JPH02279901A - Waste heat recovery boiler apparatus - Google Patents

Waste heat recovery boiler apparatus

Info

Publication number
JPH02279901A
JPH02279901A JP9746089A JP9746089A JPH02279901A JP H02279901 A JPH02279901 A JP H02279901A JP 9746089 A JP9746089 A JP 9746089A JP 9746089 A JP9746089 A JP 9746089A JP H02279901 A JPH02279901 A JP H02279901A
Authority
JP
Japan
Prior art keywords
pressure
saddle
downcomer
steam drum
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9746089A
Other languages
Japanese (ja)
Other versions
JP2889271B2 (en
Inventor
Masakatsu Imamura
今村 正勝
Tatsuichi Kusube
辰一 楠部
Shigeyuki Iriki
重行 入木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1097460A priority Critical patent/JP2889271B2/en
Publication of JPH02279901A publication Critical patent/JPH02279901A/en
Application granted granted Critical
Publication of JP2889271B2 publication Critical patent/JP2889271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily displace a saddle, a supporting plate to the deformation of a water drop tube, and to obtain high and low pressure vapor drum supporting device for reducing a bending stress of the downcomer and a stress generated at the root of a vapor drum by providing an arcuately curved surface at least at one of the saddle and the plate. CONSTITUTION:A saddle 48 and a supporting plate 49 are secured with a clip 50 fixed to a supporting beam 47 perpendicularly to the perpendicular direction of a high pressure drum 13. Accordingly, the lower part of a high pressure downcomer tube 25 can be freely rotatably deformed by the curved surface 51a of the saddle 48, and the connector of the saddle 48 to the plate 49 is not irregularly brought into contact even if it is rotatably deformed, and the contact area is always not changed. Accordingly, it can be slid smoothly. Therefore, a bending stress generated at the high pressure downcomer 25 can be reduced, and fatigue strength can be improved even if a waste heat recovery boiler 5 is started or stopped upon DSS operation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排熱回収ボイラ等の排熱回収ボイラ装置に係り
、特に蒸気ドラムの支持強度を高めるのに好適な蒸気ド
ラムの支持構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust heat recovery boiler device such as an exhaust heat recovery boiler, and particularly to a support structure for a steam drum suitable for increasing the support strength of the steam drum.

[従来の技術] 急増する電力需要に応えるために大容量の火力発電所が
建設されているが、こわらの火力発電用ボイラは部分負
荷時においても高い発電効率を得るために変圧運転を行
なうことが要求されている。
[Conventional technology] Large-capacity thermal power plants are being constructed to meet the rapidly increasing demand for electricity, but Kowara's thermal power generation boilers operate at variable voltage in order to obtain high power generation efficiency even during partial load. That is required.

これは最近の電力需要の特徴として、原子力発電の伸び
と共に、負荷の最大と最小の差も増大し、火力発電用ボ
イラはペースロート用から負荷調整用へと移行する傾向
にあるからである。
This is because, as a feature of recent electricity demand, as nuclear power generation increases, the difference between the maximum and minimum loads has also increased, and boilers for thermal power generation have tended to shift from use for pace-throat use to use for load adjustment.

つまり、火力発電用ボイラを負荷調整用として運転する
場合、ボイラ負荷を常に全負荷で運転されるものは少な
く、負荷を75%負荷、50%負荷、25%負荷へと負
荷を上げ、下げして運転したり、運転を停止するなど、
いわゆる毎日起動停止(D aily S tart 
S top以下単にDSSという)運転などを行なって
中間負荷を担い、このDSS運転によって電力需要の多
い昼間のみ運転し、夜間は運転を停止して発電効率を工
場させるのである。
In other words, when a boiler for thermal power generation is operated for load adjustment, there are few cases in which the boiler load is always operated at full load, and the load is increased and decreased to 75% load, 50% load, and 25% load. or stop driving, etc.
So-called daily start/stop
The power generation system carries out intermediate loads by performing operations such as S top (hereinafter simply referred to as DSS), and operates only during the day when power demand is high, and stops operation at night to improve power generation efficiency.

例えば高効率発電の一環として、最近コンバインドガス
タービンプラントが注目されている。このコンバインド
ガスタービンプラントは、まずガスタービンによる発電
を行なうと共に、ガスタービンから排出される排ガス中
の排熱を排熱回収ボイラによって熱回収し、この排熱回
収ボイラで発生した蒸気によって蒸気タービンを作動さ
せて発電するものである。
For example, combined gas turbine plants have recently been attracting attention as a part of high-efficiency power generation. This combined gas turbine plant first generates electricity using a gas turbine, then recovers the exhaust heat in the exhaust gas discharged from the gas turbine using an exhaust heat recovery boiler, and uses the steam generated by the exhaust heat recovery boiler to power the steam turbine. It is operated to generate electricity.

この様にコンバインドガスタービンプラントはガスター
ビンによる発電と、蒸気タービンによる発電を同時に行
なうために発電効率が高いうえ、ガスタービンの特性で
ある負荷応答性に優れ、このために急激な電力需要の上
昇、下降にも十分対応でき、負荷追従性にも優れており
、DSSJ転を行なうには好都合である。
In this way, a combined gas turbine plant has high power generation efficiency because it simultaneously generates power with a gas turbine and a steam turbine, and also has excellent load responsiveness, which is a characteristic of gas turbines. , it can sufficiently cope with descents, has excellent load followability, and is convenient for performing DSSJ rotations.

第14図は従来のコンバインドガスタービンプラントの
概略系統図である。
FIG. 14 is a schematic system diagram of a conventional combined gas turbine plant.

第14図において、空気供給管1からの燃焼用空気Aと
燃料供給管2からの燃料Fを燃焼器3で混合して燃焼さ
せ、その燃焼ガスでガスタービン4を回転させガスター
ビン4による発電を行なう。
In FIG. 14, combustion air A from an air supply pipe 1 and fuel F from a fuel supply pipe 2 are mixed and combusted in a combustor 3, and the combustion gas is used to rotate a gas turbine 4 to generate electricity by the gas turbine 4. Do the following.

ガスタービン4を回転させた排ガスGは排熱回収ボイラ
5の排ガス通路6へ導入される。この排ガス通路6には
下流側から上流側へ低圧節炭器7、低圧蒸発器8および
低圧蒸気ドラム9からなる低圧ボイラ10と、高圧節炭
器11、高圧蒸発器12、高圧蒸気ドラム13および過
熱器14からなる高圧ボイラ15が配置されている。
The exhaust gas G that rotates the gas turbine 4 is introduced into the exhaust gas passage 6 of the exhaust heat recovery boiler 5. In this exhaust gas passage 6, from the downstream side to the upstream side, a low pressure boiler 10 consisting of a low pressure economizer 7, a low pressure evaporator 8, and a low pressure steam drum 9, a high pressure economizer 11, a high pressure evaporator 12, a high pressure steam drum 13, and A high pressure boiler 15 consisting of a superheater 14 is arranged.

一方、被過熱流体である給水WFは給水ポンプ16より
給水管17を経て低圧節炭器7に供給され、所定の温度
までに予熱された後、低圧ドラム用給水管18を通り低
圧蒸気ドラム9に給水される。
On the other hand, the feed water WF, which is the fluid to be superheated, is supplied from the water supply pump 16 to the low pressure economizer 7 via the water supply pipe 17, and after being preheated to a predetermined temperature, passes through the low pressure drum water supply pipe 18 to the low pressure steam drum 9. is supplied with water.

低圧蒸気ドラム9に供給された給水W、は、低圧蒸気ド
ラム9の低圧降水管19を経て低圧蒸発器8、低圧蒸気
ドラム9の順で自然循環または強制循環され、その間に
過熱されて低圧蒸気トラム9内で水と蒸気に分離された
後、水は再び降水管19、低圧蒸発器8および低圧蒸気
ドラム9へと再循環されるが、蒸気は低圧主蒸気管20
より蒸気タービン21へ供給される。
The feed water W supplied to the low-pressure steam drum 9 is naturally or forcedly circulated in the order of the low-pressure evaporator 8 and the low-pressure steam drum 9 via the low-pressure downcomer pipe 19 of the low-pressure steam drum 9, during which it is superheated and becomes low-pressure steam. After being separated into water and steam in the tram 9, the water is recycled again to the downcomer pipe 19, the low pressure evaporator 8 and the low pressure steam drum 9, while the steam is transferred to the low pressure main steam pipe 20.
It is supplied to the steam turbine 21 from the steam turbine 21.

一方、低圧節炭器7の出口で分流された高温水WRの一
部はボイラ移送ポンプ22より高圧給水管23を経て高
圧節炭器11に供給され、所定の温度まで予熱された後
、高圧ドラム用給水管24を通り高圧蒸気ドラム13に
供給される。
On the other hand, a part of the high-temperature water WR diverted at the outlet of the low-pressure economizer 7 is supplied to the high-pressure economizer 11 from the boiler transfer pump 22 via the high-pressure water supply pipe 23, and is preheated to a predetermined temperature. The water is supplied to the high pressure steam drum 13 through the drum water supply pipe 24.

高圧蒸気ドラム13に供給された高音水WRは低圧ボイ
ラ10と同様に高圧蒸気ドラム13の高圧降水管25を
経て高圧蒸発器12、高圧蒸気ドラム13の順で循環し
、高圧蒸気ドラム13内で分離された蒸気はドラム蒸気
出口管26を経て過熱器14へ送られ、ここでさらに昇
温された後、高圧主蒸気管27より蒸気タービン21へ
供給され、蒸気タービン21による発電を行なう。
The high-sound water WR supplied to the high-pressure steam drum 13 is circulated through the high-pressure downcomer pipe 25 of the high-pressure steam drum 13 in the order of the high-pressure evaporator 12 and the high-pressure steam drum 13 in the same way as the low-pressure boiler 10. The separated steam is sent to the superheater 14 through the drum steam outlet pipe 26, where it is further heated, and then supplied to the steam turbine 21 through the high-pressure main steam pipe 27, where the steam turbine 21 generates electricity.

なお、高圧蒸気ドラム13で分離された水は、高圧降水
管25、高圧蒸発器12、高圧蒸気ドラム13へと再循
環される。
Note that the water separated in the high-pressure steam drum 13 is recirculated to the high-pressure downcomer pipe 25, the high-pressure evaporator 12, and the high-pressure steam drum 13.

そして、高圧蒸気ドラム13および低圧蒸気ドラム9の
給水レベルはそれぞれ高圧ドラム給水弁28、低圧ドラ
ム給水弁29を操作して給水量が制御される。
The level of water supplied to the high-pressure steam drum 13 and the low-pressure steam drum 9 is controlled by operating the high-pressure drum water supply valve 28 and the low-pressure drum water supply valve 29, respectively.

他方、蒸気タービン21で蒸気タービン21を回転させ
た蒸気は復水器3oで水となり、給水ポンプ16より再
び排熱回収ボイラ5へ給水される。
On the other hand, the steam that rotates the steam turbine 21 becomes water in the condenser 3o, and is supplied to the exhaust heat recovery boiler 5 again from the water supply pump 16.

=4 この給水管17の給水Wpは約34℃と低温であるため
に、そのままの給水温度で低圧節炭器7へ給水されると
低圧節炭器7で低温腐食が発生するので、低圧ボイラ1
0、高圧ボイラ15内の高温水WRと混合させて、低温
腐食がおこらない所定の温度まで給水温度を昇温させて
、低圧節炭器7へ給水する必要がある。
=4 The water supply Wp of this water supply pipe 17 is at a low temperature of approximately 34°C, so if the water is supplied to the low-pressure economizer 7 at the same temperature, low-temperature corrosion will occur in the low-pressure economizer 7, so the low-pressure boiler 1
0. It is necessary to mix the water with high-temperature water WR in the high-pressure boiler 15, raise the temperature of the water supply to a predetermined temperature at which low-temperature corrosion does not occur, and then supply the water to the low-pressure economizer 7.

つまり、高圧給水管23の高温水、の一部はボイラ移送
ポンプ22の出口から再循環流量調整弁32を有する再
循環流路33を経て給水管17へ供給され、低圧節炭器
7の低温腐食を防止している。
In other words, a part of the high-temperature water in the high-pressure water supply pipe 23 is supplied from the outlet of the boiler transfer pump 22 to the water supply pipe 17 via the recirculation flow path 33 having the recirculation flow rate adjustment valve 32, and is supplied to the water supply pipe 17 at a low temperature Prevents corrosion.

なお、31は発電機、34はガスタービン4の排ガスG
中の窒素酸化物(NOx)を除去するために高圧蒸発器
12と高圧節炭器」1の間、あるいは高圧蒸発器12の
中間に配置される脱硝装置、35は過熱蒸気連絡管、3
6は過熱蒸気止弁、37は圧力調整弁である。
In addition, 31 is a generator, and 34 is an exhaust gas G of the gas turbine 4.
a denitrification device disposed between the high-pressure evaporator 12 and the high-pressure economizer 1 or between the high-pressure evaporator 12 in order to remove nitrogen oxides (NOx); 35 is a superheated steam communication pipe;
6 is a superheated steam stop valve, and 37 is a pressure regulating valve.

第9図から第13図のものは排熱回収ボイラを示すもの
で、第9図は排熱回収ボイラの横断面図、第10図は第
9図のX−X線断面図、第11図は第9図のB部を拡大
した支持構造の詳細図、第12図は第11図の側面図、
第13図は運転時における蒸気ドラム、降水管およびマ
ニホールドの変形を示す模式図である。
Figures 9 to 13 show the exhaust heat recovery boiler. Figure 9 is a cross-sectional view of the exhaust heat recovery boiler, Figure 10 is a cross-sectional view taken along line X-X in Figure 9, and Figure 11 is a cross-sectional view of the exhaust heat recovery boiler. is a detailed view of the support structure that is an enlarged view of part B in Figure 9, Figure 12 is a side view of Figure 11,
FIG. 13 is a schematic diagram showing deformation of the steam drum, downcomer pipe, and manifold during operation.

第9図から第13図において、5は排熱回収ボイラ、6
は排ガス通路、12は高圧蒸発器、13は蒸気ドラム。
In Figures 9 to 13, 5 is an exhaust heat recovery boiler, 6
12 is a high-pressure evaporator, and 13 is a steam drum.

25は降水管で第14図のものと同一のものを示す。25 is a downcomer which is the same as that shown in FIG.

38は蒸発管、39は蒸発管下部管寄せ、40は蒸発管
上部管寄せ、41は供水管、42は上昇管、43は耐火
壁、44はケーシング、45はマニホールド、46は降
水管支持部材、47は支持梁、48はサドル、49は支
持板、50はクリップである。
38 is an evaporator pipe, 39 is a lower evaporator pipe header, 40 is an evaporator upper header, 41 is a water supply pipe, 42 is a rising pipe, 43 is a fireproof wall, 44 is a casing, 45 is a manifold, and 46 is a downcomer pipe support member. , 47 is a support beam, 48 is a saddle, 49 is a support plate, and 50 is a clip.

この様な構造において、第9図および第10図に示す排
熱回収ボイラ5においては、排ガスGが第10図の矢印
の方向から供給されると、高圧蒸発器12の蒸発管38
内で蒸気が発生し、この蒸気は蒸発管上部管寄せ40、
上昇管42を経て高圧蒸気ドラム13に集められ、気水
分離される。
In such a structure, in the exhaust heat recovery boiler 5 shown in FIGS. 9 and 10, when the exhaust gas G is supplied from the direction of the arrow in FIG.
Steam is generated within the evaporator tube, and this steam is transferred to the upper header 40 of the evaporator tube.
The steam is collected in the high-pressure steam drum 13 through the riser pipe 42 and separated into steam and water.

そして、高圧蒸気ドラム13内の水は高圧降水管25を
通すマ二ホールド45に流入し、マニホールド45から
多数の給水管41、蒸発管下部管寄せ39を経て再び蒸
発管38に導かれる。
The water in the high-pressure steam drum 13 then flows into the manifold 45 through which the high-pressure downcomer pipe 25 passes, and from the manifold 45 is led back to the evaporator pipe 38 via a large number of water supply pipes 41 and the evaporator pipe lower header 39.

高圧蒸気ドラム13の重量は、高圧降水管25を通って
降水管支持部材46を介して支持梁47で支持され地上
に伝達される。つまり、高圧蒸気ドラム13は高圧降水
管25の下部で支持された自立型構造となっている。
The weight of the high-pressure steam drum 13 is transmitted to the ground through the high-pressure downcomer pipe 25, via the downcomer support member 46, and supported by the support beam 47. In other words, the high-pressure steam drum 13 has a self-supporting structure supported by the lower part of the high-pressure downcomer pipe 25.

第11図および第12図に従来の降水等下部の支持構造
な示す。第11図、第12図には耐火壁43は省略され
ている。高圧降水管25とマニホールド45の交叉する
下部には降水管支持部材46としてサドル48と支持板
49及びクリップ50が設けられており、高圧蒸気ドラ
ム13の重量はこのサドル48、支持板49へ伝達して
支持梁47に伝達され、サドル48はマニホールド45
側に固定され、支持板49、クリップ50は支持梁47
に固定されている。
FIGS. 11 and 12 show the conventional support structure for the lower part of the rainwater. The fireproof wall 43 is omitted in FIGS. 11 and 12. A saddle 48, a support plate 49, and a clip 50 are provided as a downcomer support member 46 at the lower part where the high-pressure downcomer pipe 25 and the manifold 45 intersect, and the weight of the high-pressure steam drum 13 is transmitted to the saddle 48 and the support plate 49. is transmitted to the support beam 47, and the saddle 48 is transmitted to the manifold 45.
The support plate 49 and the clip 50 are fixed to the side of the support beam 47.
is fixed.

一方、排熱回収ボイラ5のに転時には、高圧蒸気ドラム
13、高圧降水管25、マニホルド45のメタル温度は
内部流体温度に加熱されて、内部流体温度にほぼ等しく
なるのに対し、支持梁47は図示していない耐火壁43
で排ガス通路6からへたてられているためボイラ外部の
雰囲気温度に等しくなる。したがって、排熱回収ボイラ
5と支持梁47との間に温度差が発生し熱膨張差が生じ
る。この熱膨張差を拘束していると高圧降水管25に熱
応力が発生して強度の低下をまねくため、高圧蒸気ドラ
ム13の軸方向(第11図の紙面に対して左右方向)に
はサドル48と支持板49の間でスライドして熱膨張差
を吸収できる構造となっている。
On the other hand, when the exhaust heat recovery boiler 5 is turned on, the metal temperatures of the high-pressure steam drum 13, high-pressure downcomer pipe 25, and manifold 45 are heated to the internal fluid temperature and become almost equal to the internal fluid temperature. is a fireproof wall 43 (not shown)
Since it is set away from the exhaust gas passage 6, the temperature is equal to the ambient temperature outside the boiler. Therefore, a temperature difference occurs between the exhaust heat recovery boiler 5 and the support beam 47, and a difference in thermal expansion occurs. If this thermal expansion difference is restrained, thermal stress will occur in the high-pressure downcomer pipe 25, leading to a decrease in strength. It has a structure that allows it to slide between the support plate 48 and the support plate 49 to absorb the difference in thermal expansion.

高圧蒸気ドラム13は排熱回収ボイラ5の運転時には、
第10図に示すように高圧蒸気ドラム13の上方が蒸気
で下方が水に分離されており、特に排熱回収ボイラ5の
起動時や停止時には蒸気側と水側で大きな温度差が発生
し、そのために高圧蒸気ドラム1は第13図の破線で示
すようにバイメタルのようにそりを発生する。(第13
図は高圧蒸気ドラム13の上方の温度が高い場合を示す
)従来の高圧蒸気ドラム13の支持構造では高圧降水管
25も変形して、下部サポートのサドル48も回転変形
角度θを発生することになり、つまりサドル48と支持
板49の面が平行でなくなるため、サドル48がスライ
ドする時に片当りが生じて局部的に大きな荷重となって
サドル48の下面と支持板49の上面とのスライド面に
かじりが発生しスライドが困難となる。このスライドが
できなくなると、高圧降水管25及び高圧蒸気ドラム1
3の付根部に曲げ応力が発生し、排熱回収ボイラ5の起
動、係止のたびに曲げ応力が繰り返されるため疲労強度
が低下し、ついには高圧降水管25や高圧蒸気ドラム1
3が破壊することになる。
When the exhaust heat recovery boiler 5 is operating, the high-pressure steam drum 13 is
As shown in FIG. 10, the upper part of the high-pressure steam drum 13 is separated into steam and the lower part is water, and a large temperature difference occurs between the steam side and the water side, especially when the exhaust heat recovery boiler 5 is started or stopped. For this reason, the high-pressure steam drum 1 warps like a bimetal, as shown by the broken line in FIG. (13th
(The figure shows a case where the temperature above the high-pressure steam drum 13 is high) In the conventional support structure for the high-pressure steam drum 13, the high-pressure downcomer pipe 25 also deforms, and the saddle 48 of the lower support also generates a rotational deformation angle θ. In other words, since the surfaces of the saddle 48 and the support plate 49 are no longer parallel, uneven contact occurs when the saddle 48 slides, resulting in a locally large load and the slide surface between the lower surface of the saddle 48 and the upper surface of the support plate 49. Galling occurs, making it difficult to slide. If this sliding becomes impossible, the high pressure downcomer pipe 25 and the high pressure steam drum 1
Bending stress is generated at the base of the high-pressure downcomer pipe 25 and the high-pressure steam drum 1, and the bending stress is repeated every time the exhaust heat recovery boiler 5 is started and stopped, resulting in a decrease in fatigue strength.
3 will be destroyed.

[発明が解決しようとする課題] 従来技術の支持構造では、高圧蒸気ドラム13が高圧降
水管25の下部で支持され、高圧蒸気ドラム13やマニ
ホールド45と支持梁47との温度差に伴う熱膨張差を
スライドによって吸収させる時に、高圧蒸気ドラム13
の変形に伴う高圧降水管25の下部が回転変形すること
に対して配慮がなされておらず、高圧降水4rI25や
高圧蒸気ドラム13の強度低下をまねく欠点があった。
[Problems to be Solved by the Invention] In the support structure of the prior art, the high-pressure steam drum 13 is supported at the lower part of the high-pressure downcomer pipe 25, and thermal expansion due to the temperature difference between the high-pressure steam drum 13 or manifold 45 and the support beam 47 occurs. When the difference is absorbed by the slide, the high pressure steam drum 13
No consideration was given to rotational deformation of the lower part of the high-pressure downcomer pipe 25 due to deformation of the high-pressure downcomer pipe 25, resulting in a reduction in the strength of the high-pressure downcomer pipe 25 and the high-pressure steam drum 13.

本発明はかかる従来技術の欠点を解消しようとするもの
で、その目的とするところは、降水管の下部での回転変
形によく追従し、かつ蒸気ドラムの熱膨張に伴うスライ
ドをスムースに行なって、降水管の曲げ応力や蒸気ドラ
ムの付根部に発生する応力を低下できる高圧蒸気ドラム
や低圧蒸気ドラムの支持装置を提供することにある。
The present invention attempts to eliminate such drawbacks of the prior art, and its purpose is to closely follow the rotational deformation at the bottom of the downcomer pipe and to smoothly slide due to thermal expansion of the steam drum. Another object of the present invention is to provide a support device for a high-pressure steam drum or a low-pressure steam drum that can reduce the bending stress of downcomer pipes and the stress generated at the base of the steam drum.

[課題を解決するための手段] 本発明は前述の目的を達成するために、サドルと支持板
の少なくとも一方に円弧状の曲面を設けたものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides at least one of the saddle and the support plate with an arcuate curved surface.

[作用コ サドルと支持板の少なくとも一方に円弧状の曲面を設け
ることによって、蒸気ドラムの変形に伴う降水管の変形
に対してサドルや支持板が容易に回転変位することがで
き、そのためにす1−ルと支持板とのスライド部で片当
りすることがないので、温度差による熱膨張を吸収する
ことができる。
[By providing an arc-shaped curved surface on at least one of the working saddle and the support plate, the saddle and the support plate can be easily rotated and displaced in response to deformation of the downcomer pipe due to deformation of the steam drum. - Since there is no uneven contact between the slide portion of the rail and the support plate, thermal expansion due to temperature differences can be absorbed.

[実施例] 以下、本発明の実施例を図面を用いて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図から第8図は本発明の実施例に係るもので、第1
図、第3図、第5図および第7図は正面図、第2図、第
4図、第6図および第8図は第1図、第3図、第5図お
よび第7図の側面図である。
FIGS. 1 to 8 relate to embodiments of the present invention, and FIGS.
Figures 3, 5 and 7 are front views, and Figures 2, 4, 6 and 8 are side views of Figures 1, 3, 5 and 7. It is a diagram.

第1図から第8図において、25は高圧降水管、45は
マニホールド、46は支持部材、47は支持梁、48は
サドル、49は支持板、50はクリップで従来のものと
同一のものを示す。
In Figures 1 to 8, 25 is a high-pressure downcomer, 45 is a manifold, 46 is a support member, 47 is a support beam, 48 is a saddle, 49 is a support plate, and 50 is a clip, which is the same as the conventional one. show.

51a、51b、51cはサドル48、支持板49のス
ライド面に設けた円弧状の曲面である。
51a, 51b, and 51c are arcuate curved surfaces provided on the sliding surfaces of the saddle 48 and the support plate 49.

この様な構造において、第1図及び第2図に示すように
、高圧降水管25側にはサドル48が固定されており、
支持梁47側には支持板49とクリップ50が固定され
ている。サドル48と支持板49とは高圧トラム13の
軸方向(第1図の紙面に対して左右方向)にはスライド
する構造にな=11= つており、サドル48の下面には円弧状の曲面51aが
設けられている。
In such a structure, as shown in FIGS. 1 and 2, a saddle 48 is fixed to the high-pressure downcomer pipe 25 side,
A support plate 49 and a clip 50 are fixed to the support beam 47 side. The saddle 48 and the support plate 49 are structured to slide in the axial direction of the high-pressure tram 13 (in the left-right direction with respect to the paper surface of FIG. 1), and the lower surface of the saddle 48 has an arc-shaped curved surface 51a. is provided.

そして、サドル48と支持板49は高圧ドラム13の軸
直角方向(第2図の紙面に対して左右方向)に支持梁4
7に固定されたクリップ50で固定されている。従って
、第13図に示すように高圧蒸気ドラム13の変形に対
しても、高圧降水管25の下部はサドル48の曲面51
aによって自由に回転変形することが出来るとともに、
サドル48と支持板49の接続部は回転変形しても片当
すせず常に接触面積は変わらないので滑らかにスライド
することが出来る。従って、高圧降水管25に発生する
曲げ応力を低減でき、ひいては排熱回収ボイラ5のDS
S運転に伴なう起動、停止を行なっても疲労強度を向上
させることができる。
The saddle 48 and the support plate 49 are attached to the support beam 4 in the direction perpendicular to the axis of the high-pressure drum 13 (in the left-right direction with respect to the paper surface of FIG. 2).
It is fixed with a clip 50 fixed to 7. Therefore, as shown in FIG. 13, even when the high-pressure steam drum 13 is deformed, the lower part of the high-pressure downcomer pipe 25 remains on the curved surface 51 of the saddle 48.
It can be freely rotated and deformed by a, and
The connection between the saddle 48 and the support plate 49 does not come into contact even when rotated and deformed, and the contact area always remains the same, so they can slide smoothly. Therefore, the bending stress generated in the high-pressure downcomer pipe 25 can be reduced, and the DS of the exhaust heat recovery boiler 5 can be reduced.
Fatigue strength can be improved even when starting and stopping accompanying S operation are performed.

第3図および第4図のものは他の実施例を示すもので、
第1図および第2図のものと異なる点は、第1図および
第2図のものにおいてはサドル48の下面に円弧状の局
面51aを設けたが、第3図および第4図のものは、サ
ドル48の下面は平面にし、支持板49の上面にのみ円
弧状の曲面51bを設けたものである。
3 and 4 show other embodiments,
The difference from the one in FIGS. 1 and 2 is that in the one in FIGS. 1 and 2, an arc-shaped curved surface 51a is provided on the lower surface of the saddle 48, but in the one in FIGS. The lower surface of the saddle 48 is flat, and only the upper surface of the support plate 49 is provided with an arcuate curved surface 51b.

つまり、第3図および第4図に示すように、高圧降水管
25の下部に取付けたサドル48の底面は平面であるが
、スライド部となる支持板49側の上面にのみ曲面51
bを設けたものである。
That is, as shown in FIGS. 3 and 4, the bottom surface of the saddle 48 attached to the lower part of the high-pressure downcomer pipe 25 is flat, but the curved surface 51 is formed only on the upper surface on the side of the support plate 49 that becomes the sliding part.
b.

この支持板49の上面に設けた円弧状の曲面51bによ
って第1図及び第2図のものとほぼ同一の効果が得られ
る。
The arc-shaped curved surface 51b provided on the upper surface of the support plate 49 provides substantially the same effect as that in FIGS. 1 and 2.

第5図および第6図のものは他の実施例を示すもので、
第1図から第4図のものと異なる点は、第1図および第
2図のものにおいては、サドル48にのみ円弧状の曲面
51a、第3図および第4図のものにおいては、支持板
49にのみ円弧状の曲面51bをそれぞれ設けたが、第
5図および第6図のものは、サドル48と支持板49の
両方に円弧状の曲面51a、51bを設けたものである
5 and 6 show other embodiments,
The difference from the one in FIGS. 1 to 4 is that the one in FIGS. 1 and 2 has an arcuate curved surface 51a only on the saddle 48, and the one in FIGS. 3 and 4 has a support plate. 5 and 6, both the saddle 48 and the support plate 49 are provided with arcuate curved surfaces 51a and 51b.

つまり、第5図および第6図に示すように高圧降水管2
5側に取付けたサドル48のスライド面には円弧状の曲
面51aを、この局面51aに相対応する支持板49側
のスライド面にも、サドル48の曲面51aと同じ方向
の円弧状の曲面51bを設けたものである。この様に、
サドル48と支持板49との接触面の両方に円弧状の曲
面51a。
In other words, as shown in FIGS. 5 and 6, the high pressure downcomer 2
The sliding surface of the saddle 48 attached to the 5th side has an arc-shaped curved surface 51a, and the sliding surface of the supporting plate 49 side corresponding to this curved surface 51a also has an arc-shaped curved surface 51b in the same direction as the curved surface 51a of the saddle 48. It has been established. Like this,
Arc-shaped curved surfaces 51a are provided on both contact surfaces between the saddle 48 and the support plate 49.

51bを設けたのでスライド面の接触面積を大きく確保
でき支持荷重が大きい時に特に有効で、スライド面の面
圧を小さくすることができ、滑らかな回転変形とスライ
ド動作が可能となって高圧降水管25の曲げ応力の低減
が計れ、DSS運転時の起動、停止に伴う疲労強度を高
めることが出来る。
51b ensures a large contact area on the sliding surface, which is especially effective when the supporting load is large, and it is possible to reduce the surface pressure on the sliding surface, allowing smooth rotational deformation and sliding movement, making it possible to improve the quality of high-pressure downcomers. 25 bending stress can be reduced, and the fatigue strength associated with starting and stopping during DSS operation can be increased.

第7図、第8図のものは他の実施例を示すもので、第7
図および第8図のものはサドル48の下部に設置した支
持板49の上面と下面の両方に円弧状の曲面51b、5
1eが施されていて回転する構造となっている。このよ
うにすると、高圧ドラム13や高圧降水管25と支持梁
47との伸び差に対して、支持板49の回転によって双
方の伸び差を吸収できる。
7 and 8 show other embodiments.
The one shown in FIG. 8 and FIG.
1e and has a rotating structure. In this way, the difference in expansion between the high-pressure drum 13 or the high-pressure downcomer pipe 25 and the support beam 47 can be absorbed by the rotation of the support plate 49.

つまり高圧降水管25は、ローラ支承されると同時に、
高圧降水管25の回転変位をもスムーズに許容出来るの
で、サドル48の底面でスライ1くさせる必要がなくス
ライド時の摩擦力を小さくして、高圧降水管25に作用
する曲げ応力を少なくすることができる。
In other words, the high-pressure downcomer pipe 25 is supported by rollers, and at the same time,
Since the rotational displacement of the high-pressure downcomer pipe 25 can be smoothly tolerated, there is no need to slide it on the bottom surface of the saddle 48, and the frictional force at the time of sliding is reduced, thereby reducing the bending stress acting on the high-pressure downcomer pipe 25. I can do it.

以上、本発明の実施例においては、高圧蒸気ドラム13
の支持構造を例に説明したが、本発明は本実流側に限定
されるものではなく、低圧蒸気ドラム9の支持構造にも
応用できる。
As described above, in the embodiment of the present invention, the high pressure steam drum 13
Although the present invention has been explained using the support structure of the present invention as an example, the present invention is not limited to the actual flow side, and can also be applied to the support structure of the low-pressure steam drum 9.

[発明の効果] 本発明によれば、蒸気ドラムの上下方向の変形に伴う降
水管支持部の回転変異は拘束されることなく自由に変形
でき、支持梁との熱伸び差に対しても滑らかにスライド
することができる。
[Effects of the Invention] According to the present invention, the rotational variation of the downcomer support part due to the vertical deformation of the steam drum can be freely deformed without being restrained, and it can be smoothly deformed even against the difference in thermal expansion with the support beam. can be slid into.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第8図は本発明の実施例に係るもので、第1
図、第3図、第5図および第7図は正面図、第2図、第
4図、第6図および第8図は第1図、第3図、第5図、
第7図の側面図、第9図は排熱回収ボイラの横断面図、
第10図は第9図のX−X線断面図、第11図は従来の
支持構造を示すもので第9図のB部を拡大した支持構造
の詳細図、第12図は第11図の側面図、第13図は運
転時における蒸気ドラム、降水管およびマニホールドの
変形を示す模式図、第14図はガスタービンコンバイン
ドサイクルプラントの概略系統図である。 5・・・・・排熱回収ボイラ、9・・・・・低圧蒸気ド
ラム、13・・・・・高圧蒸気ドラム、19・・・・・
・低圧降水管、25・・・・・高圧降水管、45・・・
・・・マニホールド、47・・・・支持梁、48・・・
・・サドル、49・・・・支持板、51 a 、 5 
l b 、 51 c −−曲面。 V\r
FIGS. 1 to 8 relate to embodiments of the present invention, and FIGS.
Figures 3, 5, and 7 are front views, Figures 2, 4, 6, and 8 are Figures 1, 3, 5,
Figure 7 is a side view, Figure 9 is a cross-sectional view of the exhaust heat recovery boiler,
Fig. 10 is a sectional view taken along the line X-X in Fig. 9, Fig. 11 is a detailed view of the conventional support structure, which is an enlarged view of part B in Fig. 9, and Fig. 12 is a detailed view of the support structure shown in Fig. 11. A side view, FIG. 13 is a schematic diagram showing deformation of the steam drum, downcomer pipe, and manifold during operation, and FIG. 14 is a schematic system diagram of the gas turbine combined cycle plant. 5...Exhaust heat recovery boiler, 9...Low pressure steam drum, 13...High pressure steam drum, 19...
・Low pressure downcomer pipe, 25...High pressure downcomer pipe, 45...
...Manifold, 47...Support beam, 48...
... Saddle, 49 ... Support plate, 51 a, 5
l b , 51 c --Curved surface. V\r

Claims (1)

【特許請求の範囲】[Claims] 蒸気ドラムと、蒸気ドラムの両端を支持する降水管と、
降水管同志を連結するマニホルドによつて排熱回収ボイ
ラを形成し、マニホルド側の両端にサドルを設けると共
に、支持梁側に支持板を設け、サドルと支持板との摺動
によつて排熱回収ボイラの伸びを吸収するものにおいて
、前記サドルと支持板の少なくとも一方に円弧状の曲面
を設けたことを特徴とする排熱回収ボイラ装置。
a steam drum; a downcomer supporting both ends of the steam drum;
An exhaust heat recovery boiler is formed by a manifold that connects downcomer pipes, and a saddle is provided at both ends of the manifold side, and a support plate is provided on the support beam side, and the sliding between the saddle and the support plate recovers the exhaust heat. An exhaust heat recovery boiler device for absorbing elongation of a recovery boiler, characterized in that at least one of the saddle and the support plate is provided with an arcuate curved surface.
JP1097460A 1989-04-19 1989-04-19 Waste heat recovery boiler device Expired - Fee Related JP2889271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097460A JP2889271B2 (en) 1989-04-19 1989-04-19 Waste heat recovery boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097460A JP2889271B2 (en) 1989-04-19 1989-04-19 Waste heat recovery boiler device

Publications (2)

Publication Number Publication Date
JPH02279901A true JPH02279901A (en) 1990-11-15
JP2889271B2 JP2889271B2 (en) 1999-05-10

Family

ID=14192915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097460A Expired - Fee Related JP2889271B2 (en) 1989-04-19 1989-04-19 Waste heat recovery boiler device

Country Status (1)

Country Link
JP (1) JP2889271B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647016B2 (en) * 2015-11-11 2020-02-14 三菱重工業株式会社 Boiler support, boiler device and ship

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105801A (en) * 1983-11-15 1985-06-11 バブコツク日立株式会社 Waste liquor recovery boiler
JPS60170506U (en) * 1984-04-19 1985-11-12 バブコツク日立株式会社 Boiler vertical tube support structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105801A (en) * 1983-11-15 1985-06-11 バブコツク日立株式会社 Waste liquor recovery boiler
JPS60170506U (en) * 1984-04-19 1985-11-12 バブコツク日立株式会社 Boiler vertical tube support structure

Also Published As

Publication number Publication date
JP2889271B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
EP0609037B1 (en) Combined combustion and steam turbine power plant
US6604354B2 (en) Combined cycle power plant
CN203670119U (en) Gas-steam combined cycle power device
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
JP2003214182A (en) Gas turbine combined plant and its operating method
WO2023246030A1 (en) Molten salt heat storage-based thermal power generating unit flexible operation system
US5285627A (en) Method for operating a gas and steam turbine plant and a plant for performing the method
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JPH02279901A (en) Waste heat recovery boiler apparatus
JP2592061B2 (en) Waste heat recovery boiler
JPH0445301A (en) Natural circulation waste heat recovery heat exchanger
JP2001214758A (en) Gas turbine combined power generation plant facility
JP3133183B2 (en) Combined cycle power plant
JP3068972B2 (en) Combined cycle power plant
JP2971629B2 (en) Waste heat recovery boiler
JPH0245763B2 (en) JOKITAABINPURANTONOKYUSUIKANETSUKEITO
CN117803911A (en) Heating system for realizing deep decoupling of machine furnace and operation method
JPH06294305A (en) Exhaust heat recovery boiler
JPH04116301A (en) Waste heat recorvery boiler
JPS5939122Y2 (en) combined plant
JPH0350302A (en) Composite power generation plant
JPH08312905A (en) Combined cycle power generating facility
JP2000304203A (en) Waste heat recovery boiler
JP2023037664A (en) Latent heat recovery economizer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees