1
cと回転排出ジヨイント管3とで冷却水の排出路
を構成する。また、第10図には、管T,Tの溶
接部Wに溶接するためのトーチTch、溶加棒B及
び溶接部Wをアフターシールするためにアルゴン
ガスを吹き込んで封入する円筒形のカバーCを示
している。さらに第9図に示すように、管T,T
は、固定台Z上の回転支持部材R,Rに載置され
ており、被溶接管である管T,Tを回転させなが
ら鉛直上方に固定されたトーチTchで溶接操作を
行ういわゆる回転管である。
Note that the discharge section 1 between the discharge pipe 1 and the cooling conduit 2
c and the rotary discharge joint pipe 3 constitute a cooling water discharge path. FIG. 10 also shows a torch Tch for welding to the welded part W of the tubes T, T, a filler rod B, and a cylindrical cover C in which argon gas is blown and sealed in order to after-seal the welded part W. It shows. Furthermore, as shown in FIG.
is placed on rotating support members R, R on a fixed base Z, and is a so-called rotary tube in which the welding operation is performed using a torch Tch fixed vertically upward while rotating the tubes T, T, which are the tubes to be welded. be.

次に、以上の構成における作用を説明する。 Next, the operation of the above configuration will be explained.

回転自在に配置された管T,Tを突き合わせて
溶接する場合について説明すると、第10図に示
すように管T,Tの突き合せ部分にカバーCを取
り付けてアルゴンガスを連続して吹き込み溶接部
Wのアフターシールを施すとともに、管T,T内
にアルゴンガスを吹き込みつづけてアルゴンガス
雰囲気として溶接部Wのバツクシールを施す。す
なわち、溶接部Wは上記アフターシールとバツク
シールより完全にシールされており、この状態で
管T,Tを回転させながら鉛直上方よりトーチ
Tch及び溶加棒Bを用いて管T,Tの溶接部Wの
全周にわたり一層溶接を施す。尚、この溶接施工
中にはトーチTchからアルゴンガスが噴出されて
いる。
To explain the case of welding rotatably arranged tubes T and T together, as shown in Fig. 10, cover C is attached to the butt part of tubes T and T, and argon gas is continuously blown into the welded part. After-sealing of W is performed, and back-sealing of the welded portion W is performed by continuing to blow argon gas into the tubes T and T to create an argon gas atmosphere. In other words, the weld W is completely sealed by the above-mentioned afterseal and backseal, and in this state, while rotating the tubes T, a torch is applied from vertically above.
Using Tch and filler rod B, further welding is performed over the entire circumference of the welded portion W of the tubes T and T. Incidentally, during this welding process, argon gas is blown out from the torch Tch.

次に、上記一層溶接において、アフターシール
により溶接部Wが冷却したのち、カバーCを取り
はずすと共に、この考案の冷却治具を管T,T内
に挿入する。
Next, in the above-mentioned single-layer welding, after the welded part W is cooled by the after-seal, the cover C is removed and the cooling jig of this invention is inserted into the pipes T, T.

すなわち、第11図に示すように、遮蔽パツキ
ン6,7の弾力に抗して管T,T内に冷却治具を
挿入することで、遮蔽パツキン6,7と管T,T
の間には冷却水の滞留空間Sが形成される。そし
て吹出しノズル5が鉛直上方に向けられて溶接部
Wの上側に対向するように冷却治具を位置決めし
たあと、第12図に示すように冷却水を水圧4〜
4.5Kg/cm2で冷却導管2よりタンク4内に導き各
ノズル管8より放出させると共に、管T,Tを一
体に回転させながら、アルゴンガスが放出された
トーチTchと溶加棒Bを用いて管T,Tの上方か
ら下向きに溶接部Wに二層目の溶接を管T,Tの
全周にわたつて施す。この際に、遮蔽パツキン
6,7は管T,Tの回転に伴い同方向に回転され
るが、冷却導管2、排出ジヨイント管3、タンク
4を固定して常に吹出しノズル5を溶接施工中の
溶接部が位置している鉛直方向に向けておくこと
ができる。
That is, as shown in FIG. 11, by inserting a cooling jig into the tubes T, T against the elasticity of the shield gaskets 6, 7, the shield gaskets 6, 7 and the tubes T, T
A cooling water retention space S is formed between them. After positioning the cooling jig so that the blow-off nozzle 5 is directed vertically upward and facing the upper side of the welding part W, the cooling water is supplied at a water pressure of 4 to
4.5Kg/cm 2 was introduced into the tank 4 from the cooling pipe 2 and released from each nozzle pipe 8, and while the pipes T and T were rotating together, using the torch Tch from which argon gas was released and the filler rod B. Then, a second layer of welding is applied to the welded portion W from above the tubes T, T downward over the entire circumference of the tubes T, T. At this time, the shielding gaskets 6 and 7 are rotated in the same direction as the pipes T and T are rotated, but the cooling conduit 2, discharge joint pipe 3, and tank 4 are fixed and the blow-off nozzle 5 is constantly welded. It can be oriented vertically where the weld is located.

また、常にトーチTchと吹出しノズル5とは溶
接部Wをはさんで対向されており、放出された冷
却水は溶接施工中の溶接部Wの高温加熱領域を冷
却し、その後冷却水は滞留空間Sで対流したのち
排出部1c、排出孔1b及び回転排出ジヨイント
管3を経て外部に排水される。すなわち、溶接に
よる入熱と溶接部W裏面の加熱域にある冷却水と
が熱交換する時に、ある量の冷却水は所定の流速
で対流されて効率的に溶接部Wの高温加熱領域を
冷却することができることになる。この場合、溶
接の入熱はバーナ加熱などと異なり、スポツト的
な加熱となり熱交や加熱炉などの熱交換の考え方
とは異種のものと考える。例として、ナベに湯を
沸かす時にガスバーナで1分間加熱したものと、
溶接の様に局部的に1分間加熱したものでは湯の
温度はガスバーナの方が高くなるのは当然であ
る。しかし、後者の方は、局部的にはおそらく
100℃を超える温度となり局部的に沸騰する事に
なろう。そして、これを防ぐにはある量の水の対
流が必要となり、流速、流量、管T,Tの材質、
肉厚、冷却水の温度などがこれに大きな影響を与
えるものである。
In addition, the torch Tch and the blowout nozzle 5 are always opposed to each other across the weld W, and the discharged cooling water cools the high temperature heating area of the weld W during welding, and then the cooling water remains in the retention space. After convection at S, the water is drained to the outside through the discharge part 1c, the discharge hole 1b, and the rotary discharge joint pipe 3. In other words, when heat exchange occurs between the heat input from welding and the cooling water in the heated area on the back side of the weld W, a certain amount of the cooling water is convected at a predetermined flow rate and efficiently cools the high temperature heated area of the weld W. You will be able to do so. In this case, the heat input for welding is different from burner heating, etc., and is a spot heating, which is considered to be different from the concept of heat exchange such as a heat exchanger or a heating furnace. As an example, when boiling water in a pot, it is heated for 1 minute with a gas burner,
It is natural that the temperature of the hot water will be higher with a gas burner when it is locally heated for one minute, such as when welding. However, the latter is probably locally
The temperature will exceed 100℃, causing local boiling. To prevent this, a certain amount of water convection is required, and the flow rate, flow rate, pipe T, material of T, etc.
Wall thickness, cooling water temperature, etc. have a major influence on this.

そこで、上述のようにある量の冷却水を所定の
流速で対流させながら溶接部Wの熱交換を行なう
ことにより、冷却水が100℃を超えることがなく、
溶接部Wの裏面にガスコンタミネーシヨンを生ず
るおそれは全くなくなる。
Therefore, by exchanging heat in the weld W while causing a certain amount of cooling water to convect at a predetermined flow rate as described above, the temperature of the cooling water will not exceed 100°C.
There is no possibility of gas contamination occurring on the back surface of the weld W.

また、吹出しノズル5の各ノズル管8は、噴出
開口部8aが楕円形状に広げられて開口面積が大
きいことから、冷却治具を管T,Tに挿入して位
置決めする際にその位置決めが管T,Tの軸方向
にたとえば10mm〜40mm程度ずれても、冷却水を溶
接部Wに向けて確実に散布することができる。
In addition, each nozzle pipe 8 of the blow-off nozzle 5 has a large opening area because the blow-off opening 8a is widened into an elliptical shape, so that when inserting and positioning the cooling jig into the pipes T, the positioning is difficult. Even if the T and T are deviated by, for example, about 10 mm to 40 mm in the axial direction, the cooling water can be reliably sprayed toward the weld W.

尚、吹出しノズルの形状として複数のノズル管
8に代えて単一の扇形のノズルも考えられるが、
この種のノズルでは冷却水の流速が高くなると、
水幕がうすくなつてノズルの一部にかたよつて噴
出することがあるためノズル噴出口全体に均一に
噴出せず、溶接部Wに確実に冷却水を散布するこ
とができない場合があるので、吹出しノズルは複
数のノズル管8で構成した方が好ましい。
Note that a single fan-shaped nozzle may be considered instead of the plurality of nozzle pipes 8 as the shape of the blowout nozzle.
With this type of nozzle, when the cooling water flow rate increases,
Since the water curtain may become thin and spray unevenly on a part of the nozzle, the water may not be sprayed uniformly over the entire nozzle nozzle, and it may not be possible to reliably spray cooling water onto the weld W. It is preferable that the blow-off nozzle is composed of a plurality of nozzle pipes 8.

上述した二層目溶接の要領で以下三層目以降の
溶接を実施すればよいが、二層目以降の溶接では
カバーCを用いたアフターシールの必要はなく、
トーチTchから出るアルゴンガスによるシールで
十分である。また、この実施例では人手による溶
接作業について述べたが自動溶接作業においても
同様の要領で行なえることはいうまでもない。
The third and subsequent layers may be welded in the same manner as the second layer welding described above, but after-sealing using cover C is not necessary for welding the second and subsequent layers.
A seal with argon gas from the torch Tch is sufficient. Further, although this embodiment has been described with reference to manual welding work, it goes without saying that automatic welding work can also be performed in a similar manner.

次に、この考案に係る第2の実施例を第13図
により説明する。尚、第1の実施例と同等の箇所
には同様の符号を記し、その説明を省略する。
Next, a second embodiment of this invention will be described with reference to FIG. 13. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

第2の実施例の冷却治具は、冷却導管102の
途中に吹出しノズル105を設けると共に、遮蔽
パツキン106,107が冷却導管102に対し
て固定となつている。しかして、溶接施工時に
は、管T,Tが回転されると遮蔽パツキン10
6,107は摺動させられ固定されている冷却導
管102より冷却水が吹出しノズル105に導か
れて管T,Tの溶接施工中の溶接部Wに散布する
と共に、冷却水は遮蔽パツキン106,107と
管T,Tとで形成される滞留空間Sを経て排出管
101の排出部101c、排出孔101b及び固
定排出ジヨイント管103より排水される。
In the cooling jig of the second embodiment, a blowing nozzle 105 is provided in the middle of a cooling conduit 102, and shielding packings 106 and 107 are fixed to the cooling conduit 102. Therefore, during welding work, when the pipes T, T are rotated, the shielding packing 10
6, 107, the cooling water is guided from the sliding and fixed cooling conduit 102 to the blowing nozzle 105 and sprayed on the welding part W of the pipes T, T, which is being welded. The water is drained from the discharge part 101c of the discharge pipe 101, the discharge hole 101b, and the fixed discharge joint pipe 103 through the retention space S formed by the discharge pipe 107 and the pipes T, T.

ここで、一例としてチタン溶接による基本計算
式をモデル的に策定する。
Here, as an example, a basic calculation formula for titanium welding will be formulated as a model.

(1) 溶接による発生熱量として(電気的) Q〔cal〕=1/4.186ηρt η:熱交換係数 ρ:消費電力(W) t:時間 4.186:熱の仕事当量 ここで、溶接手法としてMIG法(イナートガ
スメタルアーク法)を採用した場合の最大発生条
件を代入し、また熱交換係数として0.6をとる。
ηの意味は、下述の通り第14図に示す様にQ゜
の入熱に対して冷却される表面で考慮すべき対象
熱量Q′である。(安全見込みとして60%変換とし
た。) 溶接条件 電 流:370〔A〕 電 圧:45〔V〕 溶接速度:550mm/min(0.92cm/
s) 溶加棒 :1.6mmφ Q=1/4.186×0.6×370×45×1〔S〕 =2386〔cal〕 … (2) 冷却対象面積 溶接ビード中の3倍を範囲とする。ビード幅は
最大5mmと設定すると、必要面積は溶接速度との
積、すなわち 3×0.5〔cm〕×0.92〔cm/s〕=1.38〔cm/s〕 (3) 水20℃→100℃にするのに必要な容量V〔cm3
として流速u〔cm/s〕とすると、(比熱1cal/
℃] Q=V×(100−20)=80V =80×1.38×u … ∴式より Q=2386〔cal〕=80×1.38×u ∴s=21.6〔cm/s〕 ≒0.2〔m/s〕 となる。
(1) As the amount of heat generated by welding (electrical) Q [cal] = 1/4.186ηρt η: Heat exchange coefficient ρ: Power consumption (W) t: Time 4.186: Work equivalent of heat Here, the MIG method is used as the welding method. Substituting the maximum generation conditions when (inert gas metal arc method) is adopted, and taking 0.6 as the heat exchange coefficient.
The meaning of η is the amount of heat Q' to be considered on the surface to be cooled for a heat input of Q° as shown in FIG. 14, as described below. (60% conversion was assumed as a safety estimate.) Welding conditions Current: 370 [A] Voltage: 45 [V] Welding speed: 550 mm/min (0.92 cm/
s) Filler rod: 1.6mmφ Q = 1/4.186 x 0.6 x 370 x 45 x 1 [S] = 2386 [cal] ... (2) Area to be cooled: Three times the area in the weld bead. If the maximum bead width is set to 5 mm, the required area is the product of the welding speed, i.e. 3 x 0.5 [cm] x 0.92 [cm/s] = 1.38 [cm/s] (3) Change water from 20℃ to 100℃ The required capacity V [cm 3 ]
If the flow velocity is u [cm/s], then (specific heat 1cal/
°C] Q=V×(100−20)=80V =80×1.38×u … ∴From the formula Q=2386 [cal]=80×1.38×u ∴s=21.6 [cm/s] ≒0.2 [m/s] ] becomes.

この結果から上述の場合少くとも冷却水の流速
を0.2〔m/s〕以上にしなくてはならない。そし
て水道水は一般に0.6〜1.5〔m/s〕となつてい
るので、冷媒として水道水圧をそのまま利用する
ことができることになる。
From this result, in the above case, the flow rate of the cooling water must be at least 0.2 [m/s] or higher. Since tap water generally has a flow rate of 0.6 to 1.5 [m/s], tap water pressure can be used as is as a refrigerant.

ところで、上述の実施例では、第10図の第1
層目の溶接後本考案の治具を使用した溶接を施し
たがこれに限定されることなく、第10図の一層
目溶接法で第二層目の溶接を行つて、第三層目以
降本考案の治具を使用した溶接を行なつてもよい
のは無論である。また上述の実施例では、チタン
製の管T,Tの溶接について述べたが、ステンレ
ス系の高合金鋼製の管を溶接する場合には、第1
0図の一層溶接においてカバーCを用いたアフタ
ーシールを施す必要がなく、トーチTchから出る
アルゴンガスのみでシールすればよい。
By the way, in the above-mentioned embodiment, the first
After welding the layers, welding was performed using the jig of the present invention, but the method is not limited to this, and the second layer can be welded using the first layer welding method shown in Fig. 10, and the third layer and subsequent layers can be welded. Of course, welding may be performed using the jig of the present invention. Further, in the above embodiment, the welding of titanium tubes T, T was described, but when welding stainless steel high alloy steel tubes, the first
In the single-layer welding shown in Figure 0, there is no need to perform after-sealing using cover C, and sealing can be performed only with argon gas emitted from torch Tch.

また、冷媒として冷却水の他に油などを用いて
もよい。さらに、前記遮蔽パツキンを複数の分割
パツキンで形成し、該遮蔽パツキンが縮径や拡径
の状態に出来る様にすれば、互いに異なる径の管
T,Tの溶接にも本考案の治具が使用出来る。
Furthermore, oil or the like may be used as a refrigerant in addition to cooling water. Furthermore, if the shielding packing is formed of a plurality of split packings, and the shielding packing can be made to have a reduced or expanded diameter, the jig of the present invention can also be used for welding pipes T, T having different diameters. Can be used.

以上説明したようにこの考案によれば、管の周
方向の一部に向けられる吹出しノズルに対して両
遮蔽部材が回転できるように構成されている。従
つて、被溶接管を回転させながら周方向に沿つて
溶接した場合に、該管と共に遮蔽部材が同方向に
回転しても、冷却導管により被溶接管内に導かれ
た冷媒を吹出しノズルによつて常に溶接施工中の
溶接部の裏面に向けて所定の流速で散布し、その
高温域加熱部を空気からシールした状態で効率的
に冷却することができる。また、管が回転した場
合に冷媒を鉛直上方に向けて散布するようにすれ
ば、常に上方より下方に向けて溶接を施すことが
でき、溶接作業が容易となり作業性の向上が図れ
る効果がある。
As explained above, according to this invention, both shielding members are configured to be rotatable with respect to the blowing nozzle directed toward a part of the circumferential direction of the tube. Therefore, when the pipe to be welded is welded along the circumferential direction while rotating, even if the shielding member rotates in the same direction as the pipe, the refrigerant guided into the pipe to be welded by the cooling conduit is not discharged by the blow-off nozzle. It is always sprayed at a predetermined flow rate toward the back side of the welded part during welding, and the high-temperature region heating part can be efficiently cooled while being sealed from the air. Additionally, if the refrigerant is sprayed vertically upward when the pipe rotates, welding can always be performed downward rather than upward, making welding work easier and improving workability. .

また、本考案は溶接部で熱交換を行つた冷媒を
排出路より管の外部へ排出させる構成としたの
で、従来少くとも二層目又は三層目溶接以降で溶
接時間及び冷却時間の計一時間程度高価な不活性
ガスをアフターシール及びバツクシールとして流
し続けなければならなかつたので、バツクシール
として不活性ガスを使用する必要がなく、しかも
チタン溶接ではアフタシールが不要になることか
ら、不活性ガスの使用量を大幅に減らすことがで
きると共に、高温不活性ガスの発生も少くでき労
働衛生環境が改善でき、かつ不活性ガスに比べて
冷却能の大きい冷媒を用いるので、冷却効果が大
きく、冷却時間を不要とすることができ、したが
つて、不活性ガス使用時では不可能だつた連続溶
接ができる効果がある。
In addition, since the present invention has a configuration in which the refrigerant that has undergone heat exchange at the welded part is discharged to the outside of the pipe from the discharge path, the total welding time and cooling time can be adjusted at least after welding the second or third layer. Since it was necessary to continuously flow an expensive inert gas as an afterseal and a backseal for several hours, there is no need to use an inert gas as a backseal.Moreover, titanium welding eliminates the need for an afterseal, so an inert gas can be used as an afterseal. In addition to significantly reducing the amount of gas used, it also reduces the generation of high-temperature inert gas, improving the occupational health environment.Also, since it uses a refrigerant with a higher cooling capacity than inert gas, it has a large cooling effect. This saves time and therefore allows for continuous welding, which was impossible when using an inert gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案に係る管溶接用冷却治具を
示す斜視図、第2図は、同冷却治具が管の溶接部
付近に挿入された状態を示す側面図、第3図は、
管に挿入された状態の冷却治具の断面図、第4図
は冷却導管付近の拡大図、第5図は、同断面図、
第6図は、吹出ノズルとタンクを示す断面図、第
7図は同平面図、第8図は、防水パツキンの回転
ジヨイント付近の断面図、第9図は、管を回転さ
せて溶接する作業の説明図、第10図は、一層溶
接を示す側断面図、第11図は、二層以降の溶接
を示す側断面図、第12図は、冷却水の散布状態
を示す説明図、第13図は、この考案に係る第2
の実施例の冷却治具を示す側断面図、第14図
は、溶接による発生熱量を説明するための溶接部
の斜視図である。 T,T……管、2……冷却導管、5……吹出し
ノズル、6,7……一方及び他方の遮蔽部材とし
ての遮蔽パツキン、1c,3……排出路を構成す
る排出部及び回転排出ジヨイント管。
FIG. 1 is a perspective view showing the cooling jig for pipe welding according to the invention, FIG. 2 is a side view showing the cooling jig inserted near the welded part of the pipe, and FIG.
A sectional view of the cooling jig inserted into the pipe, FIG. 4 is an enlarged view of the vicinity of the cooling conduit, and FIG. 5 is a sectional view of the same.
Figure 6 is a sectional view showing the blow-off nozzle and tank, Figure 7 is a plan view of the same, Figure 8 is a sectional view of the vicinity of the rotation joint of the waterproof packing, and Figure 9 is the work of rotating and welding the pipe. FIG. 10 is a side sectional view showing the welding of the first layer, FIG. 11 is the side sectional view showing the welding of the second and subsequent layers, FIG. 12 is the explanatory drawing showing the cooling water distribution state, and FIG. The figure shows the second version of this invention.
FIG. 14, a side sectional view showing the cooling jig of the embodiment, is a perspective view of a welded part for explaining the amount of heat generated by welding. T, T...Pipe, 2...Cooling conduit, 5...Blowout nozzle, 6, 7...Shielding gasket as one and the other shielding member, 1c, 3...Discharge part and rotating discharge constituting the discharge path joint tube.

Claims (1)

【実用新案登録請求の範囲】 (1) 冷媒を被溶接管内に導く冷却導管と、該冷却
導管に設けられて冷却導管により導かれた冷媒
を溶接部の裏面に向けて所定の流速で散布する
ための吹出しノズルと、該吹出しノズルの両側
位置に設けられて上記被溶接管の内面と共に上
記冷媒の滞留空間を形成する一方及び他方の遮
蔽部材と、溶接部で熱交換を行なつた冷媒を上
記滞留空間から排出する排出路とを具備する管
溶接用治具において、上記吹出しノズルは、上
記被溶接管における周方向の溶接部の一部に向
くように設けられ、上記遮蔽部材は、溶接施工
における上記被溶接管の回転に伴い上記吹出し
ノズルに対して回転するように構成されている
ことを特徴とする管溶接用冷却治具。 (2) 上記吹出しノズルは、上記被溶接管を回転し
て溶接を施すのに伴い常に鉛直上方に向けられ
るように形成された実用新案登録請求の範囲第
1項記載による管溶接用冷却治具。 (3) 上記吹出しノズルの噴出開口部は、開口面積
が途中管路断面積より大とされている実用新案
登録請求の範囲第1項記載による管溶接用冷却
治具。 (4) 上記冷媒としての冷却水が用いられる実用新
案登録請求の範囲第1項記載による管溶接用冷
却治具。
[Scope of Claim for Utility Model Registration] (1) A cooling conduit that guides a refrigerant into the pipe to be welded, and a cooling conduit installed in the cooling conduit to spray the refrigerant guided by the cooling conduit toward the back side of the welded part at a predetermined flow rate. a blow-off nozzle for the blow-off nozzle; one and the other shielding members provided on both sides of the blow-off nozzle to form a retention space for the refrigerant together with the inner surface of the welded pipe; In the pipe welding jig, the pipe welding jig includes a discharge passage for discharging the water from the retention space, the blowing nozzle is provided to face a part of the circumferential welded part of the pipe to be welded, and the shielding member is configured to weld the welding space. A cooling jig for pipe welding, characterized in that it is configured to rotate with respect to the blowing nozzle as the pipe to be welded rotates during construction. (2) The cooling jig for pipe welding according to claim 1 of the utility model registration claim, wherein the blowing nozzle is formed so as to always be directed vertically upward as the pipe to be welded is rotated and welded. . (3) The pipe welding cooling jig according to claim 1, wherein the blowout opening of the blowout nozzle has an opening area larger than the cross-sectional area of the intermediate pipe. (4) A cooling jig for pipe welding according to claim 1, in which cooling water is used as the refrigerant.
JP265883U 1983-01-14 1983-01-14 Cooling jig for steel welding Granted JPS59110177U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP265883U JPS59110177U (en) 1983-01-14 1983-01-14 Cooling jig for steel welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP265883U JPS59110177U (en) 1983-01-14 1983-01-14 Cooling jig for steel welding

Publications (2)

Publication Number Publication Date
JPS59110177U JPS59110177U (en) 1984-07-25
JPH0227992Y2 true JPH0227992Y2 (en) 1990-07-27

Family

ID=30134311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP265883U Granted JPS59110177U (en) 1983-01-14 1983-01-14 Cooling jig for steel welding

Country Status (1)

Country Link
JP (1) JPS59110177U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857694A (en) * 1988-05-06 1989-08-15 The Babcock & Wilcox Company Method and apparatus for automatic vapor cooling when shape melting a component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332846A (en) * 1976-09-08 1978-03-28 Hitachi Ltd Method of cooling weld zone of steel tubes and apparatus therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179532U (en) * 1974-12-20 1976-06-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332846A (en) * 1976-09-08 1978-03-28 Hitachi Ltd Method of cooling weld zone of steel tubes and apparatus therefor

Also Published As

Publication number Publication date
JPS59110177U (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US4592577A (en) Sleeve type repair of degraded nuclear steam generator tubes
US4739916A (en) Sleeve repair of degraded nuclear steam generator tubes
CA1257473A (en) Furnace cooling system and method
US4528436A (en) High reliability double-chambered shielding system for welding
US4813055A (en) Furnace cooling system and method
JPH0227992Y2 (en)
JPH05157487A (en) Method of exchanging tube of straight tube type heat exchanger
CN112518184B (en) Argon protection tool for welding seam part during zirconium material welding
EP0047410B1 (en) Braze sleeving method
BR112019009418B1 (en) COOLING PANEL, STEEL MANUFACTURING FURNACE, AND, METHOD FOR FORMING A COOLING PANEL
JPS6320475Y2 (en)
JP2002048315A (en) Cooling jacket
WO2005075924A1 (en) Method for forming a welded connection between a tubesheet and a number of tubes and a device produced by such method
JPS58163264A (en) Rotary electric machine with superconductive rotor
US2928166A (en) Tube welding
US4103908A (en) Seal structures for rotary regenerative heat exchangers of gas turbine engines
JP2000130635A (en) Valve device
SU903036A1 (en) Head for automatic welding of tube non-rotary butts
CN215723237U (en) Anode assembly for a fly ash fusion plasma torch
ES2199723T3 (en) PROCEDURE AND DEVICE FOR THE TREATMENT OF THE INTERIOR SURFACE OF METAL PIPES.
JPH09192829A (en) Weld zone cooling in full face plate disk wheel welding
JPH06238442A (en) Tube and sealing welding machine
JP2002139190A (en) Heat-resistant and wear-resistant bend pipe and manufacturing method therefor
JPH10156528A (en) Method for joining copper tube
JPS6216200Y2 (en)