JPH02278338A - Table-type backward inference system - Google Patents

Table-type backward inference system

Info

Publication number
JPH02278338A
JPH02278338A JP1099150A JP9915089A JPH02278338A JP H02278338 A JPH02278338 A JP H02278338A JP 1099150 A JP1099150 A JP 1099150A JP 9915089 A JP9915089 A JP 9915089A JP H02278338 A JPH02278338 A JP H02278338A
Authority
JP
Japan
Prior art keywords
inference
value
variables
variable
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1099150A
Other languages
Japanese (ja)
Other versions
JP2734622B2 (en
Inventor
Ikuko Takanashi
郁子 高梨
Nobuyoshi Wada
和田 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1099150A priority Critical patent/JP2734622B2/en
Publication of JPH02278338A publication Critical patent/JPH02278338A/en
Application granted granted Critical
Publication of JP2734622B2 publication Critical patent/JP2734622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Executing Special Programs (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To attain backward inference by defining procedual contents dealing a numerical formula relating squares in a table and non-numerical data, and inferring an unknown number from the value of a right side in the formula and the past rule of thumb in table-type inference. CONSTITUTION:An inference engine 2 executes inference by using the content of a knowledge base 1 in which the formula and the rule mentioned between cells are accumulated, and they are displayed in a table-type interface 3. There are a forward inference part and a backward inference part in the inference engine 2, and they control forward inference and backward inference. In the allocation of the numerical formula, the value inputted to the right side is allocated to whole unknown variables based on previously inputted values. In the rule, whole matters are retrieved by using value candidates which have previously been set, all the values of the unknown variables in a left side, which fits to the value of the variable in the right-side, whereby the value detected first is shown. Thus, the decision of a will can efficiently be supported in the case of trial error so that the variables of the whole variables are adjusted to the value of the variable in the right side by variously changing them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は2表形式推論における逆方向推論に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to backward inference in two-table inference.

〔従来の技術〕[Conventional technology]

例えば従来の[TK/So l we rJ (ユニバ
ック・パンフレット)は表形式のインタフェースを持ち
9表の中のます目の間を数式で関係づける「変数a十変
数す生変数C=変数d」のように左辺の変数a、  b
、  cによって右辺の変数dが定まる式を定義したと
仮定すると、第5図で+41. (51,(61は左辺
の変数a、  b、  cで、(7)は右辺の変数dで
あり、左辺の3つの変数にそれぞれ値”I” @ 2 
II、”3°を代入すると計算されて変数dに“5”が
表示される。また左辺の変数Cが未知で、この値を求め
る場合にも式を変形する必要はなく、右辺の変数dに値
“10″を入力すると、第6図に示すように、既に定義
しである式を逆計算して変数Cの値”7″を求め2表示
することができる。但し、未知変数が二つ以上ある場合
には逆計算することができない。
For example, the conventional [TK/SolwerJ (Univac pamphlet)] has a tabular interface and uses a formula to relate the squares in nine tables, ``Variable a, 10 variables, Raw variable C = Variable d''. The variables a, b on the left side are
Assuming that we have defined a formula in which the variable d on the right side is determined by , c, +41. (51, (61 are the variables a, b, c on the left side, (7) is the variable d on the right side, and the three variables on the left side each have the value "I" @ 2
II. Substituting "3°" will be calculated and "5" will be displayed in the variable d.Also, even if the variable C on the left side is unknown and you want to find this value, there is no need to transform the equation, and the variable d on the right side By inputting the value "10" into the field, as shown in Figure 6, the already defined formula can be inversely calculated to obtain the value "7" of the variable C and displayed in 2. However, if the unknown variable is two If there are more than one, inverse calculation is not possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の表形式推論方式は以上のようは動作するので、数
式において未知変数が一つの場合には逆計算を行なうこ
とができるが、未知変数が二つ以上あった場合には定義
した式と逆方向に値を求めることができない。従って例
えば合計値が増加した場合に、一つ、の変数を未知変数
として修正すれば矛盾は生じないが、全体の変化分を一
つの変数で吸収するだけで、それを複数の変数に割り当
てることができない。
Conventional tabular inference methods work as described above, so when there is one unknown variable in a mathematical formula, it is possible to perform inverse calculations, but when there are two or more unknown variables, it is possible to perform inverse calculations with the defined formula. It is not possible to obtain a value in the direction. Therefore, for example, when the total value increases, if one variable is corrected as an unknown variable, a contradiction will not occur, but if the total change is absorbed by one variable, then it is not assigned to multiple variables I can't.

(1)従って全変数の値を適切な値に定めるまでに多大
な試行錯誤が必要になる。という問題が生じる。 (2
)また非数値を扱う手続き的内容(以後ルールと呼ぶ)
の定義や、その逆方向の実行(わりふり)を行なうこと
ができないため、数値計算以外の意思決定の支援を行う
ことができない、という二つの課題があった。
(1) Therefore, a great deal of trial and error is required to set the values of all variables to appropriate values. A problem arises. (2
) and procedural content that handles non-numeric values (hereinafter referred to as rules)
Since it is not possible to define or perform the opposite direction (warifuri), there are two issues: it is not possible to support decision-making other than numerical calculations.

この全面は上記のような二つの問題点を解消する方式で
、定義した式やルールに二つJul上の未知変数がある
場合にも、それまでに入力された値等を用いて逆方向に
推論できることを目的とする。
This method solves the two problems mentioned above, and even if there are unknown variables on two Juls in the defined formula or rule, it can be reversed using the values input so far. The purpose is to be able to reason.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる表形式の逆方向推論方式は、定義され
た方向に推論するI+?方向推論に対して逆方向の推論
だけを行なうモードを設ける。
The tabular backward inference method according to the present invention infers in a defined direction.I+? In contrast to directional inference, a mode is provided in which only inference is performed in the opposite direction.

このモードにおいては数式の場合には推論をする前に入
力されていた値を参考にして、右辺に与えられた値を左
辺の全部の変数に配分したり、特定のいくつかの変数に
割り当てたりする手段(このような処理を以後°数式の
わりふり”と呼ぶ)と、ルールの場合には、既に定義さ
れた値の候補値を用いて全件探索を行ない、被使用変数
の値に合う使用変数を求める手段(以後°ルールのわり
ふり”と呼ぶ)とから々るものである。
In this mode, in the case of a mathematical formula, the value given on the right side can be distributed to all variables on the left side, or assigned to a few specific variables, referring to the value input before inference. In the case of rules, all candidates are searched using the candidate values of the already defined values, and the method that matches the value of the used variable is used. It is a means of determining the variables to be used (hereinafter referred to as "rule substitution").

〔作用〕[Effect]

この発明においては、数式のわυふりにおいて、それま
でに入力された値を基にして比例。
In this invention, when changing a mathematical formula, it is proportional to the value input so far.

均等、比率、のいずれかの方法を用いて右辺に入力され
た値を全未知変数にわりふり、またルールにおいては、
既に設定された値候補を用いて全件探索を行ない、右辺
の変数の値に合う左辺の変数をすべて求め、一つ目に見
つかったものを示す。但しこれは左辺の全変数に対する
わりふりであり、値を保存すべき変数がある場合にはそ
の変数の値は「固定である」と設定することによって保
存する。
Distribute the value input on the right side to all unknown variables using either the equality method or the ratio method, and in the rule,
A complete search is performed using the already set value candidates to find all variables on the left side that match the value of the variable on the right side, and the first one found is shown. However, this applies to all variables on the left side, and if there is a variable whose value should be saved, the value of that variable is saved by setting it as "fixed."

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明に係わる表形式の推論方式の擢成図で
あり、(1)は知識ベース、(2)は推論エンジン、(
3)は表形式のインタフェースである。
FIG. 1 is a diagram of the tabular inference method according to the present invention, in which (1) is the knowledge base, (2) is the inference engine, (
3) is a tabular interface.

セル間に記述された式やルールを蓄えた知識ベース(1
)の内容を用いて推論エンジン(2)が推論し、表形式
インタフェース(3)に表示する。推論エンジン(2)
にはj1方向推論部と伊方向推論部があり、ilk!1
方向推論、逆方向推論のそれぞれを制御する。
A knowledge base (1
), the inference engine (2) makes an inference and displays it on the tabular interface (3). Inference engine (2)
has a j1 direction reasoning section and an i direction reasoning section, ilk! 1
Control both directional and backward inference.

前記第5図と同一符号を付した第2図に示すように、順
方向モードでは前記第5図と同様に動作するが、ここで
逆方向推論のモードに切り替え、f数dに”10”を入
力すると、第3図のようにfedの値に合うように変数
a、 f数b−i1!Icの値が変更される。前記第6
図のように変数CのIJだけを変更させたい場合には、
それLl外のf数a、f数すの値を固定することによっ
て実現できる。
As shown in FIG. 2, which has the same reference numerals as those in FIG. 5, in the forward mode, the operation is the same as in FIG. When inputting , the variable a and f number b-i1! are set to match the value of fed as shown in Figure 3. The value of Ic is changed. Said sixth
If you want to change only IJ of variable C as shown in the figure,
This can be realized by fixing the values of f-number a and f-number S outside Ll.

第4図は逆方向推論のモードにおけるフローチャートで
あるが、まず5(4Ilで右辺の変数のセルに値上入力
すると次にshaでそのセルに定義されているものが式
かルールかを判断し9式が定義されている場合はまずS
ρjで配分方法を選択する、右辺の変数セルの値の変化
分の配分方法として「比例配分」、「均等配分」、「比
率配分」の3つの方法があるが、左辺の変数セルに既に
値が入っているかどうかを調べ、入力されていなければ
「均等」、入力されていた場合で、既に一寸逆方向推論
が行われていた場合には、111回と同じ方法を、初め
ての場合には「比例」を選ぶ。この方法を用いて5(4
4でそれまでに入力された値がある場合はそれを参考に
するなどの諸東件を使って値をわりふる。これに対して
ルールの場合には数式の場合のようなヒユーリスティッ
クスを用いて逆実行することができないので、S(ト)
で既に設定されている左辺の変数の他候補を利用して、
8(46)で全組み合わせを111方向に実行し、入力
された右辺の変数の値に合うものを捜し、S包ηで一つ
目に見つかったものを表示する。
Figure 4 is a flowchart in backward inference mode. First, when you input a value into the variable cell on the right side using 5(4Il), use sha to determine whether what is defined in that cell is a formula or a rule. If formula 9 is defined, first S
Select the distribution method using ρj. There are three methods for distributing the change in the value of the variable cell on the right side: "proportional distribution,""equaldistribution," and "ratio distribution." However, if the variable cell on the left side already has a value If it is not input, it is "equal", and if it is input and backward inference has already been performed, use the same method as 111, and if it is the first time. Select "Proportional". Using this method, 5 (4
In step 4, if there is a value input up to that point, change the value using various methods such as referring to it. On the other hand, in the case of rules, it is not possible to perform reverse execution using heuristics like in the case of mathematical expressions, so S(t)
Using other candidates for the variables on the left side that have already been set,
In step 8 (46), all combinations are executed in 111 directions to find one that matches the value of the input variable on the right side, and the first one found in the S envelope η is displayed.

なお1表形式の逆方向推論方式についてのl5tep 
における実施例を示したが、ある一つの表内に関しての
推論、又は最後まで中断せずに続ける推論についても同
様の効果がある。
In addition, 15tep regarding the backward inference method in table format.
Although the example shown in FIG.

また、上記実施例では、数式とルールを記述できる表形
式の逆方向推論について説明したがこの発明おいては数
式だけが記述できるスプレッド・シートにおいても、ま
たルールだけが定義された表形式のエキスパートシステ
ムにおいても同様の効果がある。
In addition, in the above embodiment, backward inference in a tabular format in which mathematical formulas and rules can be written has been explained. A similar effect can be achieved in systems.

また、上記実施例では、値候補をルールの逆方向推論に
用いたが、数式の逆方向推論に用いても同様の効果があ
る。
Further, in the above embodiment, the value candidates are used for backward inference of rules, but the same effect can be obtained even if they are used for backward inference of mathematical expressions.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば式、及びルールによっ
て求めらるべき右辺の変数の値に合うように、全変数の
値を定められるので、右辺の変数の値が少し変化した場
合などに、全変数の値をいろいろ変えて右辺の変数の値
に合うようべ試行錯誤するような場合に、効率よく意志
決定の支援をすることができるという効果がある。
As described above, according to the present invention, the values of all variables can be determined to match the value of the variable on the right side that should be determined by the formula and the rule, so when the value of the variable on the right side changes slightly, etc. This has the effect of being able to efficiently support decision-making in cases where trial and error is performed by changing the values of all variables to match the values of the variables on the right-hand side.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の構成図、第2図は順方向推論の一例
と逆方向推論を実施するための操作例を示す図、第3図
はこの発明(逆方向推論)の一実施例を示す図、第4図
は本発明のフローチャート、第5図は順方向推論の一例
と従来の逆計算を実施するための操作例を示す図、第6
図は従来の逆計算の一実施例を示す図である。 図中符号(1)は知識ベース、(2)は推論エンジン(
3)は表形式インタフェースでアル。
Fig. 1 is a block diagram of the present invention, Fig. 2 is a diagram showing an example of forward inference and an operation example for implementing backward inference, and Fig. 3 is a diagram showing an example of this invention (backward inference). 4 is a flowchart of the present invention, FIG. 5 is a diagram showing an example of forward inference and an operation example for implementing conventional inverse calculation, and FIG.
The figure shows an example of conventional inverse calculation. In the figure, (1) is the knowledge base, (2) is the inference engine (
3) is a tabular interface.

Claims (1)

【特許請求の範囲】[Claims] 表形式推論において、その表の中のます目とます目の間
を関係づける数値的データを扱う数式及び非数値データ
を扱う手続き的内容を定義する手段と、前記式の左辺の
全ての値が定まらなくても左辺の値及び過去の経験則か
ら未知数を推論する手段とを備えたことを特徴とする表
形式の逆方向推論方式。
In tabular reasoning, there is a means for defining mathematical formulas that handle numerical data that relate between squares in the table, and procedural content that handles non-numeric data, and all values on the left side of the formula. A tabular backward inference method characterized by having means for inferring an unknown quantity from the value on the left side and past empirical rules even if it is not determined.
JP1099150A 1989-04-19 1989-04-19 Tabular reverse inference method Expired - Fee Related JP2734622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1099150A JP2734622B2 (en) 1989-04-19 1989-04-19 Tabular reverse inference method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1099150A JP2734622B2 (en) 1989-04-19 1989-04-19 Tabular reverse inference method

Publications (2)

Publication Number Publication Date
JPH02278338A true JPH02278338A (en) 1990-11-14
JP2734622B2 JP2734622B2 (en) 1998-04-02

Family

ID=14239662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1099150A Expired - Fee Related JP2734622B2 (en) 1989-04-19 1989-04-19 Tabular reverse inference method

Country Status (1)

Country Link
JP (1) JP2734622B2 (en)

Also Published As

Publication number Publication date
JP2734622B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
Hespanha et al. Hysteresis-based switching algorithms for supervisory control of uncertain systems
Peng et al. Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory
Alfaro‐García et al. Logarithmic aggregation operators and distance measures
Ramezani-Tarkhorani et al. Ranking decision-making units using common weights in DEA
Delorme et al. Minimizing the number of workers in a paced mixed-model assembly line
Ying A general technique for deriving analytical structure of fuzzy controllers using arbitrary trapezoidal input fuzzy sets and Zadeh AND operator
Kobza et al. Divergence measures on hesitant fuzzy sets
Alonso-Gutiérrez A reverse Rogers–Shephard inequality for log-concave functions
Charnes et al. A theorem on homogeneous functions and extended Cobb-Douglas forms
CA2054703A1 (en) Method and apparatus for setting membership functions, and method and apparatus for analyzing same
van Ee et al. The a priori traveling repairman problem
CN112214978A (en) Data processing method and related equipment
JPH02278338A (en) Table-type backward inference system
van Kreveld et al. Diverse partitions of colored points
JPH04195338A (en) Fuzzy inference system
Bennett et al. A trainable heuristic procedure for the assembly line balancing problem
Figueiredo et al. Group decision-based construction of scenarios for multicriteria analysis in conditions of uncertainty on the basis of quantitative and qualitative information
Chernykh et al. On the optima localization for the three-machine routing open shop
Gomoyunov Minimax solutions of homogeneous Hamilton–Jacobi equations with fractional-order coinvariant derivatives
Guu et al. On the convergence to zero of infinite products of interval matrices
van Ee et al. Routing under uncertainty: the a priori traveling repairman problem
Dæhlen On the evaluation of box splines
Kozawa et al. The carving-width of generalized hypercubes
Lapin Lyapunov vector functions, Krasnosel’skii canonical domains, and existence of Poisson bounded solutions
Khandani An extension of Sadovskii’s fixed-point theorem with applications to integral equations

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees