JPH02279278A - Diamond abrasive and manufacture thereof - Google Patents

Diamond abrasive and manufacture thereof

Info

Publication number
JPH02279278A
JPH02279278A JP1099988A JP9998889A JPH02279278A JP H02279278 A JPH02279278 A JP H02279278A JP 1099988 A JP1099988 A JP 1099988A JP 9998889 A JP9998889 A JP 9998889A JP H02279278 A JPH02279278 A JP H02279278A
Authority
JP
Japan
Prior art keywords
diamond
base material
vapor phase
layer
phase composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1099988A
Other languages
Japanese (ja)
Inventor
Tetsushi Aoki
青木 哲史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP1099988A priority Critical patent/JPH02279278A/en
Publication of JPH02279278A publication Critical patent/JPH02279278A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the adherence strength of a base body diamond and to obtain a bonding force fit for practical use sufficiently by forming a metal layer on the circumference of the diamond located in an isolated dispersing state on the base body. CONSTITUTION:What is worked in the shape of about 40 phimm with the use of an alloy tool steel SKIS21 as the base material is subjected to a surface treatment. The vapor phase composition of a diamond is then performed by using the mixed gas prepared at CH4 density 0.5% in H2 air current by a microwave plasma CVD method after degreasing treatment. In this case, the reaction temperature is about 800 deg.C and reaction time about for three hours and the output thereof is about 350W and pressure about 40Torr. As a result, a granular vapor phase composition diamond in about 0.1 - 10mum is precipitated on the base material. This base material is taken off from an reaction pipe, subjected to an electroless plating and an Ni layer in about 2mum thickness coating even the boundary part of the vapor phase composition diamond particle and base material is formed on the base material. The adhesion strength of the diamond particle and base material is thus increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基体上に気相合成法によってダイヤモンドを析
出してなり、ラッピング等に利用されるダイヤモンド研
摩体、及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a diamond abrasive body formed by depositing diamond on a substrate by a vapor phase synthesis method and used for lapping, etc., and a method for manufacturing the same.

[従来技術及び課題] この種のダイヤモンド研摩体は基体とダイヤモンドとの
接合強度が弱く、実用f1問題とされている。
[Prior Art and Problems] This type of diamond abrasive body has a weak bonding strength between the base and the diamond, which is considered to be a practical f1 problem.

そのため、基体を前処理(キズ付は処理、熱処理など)
してダイヤモンドの核の発生数を高めたり(特公平1−
45H) 、中間層を形成させる手段1例えば非化学量
論組成の炭化物、窒化物を被覆してダイヤモンド・コー
ティングを行なう(特開昭6l−104078)が知ら
れている。
Therefore, the substrate must be pretreated (treatment for scratches, heat treatment, etc.)
to increase the number of diamond nuclei (Special Height 1-
45H), a method of forming an intermediate layer 1, for example, coating a non-stoichiometric carbide or nitride with a diamond coating is known (Japanese Patent Laid-Open No. 61-104078).

[解決手段] 本発明はかかる課題を解決するために、公知手段とは全
く別異の手段を採用し、た。即ち。
[Solution Means] In order to solve the problem, the present invention employs means completely different from known means. That is.

(1)セラミックス、金属の少なくとも一種からなる基
体、基体上に孤立分散状態で位置するダイヤモンド、及
び基体りにダイヤモンドの周囲において備えられた金属
層、からなることを特徴とするダイヤモンド研摩体。
(1) A diamond abrasive body comprising a base made of at least one of ceramics and metal, diamonds located in an isolated and dispersed state on the base, and a metal layer provided around the diamonds on the base.

(2)基体表面に気相合成法によってダイヤモンドを析
出させた後、該基体をメッキ処理することを特徴とする
ダイヤモンド研摩体の製造方法。
(2) A method for producing a diamond abrasive body, which comprises depositing diamond on the surface of a substrate by a vapor phase synthesis method, and then plating the substrate.

[作用及び好適な手段] この手段によれば、ダイヤモンドの周囲に存在するメッ
キ層によってダイヤモンドが側方から保持され、基体と
の接合力が高められる(第1,2図)。
[Operation and Preferred Means] According to this means, the diamond is held from the sides by the plating layer existing around the diamond, and the bonding force with the base body is increased (FIGS. 1 and 2).

基体としては、A、g  O、ZrO□のような酸化物
系セラミックス、炭化物、窒化物のような非酸化物系セ
ラミックス例えばS i C。
As the substrate, oxide ceramics such as A, gO, ZrO□, non-oxide ceramics such as carbides and nitrides, such as SiC.

Si  N  、CrC,VC,TiN、WC,又例え
ば超硬合金やNi、Cu、Mo、Wなどの金属が挙げら
れ、使用目的に応じて適宜選択して使用する。メッキ層
と共働して、ダイヤモンドの接合力を高める。特に金属
Niを使用した場合、Niメッキ層にしたときダイヤモ
ンドとの接合性に極めて優れたものとなる。Coからな
る基体例えば(金属Co、その合金、更にはCoを助剤
として含有するWCセラミックス)は好ましくない。
Examples include SiN, CrC, VC, TiN, WC, cemented carbide, and metals such as Ni, Cu, Mo, and W, which are appropriately selected and used depending on the purpose of use. Works together with the plating layer to increase the bonding strength of diamond. In particular, when metal Ni is used, the Ni plating layer has extremely excellent bonding properties with diamond. Substrates made of Co, such as metal Co, alloys thereof, and WC ceramics containing Co as an auxiliary agent, are not preferred.

Coによるダイヤモンドの吸収があり非ダイヤモンドの
生成が見られるためである。又、酸化物系セラミックス
例えばA 120 aはそれ自体気相合成法によってダ
イヤモンドが析出しにくいのであまり好ましくはない。
This is because diamond is absorbed by Co and non-diamond formation is observed. Further, oxide ceramics such as A 120 a are not so preferred because diamond is difficult to precipitate therein by vapor phase synthesis.

しかし、前記非酸化物系セラミックス等(ダイヤモンド
析出可能或いは析出容易なもの)を表面に存在させれば
9問題なく基板として使用できる。その表面層は0.5
μm以上存在すればよい。基体はダイヤモンドの気相合
成に供される前に1表面処理1例えばダイヤモンド粒子
によるラッピングによって核の生成密度を高める処理や
脱脂処理するとよい。
However, if the non-oxide ceramics or the like (those capable of depositing diamond or easily deposited) are present on the surface, it can be used as a substrate without any problems. Its surface layer is 0.5
It suffices if it exists in μm or more. Before the substrate is subjected to diamond vapor phase synthesis, it is preferable to perform a surface treatment such as lapping with diamond particles to increase the nucleation density or a degreasing treatment.

ダイヤモンドの気相合成法としては、化学析出法(CV
D)例えばプラズマCVD法、物理析出法(PVD)例
えばイオンビーム蒸着法のいずれでもよい。CVDの方
が接合強度が大であり。
As a gas phase synthesis method for diamond, chemical precipitation method (CV
D) For example, a plasma CVD method, a physical deposition method (PVD), such as an ion beam evaporation method may be used. CVD has higher bonding strength.

特にプラズマCVD法が好ましい。反応温度が低く、又
多結晶質ダイヤモンド層を安定に長時間析出できる。プ
ラズマCVD法とはプラズマを発生させ、これを固体表
面と化学反応させて成膜する方法をいう。プラズマCV
D法を採用した場合。
Particularly preferred is the plasma CVD method. The reaction temperature is low, and a polycrystalline diamond layer can be deposited stably for a long time. The plasma CVD method is a method of forming a film by generating plasma and causing it to chemically react with a solid surface. plasma CV
When method D is adopted.

供給ガスとして炭化水素と水素との混合ガス(例えば1
;100の割合)を使用し、プラズマ発生波としてマイ
クロ波又は高周波を使用するとよい。
A mixed gas of hydrocarbon and hydrogen (e.g. 1
; 100), and microwave or high frequency waves are preferably used as the plasma generation wave.

圧力IN’ 〜780Torr、基体温度300〜13
00℃にするとよい。炭化水素としては通例、メタン、
エタン、プロパン、ブタン等が用いられる。必ずしも一
義的でないが2例えばメタン0.2〜0.5vo1%を
使用した場合、析出ダイヤモンドは単結晶質。
Pressure IN' ~780Torr, substrate temperature 300~13
It is best to set the temperature to 00°C. Hydrocarbons typically include methane,
Ethane, propane, butane, etc. are used. For example, if 0.2 to 0.5 vol.

0.5〜5 vo1%を使用した場合、多結晶質となる
傾向がある。ダイヤモンドは、o、oi−ioo−程度
の厚みで析出させる′とよい。0.01−未満であると
析出したダイヤモンド粒子の特性が生かされないし、 
 100Mを越えると、析出層内の応力でクラツクが生
じたり、母材とのはがれが生じることがある。
When 0.5 to 5 vol% is used, it tends to become polycrystalline. It is preferable that the diamond be deposited to a thickness of about o, oi-ioo-. If it is less than 0.01-, the characteristics of the precipitated diamond particles will not be utilized,
If it exceeds 100M, stress within the deposited layer may cause cracks or peeling from the base material.

又、ダイヤモンドの析出は、長時間の場合基体表面をマ
スキングして行なう(第3図)と、ダイヤモンドを所定
部位にのみ、特に孤立分散状態で存在させることができ
る。析出部位と非析出部位との面積比はダイヤモンドの
析出部の必要に応じて任意にコントロールすることがで
きる。尚、ダイヤモンドを析出させる前に、基体表面に
予め中間層(例えばCrC)を形成させるとよい。ダイ
ヤモンドの核発生数を増大させて析出速度を向上させる
と共に、接合強度を一層高めることができる。中間層の
形成方法としては、中間層を構成する金属成分を含有す
る溶融塩からなる浴に基体を浸漬させることが挙げられ
る。
Further, when diamond is deposited for a long period of time, by masking the surface of the substrate (FIG. 3), diamond can be present only in predetermined areas, particularly in an isolated and dispersed state. The area ratio between the precipitated area and the non-precipitated area can be arbitrarily controlled according to the needs of the diamond precipitated area. Incidentally, before depositing diamond, it is preferable to form an intermediate layer (for example, CrC) on the surface of the substrate in advance. It is possible to increase the number of diamond nuclei generated, thereby improving the precipitation rate and further increasing the bonding strength. A method for forming the intermediate layer includes immersing the substrate in a bath made of a molten salt containing a metal component constituting the intermediate layer.

次に、このダイヤモンド゛を析出させてなる基体にメッ
キ処理を施す。孤立分散状態で存在する析出ダイヤモン
ドの周囲にメッキ金属を存在させることにより、基体と
ダイヤモンドとの接合強度を高めることができる。メッ
キ以外の処理2例えばスパッタリング等によって金属を
備えても、ダイヤモンドの接合強度向上にあまり効果的
でない。
Next, the substrate formed by depositing this diamond is subjected to plating treatment. By making the plating metal exist around the precipitated diamond that exists in an isolated and dispersed state, the bonding strength between the base and the diamond can be increased. Processing other than plating 2 Even if metal is provided by sputtering or the like, it is not very effective in improving the bonding strength of diamond.

メッキ処理である限り、無電解メッキ、電解メッキのい
ずれであってもよい。特に、操作作業性の簡易さの見地
からは無電解メッキがより好ましい。メッキ組成として
は遷移金属例えばNi。
As long as the plating treatment is performed, either electroless plating or electrolytic plating may be used. In particular, electroless plating is more preferred from the viewpoint of ease of operation. The plating composition is a transition metal such as Ni.

Co、Cr、Ag、Cuなどの単一金属およびN1−W
、Co−Ni、Ni−Feなどの合金が挙げられる。但
し、Coは好ましくない。析出ダイヤモンドが喰われる
おそれがある。メッキ層の厚みは通常20μ請以下にす
るとよい。20−を越えると内部応力によって剥離又は
クラックを生じ易くなる。但し、メッキ層の存在面積が
小さい場合。
Single metals such as Co, Cr, Ag, Cu and N1-W
, Co--Ni, Ni--Fe, and other alloys. However, Co is not preferable. Precipitated diamonds may be eaten away. The thickness of the plating layer is usually 20 μm or less. If it exceeds 20 -, peeling or cracking is likely to occur due to internal stress. However, if the existing area of the plating layer is small.

50〜100tU程度まで厚くしてもよい。又、メッキ
処理は複数回行ない、無電解メッキの場合例えば三層、
電解メッキの場合二層程度で存在させるとよい。研摩使
用時においても安定にダイヤモンドを保持させることが
できる。
It may be as thick as about 50 to 100 tU. In addition, the plating process is performed multiple times, and in the case of electroless plating, for example, three layers,
In the case of electrolytic plating, it is preferable to have about two layers. Diamonds can be stably held even during polishing.

本発明に係るダイヤモンド研摩体は各種材料の研摩、特
に精密加工に好適である。例えば、ラッピングに有用で
ある。砥石には不適である。砥石における砥粒は所定の
脱落を必要とするためである。この研摩体の形状は、板
状1粒状など使用目的に応じて適宜選択される。ラッピ
ング用砥粒としては例えば粒度#140〜500とされ
る。
The diamond abrasive body according to the present invention is suitable for polishing various materials, especially precision machining. For example, it is useful for wrapping. Not suitable for whetstones. This is because the abrasive grains in the whetstone need to fall off in a predetermined amount. The shape of this abrasive body is appropriately selected depending on the purpose of use, such as a plate-like single grain shape. The abrasive grains for lapping have a particle size of #140 to #500, for example.

[発明の効果] 本発明によれば、基体とダイヤモンドとの密着強度が、
単にダイヤモンドを析出しただけのちのに比して2〜3
倍以上となり、充分に実用に耐える結合力を得る。メッ
キ処理を施せばよいだけであるので、その処理操作が極
めて簡便である。
[Effects of the Invention] According to the present invention, the adhesion strength between the substrate and the diamond is
2 to 3 compared to after simply depositing diamonds.
This is more than double the amount of bonding strength that can be used in practical applications. Since all that is required is plating, the processing operation is extremely simple.

マスキングによってダイヤモンドを選択的に析出し、成
長させて、その生成域を制御して充分な接合強度を維持
できる。
By masking, diamond can be selectively precipitated and grown to control the region where diamond is formed and maintain sufficient bonding strength.

[実施例] 実施例1(粒状ダイヤモンドのNi無電解メッキ) 母材(基体)として合金工具鋼SKS 21を使用し、
 40φ龍の形状に加工したものを表面処理(ダイヤモ
ンドペースト0−1.72μm中で15分ラッピング研
摩)した。脱脂処理後マイクロ波プラズマCVD法にて
H気流中にCHJ a度0,5%に調製した混合ガスを
使用してダイヤモンドの気相合成を行なった。反応温度
は800℃で反応時間は3時間で行なった。出力は35
0W 、圧力は40Tor「であった。この結果、  
o、i〜10μm程度の粒状の気相合成ダイヤモンドが
母材上に析出した。この母材を反応管よりとり出し、母
材と析出粒子との付着力を向1zさせるために4次の工
程で無電解メッキを行なった。先づ10%H2SO4で
5分間処理後水洗し、45℃にて5分間塩化パラジウム
溶液にて前処理を行ない、市販の無電解Niメッキ液に
て80℃、1時間反応を行なった。この結果母材トに厚
み2μlのNi層が形成され、先に析出した気相合成ダ
イヤモンド粒子と母材との境界部をも被覆してこのNi
層が生成し、析出したダイヤモンド粒子と母材との密着
強度の増加に効果的であった(第1図)。
[Example] Example 1 (Ni electroless plating of granular diamond) Using alloy tool steel SKS 21 as the base material (substrate),
A piece processed into a 40φ dragon shape was subjected to surface treatment (lapping and polishing in diamond paste 0-1.72 μm for 15 minutes). After the degreasing treatment, gas phase synthesis of diamond was carried out by microwave plasma CVD using a mixed gas prepared to have a CHJ a degree of 0.5% in an H gas stream. The reaction temperature was 800°C and the reaction time was 3 hours. The output is 35
0W, the pressure was 40 Tor. As a result,
Vapor-phase synthesized diamond in the form of particles of about 10 μm was precipitated on the base material. This base material was taken out from the reaction tube, and electroless plating was performed in the fourth step to improve the adhesion between the base material and the precipitated particles. First, it was treated with 10% H2SO4 for 5 minutes, washed with water, pretreated with a palladium chloride solution at 45°C for 5 minutes, and reacted with a commercially available electroless Ni plating solution at 80°C for 1 hour. As a result, a Ni layer with a thickness of 2 μl is formed on the base material, and the boundary between the vapor-phase synthesized diamond particles precipitated earlier and the base material is also covered, and this Ni layer is formed on the base material.
A layer was formed, which was effective in increasing the adhesion strength between the precipitated diamond particles and the base material (Figure 1).

実施例2(島状ダイヤモンド薄膜のNt無電解メッキ) 実施例1と同様にして合金工具鋼SKS 2+の表面に
マイクロ波プラズマCVD法によって850℃。
Example 2 (Nt electroless plating of island-shaped diamond thin film) In the same manner as in Example 1, the surface of alloy tool steel SKS 2+ was coated at 850°C by microwave plasma CVD.

6時間の合成により、気相合成ダイヤモンド粒子が凝集
した島状のダイヤモンド薄膜が得られた。
After 6 hours of synthesis, an island-shaped diamond thin film in which vapor-phase synthesized diamond particles were aggregated was obtained.

(注二更に反応時間を増加すれば、この島状ダイヤモン
ド相互間隙は更に析出するダイヤモンド粒子で埋められ
てゆくものである)この母材を実施例1と同様に無電解
メッキ法によって、この間隙あるいはダイヤモンドの未
析出部分をN1層で埋める処理を行なった(第2図)。
(Note 2: If the reaction time is further increased, the gaps between these island-like diamonds will be filled with further precipitated diamond particles.) This base material is coated with the same electroless plating method as in Example 1, and the gaps between the island-shaped diamonds are filled with further precipitated diamond particles. Alternatively, a process was performed to fill the non-deposited portions of diamond with an N1 layer (Fig. 2).

実施例3(母材が5i3N4) 母材としてSi3N4の焼結体を使用した。Example 3 (base material is 5i3N4) A sintered body of Si3N4 was used as the base material.

(20X 20X 5 を關)表面を2−のダイヤモン
ドペーストで0゜5h研摩した後マイクロ波プラズマC
VD法で820℃、4時間反応合成し、実施例2と同様
な島状ダイヤモンド薄膜を得た。その後無電解メッキ法
でNi層を生成させた(第2図)。
(20X 20X 5) After polishing the surface with 2-diamond paste for 0°5 hours, microwave plasma C
Reaction synthesis was performed at 820° C. for 4 hours using the VD method to obtain an island-shaped diamond thin film similar to that in Example 2. Thereafter, a Ni layer was formed by electroless plating (FIG. 2).

実施例4(マスキングその1) 母材にKIOの耐摩耗用WCを使用し、  (20X2
OX10tmm)表面をダイヤモンドペースト5μmに
て1時間ラッピング研摩をした。その後ダイヤモンドの
析出を抑制する部分にマスキングを目的にダイヤモンド
の析出が認められないあるいは析出の遅い物質であるA
、f!203の微粉末を有機溶剤(ビヒクル)に混ぜた
ものを塗布あるいは印刷しく第4図)、300℃にて5
時間仮焼(有機物の除去)シた。マイクロ波プラズマC
VD?A1.:テ850’C,10時間にて、厚み約6
μIのダイヤモンド薄膜を得た後、母材とダイヤモンド
層との境界部をも被覆してマスキング部分に無電解Ni
(あるいはCu)を生成させた。
Example 4 (Masking Part 1) KIO's wear-resistant WC was used as the base material, (20X2
OX10tmm) The surface was polished by lapping with a diamond paste of 5μm for 1 hour. After that, for the purpose of masking in the area where diamond precipitation is to be suppressed, diamond precipitation is not observed or the material is a slow-precipitating substance A.
, f! Apply or print a mixture of fine powder of No. 203 in an organic solvent (vehicle) (Fig. 4) at 300℃ for 5 minutes.
Temporal calcination (removal of organic matter) was performed. microwave plasma C
VD? A1. : Thickness approx. 6 at TE 850'C, 10 hours
After obtaining a μI diamond thin film, the boundary between the base material and the diamond layer was also covered and the masking area was covered with electroless Ni.
(or Cu) was generated.

実施例5(マスキングその2) 母材にSiCの焼結体を使用し、ダイヤモンドペースト
2pにて0.5時間研摩した後マイクロ波プラズマCV
D法にて830℃、12時間ダイヤモンドを気相合成し
た。その結果8−の厚みのダイヤモンド薄膜が合成され
た。母材はCVD前に例えば第5図の様にマスキングさ
れているものであり、マスキング部に無電解NLメッキ
にてNi層を析出させたものである。
Example 5 (Masking Part 2) A sintered body of SiC was used as the base material, and after polishing with diamond paste 2p for 0.5 hours, microwave plasma CV was performed.
Diamond was synthesized in a vapor phase at 830° C. for 12 hours using method D. As a result, a diamond thin film with a thickness of 8 mm was synthesized. The base material is masked, for example, as shown in FIG. 5 before CVD, and a Ni layer is deposited on the masked portion by electroless NL plating.

実施例6(核の選択的発生と成長) 母材としてAj!203焼結体(φ40+m)を使用し
た。一般に酸化物の表面上では、CVDダイヤモンド核
の発生と成長は著しく遅いためダイヤモンドの析出部分
に核の発生と成長を促進するためにCVDダイヤモンド
の核の発生と成長が比較的容易な物質であるSiCの微
粉を有機溶剤(ビヒクル)に混合し、ダイヤモンドの析
出を希望する部分(第4図の非マスキング部)に塗布し
た。
Example 6 (Selective generation and growth of nuclei) Aj! as the base material! 203 sintered body (φ40+m) was used. Generally, the generation and growth of CVD diamond nuclei is extremely slow on the surface of oxides, so it is a material in which the generation and growth of CVD diamond nuclei is relatively easy in order to promote the generation and growth of nuclei in the diamond precipitated area. Fine SiC powder was mixed with an organic solvent (vehicle) and applied to the area where diamond precipitation was desired (the non-masked area in FIG. 4).

その後300℃で5時間仮焼して有機物を除去した後、
マイクロ波プラズマCVD法にて850℃、8時間反応
させて、厚み約lOμmのダイヤモンド薄膜を得た。そ
の後同様にNi無電解メッキにてNi層を生成した。
After that, after calcining at 300℃ for 5 hours to remove organic matter,
A reaction was carried out at 850° C. for 8 hours using microwave plasma CVD to obtain a diamond thin film with a thickness of about 10 μm. Thereafter, a Ni layer was formed by Ni electroless plating in the same manner.

こうして得られたダイヤモンド研摩体(実施例1〜6)
について、密着強度(kg)を調べた。
Diamond abrasive bodies thus obtained (Examples 1 to 6)
The adhesion strength (kg) was investigated.

又、実施例1,4.3.6の対応比較例7〜1゜(メッ
キ層を形成していないもの)についても同様に調べた。
Further, Comparative Examples 7 to 1° (those in which no plating layer was formed) corresponding to Examples 1, 4, 3, and 6 were similarly investigated.

この試験条件及び結果を第1表に示す。The test conditions and results are shown in Table 1.

(以下余白) 第  1  表 117〜−10  比較例 O密着強度の測定条件: 圧子;ダイヤモンド圧子 チップ半径 0.2−■ スクラッチ速度:lO■嘗/■In 最大荷重:     ZOkgf 密着強度:母材とダイヤモンド層との間の剥離荷重(k
g)この第1表の結果から明らかな通り、実施例のダイ
ヤモンド研摩体は、比較例のものに比して母材とダイヤ
モンドとの密着強度が2〜3倍に高められることを確認
できた。
(Leaving space below) Part 1 Tables 117 to -10 Comparative Example O Measurement conditions for adhesion strength: Indenter; diamond indenter tip radius 0.2-■ Scratch speed: lO■嘗/■In Maximum load: ZOkgf Adhesion strength: to base material Peeling load between the diamond layer (k
g) As is clear from the results in Table 1, it was confirmed that the adhesion strength between the base material and the diamond was increased by 2 to 3 times in the diamond abrasive bodies of the examples compared to those of the comparative examples. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のダイヤモンド研摩体の一例(粒状にダ
イヤモンドが析出したもの)を示す模式断面図。 第2図はその他の例(島状にダイヤモンドが析出したも
の)を示す模式断面図。 第3〜5図は本発明方法の気相合成法によるダイヤモン
ド析出工程においてマスキングの例を示す模式平面図。 を夫々表わす。 出願人  株式会社ノリタケカンパニーリミテド代理人
  弁理士   加  藤  朝  道第 ■ 図 第2図 茎体 第3図 第4図 駈 第5図 茎儂
FIG. 1 is a schematic cross-sectional view showing an example of the diamond abrasive body of the present invention (one in which diamond is precipitated in granular form). FIG. 2 is a schematic cross-sectional view showing another example (one in which diamond is precipitated in an island shape). 3 to 5 are schematic plan views showing examples of masking in the diamond precipitation step using the vapor phase synthesis method of the method of the present invention. respectively. Applicant Noritake Co., Ltd. Agent Patent Attorney Asahi Kato Michiichi Figure 2 Stem body Figure 4 Figure 5 Stem body

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックス、金属の少なくとも一種からなる基
体、基体上に孤立分散状態で位置するダイヤモンド、及
び基体上にダイヤモンドの周囲において備えられた金属
層、からなることを特徴とするダイヤモンド研摩体。
(1) A diamond abrasive body comprising a base made of at least one of ceramics and metal, diamonds located in an isolated and dispersed state on the base, and a metal layer provided around the diamonds on the base.
(2)基体表面に気相合成法によってダイヤモンドを析
出させた後、該基体をメッキ処理することを特徴とする
ダイヤモンド研摩体の製造方法。
(2) A method for producing a diamond abrasive body, which comprises depositing diamond on the surface of a substrate by a vapor phase synthesis method, and then plating the substrate.
JP1099988A 1989-04-21 1989-04-21 Diamond abrasive and manufacture thereof Pending JPH02279278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1099988A JPH02279278A (en) 1989-04-21 1989-04-21 Diamond abrasive and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1099988A JPH02279278A (en) 1989-04-21 1989-04-21 Diamond abrasive and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02279278A true JPH02279278A (en) 1990-11-15

Family

ID=14262030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1099988A Pending JPH02279278A (en) 1989-04-21 1989-04-21 Diamond abrasive and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02279278A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285846A (en) * 1992-04-13 1993-11-02 Noritake Dia Kk Manufacture of electrodeposition grinding wheel
EP0614496A1 (en) * 1991-11-29 1994-09-14 The Regents Of The University Of Minnesota Diamond coated products and method of preparation
JPH10193269A (en) * 1996-12-27 1998-07-28 Asahi Diamond Ind Co Ltd Electrodeposition tool and manufacture therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614496A1 (en) * 1991-11-29 1994-09-14 The Regents Of The University Of Minnesota Diamond coated products and method of preparation
EP0614496A4 (en) * 1991-11-29 1996-02-28 Univ Minnesota Diamond coated products and method of preparation.
JPH05285846A (en) * 1992-04-13 1993-11-02 Noritake Dia Kk Manufacture of electrodeposition grinding wheel
JPH10193269A (en) * 1996-12-27 1998-07-28 Asahi Diamond Ind Co Ltd Electrodeposition tool and manufacture therefor

Similar Documents

Publication Publication Date Title
US4902535A (en) Method for depositing hard coatings on titanium or titanium alloys
US5009966A (en) Hard outer coatings deposited on titanium or titanium alloys
JPH01153228A (en) Vapor phase composite method for producing diamond tool
JPH1149506A (en) Ornamental member
JPH0784661B2 (en) Highly erosion resistant and highly abrasive wear resistant composite coating system and its manufacturing method
JPH05320910A (en) Diamond coated member
JPH02279278A (en) Diamond abrasive and manufacture thereof
JPH04157157A (en) Production of artificial diamond coated material
JPH02267284A (en) Polycrystalline diamond object and production thereof by vapor synthesis method
US20090031637A1 (en) Coated abrasives
JP3260986B2 (en) Member with diamond composite film
JPH0542508B2 (en)
JPH0354180A (en) Production of diamond-coated sintered material
JPH06100398A (en) Production of diamond film having mirror finished surface
JPH0656585A (en) Coating method of diamond film
JP3295575B2 (en) Cubic BN fine particles with two-layer metal plating and method for producing the same
JPS6257802A (en) Parts coated with hard carbon
JP2001192801A (en) Unit containing ultra-hard material body and producing method therefor
JPS63306805A (en) Diamond coated cutting tool
JPH01317111A (en) Polycrystalline diamond abrasive grain and production thereof
JP3295574B2 (en) Two-layer metal plated diamond fine particles and method for producing the same
JPS61270373A (en) Diamond coated sintered hard alloy
KR930011165B1 (en) Apparatus for adhering diamond film on the plate and processing method thereof
JPS62202898A (en) Production of diamond film
JPH02223437A (en) Polycrystalline diamond material and manufacture thereof