JPH02278133A - Measurement of temperature of atmosphere by coherent anti-stokes raman spectroscopy - Google Patents

Measurement of temperature of atmosphere by coherent anti-stokes raman spectroscopy

Info

Publication number
JPH02278133A
JPH02278133A JP1098837A JP9883789A JPH02278133A JP H02278133 A JPH02278133 A JP H02278133A JP 1098837 A JP1098837 A JP 1098837A JP 9883789 A JP9883789 A JP 9883789A JP H02278133 A JPH02278133 A JP H02278133A
Authority
JP
Japan
Prior art keywords
laser beam
laser
temperature
measurement
curse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1098837A
Other languages
Japanese (ja)
Inventor
Masakazu Yokoo
雅一 横尾
Akira Torao
彰 虎尾
Fumihiko Ichikawa
文彦 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1098837A priority Critical patent/JPH02278133A/en
Publication of JPH02278133A publication Critical patent/JPH02278133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To achieve a higher measuring accuracy in temperature of atmosphere using maximal values of two or more signal spectrums in the order of rotation of a gas. CONSTITUTION:Second high frequencies of a wide-band pigment laser 2 and an Nd:YAG laser 3 are used as a laser beam 1 for excitation by being adjusted with a dichroic mirror 4 and a wide-band pigment laser beam identical to the wide-band pigment laser 2 used as the laser beam 1 is used as laser beam 5 for measurement. Then, the laser beam 1 and the laser beam 5 are made to enter a heating furnace 7 through a lens 6 to generate a rotational CARS light 8. The laser beam 1 out of the laser beams outputted is removed with a beam damper 10 through a lens 9 and the Kerr's light 8 is made to enter a spectro scope 14 through a mirror 13 after laser beam 5 contained therein is removed with a beam damper 12 being separated with a dichroic mirror 11 and analyzed to be detected with a detector 15. A CARS signal detected with the detector 15 is applied to an arithmetic device 16 to compute a spectral intensity thereof and the results of computation are shown on a display 17.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、カース分光法を用いて例えば燃焼ガスやプラ
ズマCVD、熱CVD、  ドライエツチングなどの雰
囲気温度を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for measuring the ambient temperature of combustion gas, plasma CVD, thermal CVD, dry etching, etc., using Kerse spectroscopy.

〈従来の技術〉 カース(CAR3)分光法は、高出力レーザーやダイレ
ーザなどの発達にともなって進歩してきた非線形ラマン
分光法の一種で、通常のラマン分光法に比較して10’
倍程度の検出感度を有していることからして、その応用
面に多くの期待がもたれている。
<Prior art> CAR3 spectroscopy is a type of nonlinear Raman spectroscopy that has progressed with the development of high-power lasers and dye lasers.
Since the detection sensitivity is about twice as high, there are many expectations for its application.

このカース分光法を用いた温度測定方法としては、例え
ば特開昭59−10822号公報に開示されているよう
に、カーススペクトルが温度の上昇につれて波長が拡が
る特性(第6図参照)を有していることを利用して、カ
ース信号を分光器を介してマルチチャンネルディテクタ
で受光し、得られたスペクトルの基底部の値幅から被測
定系の温度を検出する方法が提案されている。
As a temperature measurement method using this Curse spectroscopy, for example, as disclosed in Japanese Patent Application Laid-Open No. 10822/1982, the Curse spectrum has the characteristic that the wavelength expands as the temperature rises (see Figure 6). Taking advantage of this fact, a method has been proposed in which the curse signal is received by a multichannel detector via a spectrometer, and the temperature of the measured system is detected from the value width of the base of the obtained spectrum.

また、文献rローティシタナル カース ジェネレーシ
ッン スルー ア マルチプル フォーカラー インク
ラクション(Rotational CAR3Be−n
eration through a multipl
e four−color +nte−raction
  ;  八PPLIIED  OI’TlC5Vol
、25.  No、23  Dece−sber 19
8G) Jには、ローティシボナル・カースを用いた温
度測定法が、通常のカースと同様に有効であると記載さ
れている。
In addition, the literature r Rotational Curse Generation Through a Multiple Four Color Inscription (Rotational CAR3Be-n
generation through a multipl
e four-color +nte-raction
; 八PPLIIED OI'TlC5Vol
, 25. No. 23 December-sber 19
8G) J states that a temperature measurement method using a rotissibinal curse is as effective as a normal curse.

〈発明が解決しようとする課題〉 しかしながら、前者の特開昭59−10822号の方法
では、100OK以下ではスペクトル幅が10cm−’
程度と狭いため、測定精度は通常は30〜50に程度し
か得られないという欠点がある。
<Problem to be solved by the invention> However, in the former method of JP-A-59-10822, the spectral width is 10 cm-' below 100 OK.
Since the range is narrow, the measurement accuracy is usually only about 30 to 50, which is a drawback.

また、後者の文献には、その測定の具体的方法が示され
ておらず、その測定精度も不明である。
Further, the latter document does not indicate a specific method for the measurement, and the measurement accuracy is also unknown.

本発明は、上記のような課題を解消すべくなされたもの
であって、カース分光法を用いて精度のよい雰囲気温度
の測定方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a highly accurate method of measuring ambient temperature using Kerse spectroscopy.

く課題を解決するだめの手段〉 本発明の要旨とするところは、気体分子の回転準位を検
出するカース分光法を用いて雰囲気温度を測定するに際
し、該気体の回転準位の2つ以上の信号スペクトルの極
大値をもとにして、この極大値を通る正規分布曲線の関
係式における平均値および分散の値をそれぞれ求め、予
め与えておいた検量線から雰囲気温度を求めることを特
徴とするカース分光法による雰囲気温度測定方法である
Means for Solving the Problems〉 The gist of the present invention is that when measuring the ambient temperature using Kerse spectroscopy, which detects the rotational levels of gas molecules, two or more of the rotational levels of the gas are detected. Based on the maximum value of the signal spectrum, the average value and variance values in the relational expression of the normal distribution curve passing through this maximum value are determined, and the ambient temperature is determined from a calibration curve given in advance. This is a method of measuring atmospheric temperature using Kerse spectroscopy.

く作 用〉 本発明者らは、ローティシラナル・カース分光法を用い
て雰囲気温度の測定実験を行ったところ、100cm−
’以上にわたり複数のカース信号スペクトルが観測され
、それらのカース信号スペクトルの極大値が正規分布曲
線上に分布し、その正規分布関係式の平均値と分散上が
温度に依存することを見出した。
Effect> The present inventors conducted an experiment to measure the ambient temperature using rotisilanal curse spectroscopy, and found that at 100 cm-
We observed multiple curse signal spectra over the above period, found that the maximum values of these curse signal spectra were distributed on a normal distribution curve, and that the average value and dispersion of the normal distribution relational expression depended on temperature.

以下に、その測定実験について説明する。The measurement experiment will be explained below.

4(す定に用いた装置は、第1図に示すように、励起用
レーザ光1として、広帯域色素レーザ2とNd:YAG
レーザ3の第2高調波をグイクロインクミラー4で調整
して用い、測定用レーザ光5として励起用レーザ光1に
用いた広帯域色素レーザ2と同一の広帯域色素レーザを
用い、これら励起用レーザ光1と測定用レーザ光5をレ
ンズ6を介して窒素雰囲気の加熱炉7に入射して、ロー
ティシラナル・カース光8を発生させた。出てきたレー
ザ光のうち、励起用レーザ光lをレンズ9を介してビー
ムダンプlOで除去し、またローティシラナル・カース
光8は、それに含まれる測定用レーザ光5をグイクロイ
ックミラー11で分離してビームダンプ12で除去した
後、ミラー13を介して分光器14に入射して分光し、
各波長毎にマルチチャンネルのディテクタ15を用いて
検出した。
4 (As shown in Fig. 1, the device used for this test includes a broadband dye laser 2 and a Nd:YAG laser beam 1 as the excitation laser beam 1.
The second harmonic of the laser 3 is adjusted by a microink mirror 4, and the same broadband dye laser as the broadband dye laser 2 used for the excitation laser beam 1 is used as the measurement laser beam 5. The light 1 and the measuring laser beam 5 were incident on a heating furnace 7 in a nitrogen atmosphere through a lens 6 to generate a rotary silanal curse beam 8. Among the emitted laser beams, the excitation laser beam l is removed by a beam dump lO through a lens 9, and the rotary silanal curse beam 8 is removed by a gicroic mirror 11. The beam is separated by a beam dumper 12 and removed by a beam dump 12, and then enters a spectroscope 14 via a mirror 13 to be separated into spectra.
Detection was performed using a multi-channel detector 15 for each wavelength.

ディテクタ15によって検出したカース信号を演算器1
6においてスペクトル強度を演算し、その演算結果をデ
イスプレィI7に表示するとともに、記録装置1日で記
録した。一方、雰囲気温度を熱電対19で実測し、記録
装置20に記録させた。
The curse signal detected by the detector 15 is transmitted to the computing unit 1.
In step 6, the spectral intensity was calculated, and the calculation results were displayed on the display I7 and recorded using the recording device for one day. On the other hand, the ambient temperature was actually measured with a thermocouple 19 and recorded on the recording device 20.

第2図は、雰囲気温度が300 Kのときのローティシ
ラナル・カース信号スペクトルの波形の一例を示したも
のである。
FIG. 2 shows an example of the waveform of the rotary silanal curse signal spectrum when the ambient temperature is 300K.

これらカース信号スペクトルS、〜S6のスペクトルの
極大値はほぼ正規分布曲線上に存在する。
The maximum values of these curse signal spectra S, ~S6 exist approximately on the normal distribution curve.

そのときの正規分布曲線の式 %式%( における平均値m2分散■を求めてみた。なお、ここで
Xは波長(c+*−’)である。
The average value m2 dispersion (■) of the normal distribution curve at that time was determined in the formula % (%). Here, X is the wavelength (c++-').

このような作業を雰囲気温度を300〜600 Kの間
で変化させて測定を行った結果を、実測温度と対比して
第3図と第4図に示した。
The results of measuring such work while varying the ambient temperature between 300 and 600 K are shown in FIGS. 3 and 4 in comparison with the actually measured temperatures.

これらの図から明らかなように、平均値m1分散vとも
雰囲気温度に依存しである関係を有することがわかる。
As is clear from these figures, it can be seen that the average value m1 and the variance v also depend on the ambient temperature and have a certain relationship.

そこで平均値m1分散Vと雰囲気温度Tとの関係を下記
(2)、 (3)式のように近似する。
Therefore, the relationship between the average value m1 variance V and the ambient temperature T is approximated as shown in equations (2) and (3) below.

T、 = k + m + c +       −−
−−f21Ty = k 2 V + Ct     
   ””””””’ (3)ここで、′r、、TVは
測定温度、k+、kz。
T, = k + m + c + −−
--f21Ty = k2V + Ct
""""""' (3) Here, 'r, , TV is the measured temperature, k+, kz.

’l+  cffi は定数である。'l+cffi is a constant.

この(2)、 (3)式を検量線として用いるようにす
れば、信号スペクトルの極大値を検出し、正規分布関係
式の平均値と分散を求めてやることにより、その時の雰
囲気温度1゛を求めることができる。
If these equations (2) and (3) are used as a calibration curve, by detecting the maximum value of the signal spectrum and finding the average value and variance of the normal distribution relational expression, the atmospheric temperature at that time 1゜can be found.

〈実施例〉 以下に、本発明の実施例について説明する。<Example> Examples of the present invention will be described below.

前出第1図に示した本発明のローティショナルカース分
光法による雰囲気温度測定装置を用いて、加熱炉内の空
気中の窒素温度を測定した。なお、この測定に用いた広
帯域色素レーザ2としては、中心波長が616nm、半
値幅6n−のレーザ光である。
The temperature of nitrogen in the air in the heating furnace was measured using the atmospheric temperature measuring device based on the rotational curse spectroscopy of the present invention shown in FIG. 1 above. The broadband dye laser 2 used in this measurement was a laser beam with a center wavelength of 616 nm and a half-width of 6n-.

そのとき得られた前出第2図に示したようなローティシ
ボナルカース信号のスペクトル81〜S。
Spectra 81-S of the rotisshibo-narcus signal obtained at that time as shown in FIG. 2 above.

の極大値を通るように前出の正規分布関係式(1)式中
の平均値と分散を求め、前出(2)、 (3)式より真
の温度を求めた。このときの定数値はに+ −13,5
2゜c、 = −795,k、 −0,207,c、 
−−559であった。平均値mを用いた場合の測定結果
と熱電対による実測温度との関係を第5図に示した。
The average value and variance in the normal distribution relational expression (1) above were determined so as to pass through the maximum value of , and the true temperature was determined from the above equations (2) and (3). The constant value at this time is + -13,5
2゜c, = -795,k, -0,207,c,
--559. FIG. 5 shows the relationship between the measurement results using the average value m and the temperature actually measured by the thermocouple.

この図から明らかなように、本発明による測定温度は熱
電対による実測温度に対して5に以下の測定精度で得ら
れることがわかる。
As is clear from this figure, the temperature measured by the present invention can be obtained with a measurement accuracy of 5 times or less compared to the temperature actually measured by the thermocouple.

なお、分散■を用いた場合は、平均値を用いた場合より
も誤差が大きくなる傾向があるが、第5図とほぼ同様の
結果を得ることができた。
Note that when the variance (■) is used, the error tends to be larger than when the average value is used, but almost the same results as in FIG. 5 could be obtained.

〈発明の効果〉 以上説明したように、本発明によれば、ローティシラナ
ル・カース分光法を用いて雰囲気温度を測定する口止に
より、従来のカース分光法に比べて誤差5に以下という
高精度で測定することができるので、燃焼ガスやCVD
、  ドライエツチングなどの反応気相中の雰囲気温度
の温度測定についての効果は大なるものがある。
<Effects of the Invention> As explained above, according to the present invention, the gutter for measuring the ambient temperature using rotisilanal curse spectroscopy can reduce the error to less than 5 compared to the conventional curse spectroscopy. Since it can be measured with high precision, combustion gas and CVD
This method has a great effect on measuring the atmospheric temperature in the reaction gas phase during dry etching, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法に係るローティシラナル・カース
分光法による雰囲気温度の測定装置の概要を示す構成図
、第2図は、ローティシラナル・カース信号のスペクト
ル波形と正規分布曲線を示す特性図、第3図は、平均(
l[mと実測温度との関係を示す特性図、第4図は、分
散Vと実測温度との関係を示す特性図、第5図は、本発
明による測定温度と熱電対による実測温度との関係を示
す特性図、第6図は、従来例を示す説明図である。 1・・・励起用レーザ光、  2・・・広帯域色素レー
ザ。 3・・・Nd:YAGレーザ。 4・・・グイクロイックミラー 5・・・測定用レーザ光、  6・・・レンズ。 7・・・加熱炉。 8・・・ローティシラナル・カース光。 9・・・レンズ、       10・・・ビームダン
プ。 11・・・グイクロイックミラー 12・・・ビームダンプ、13・・・ミラー14・・・
分光器、15・・・ディテクタ。 16・・・演算器、       17・・・デイスプ
レィ。 18・・・記録装置、     19・・・熱電対。 20・・・記録装置。
Fig. 1 is a block diagram showing an outline of an apparatus for measuring ambient temperature by roti silanal curse spectroscopy according to the method of the present invention, and Fig. 2 shows the spectral waveform and normal distribution curve of the roti silanal curse signal. The characteristic diagram, Figure 3, shows the average (
FIG. 4 is a characteristic diagram showing the relationship between the dispersion V and the actually measured temperature. FIG. 5 is a characteristic diagram showing the relationship between the dispersion V and the actually measured temperature. FIG. A characteristic diagram showing the relationship, FIG. 6, is an explanatory diagram showing a conventional example. 1... Laser light for excitation, 2... Broadband dye laser. 3...Nd:YAG laser. 4... Guicroic mirror 5... Laser beam for measurement, 6... Lens. 7... Heating furnace. 8...Rotisilanal Curse Light. 9...Lens, 10...Beam dump. 11... Guicroic mirror 12... Beam dump, 13... Mirror 14...
Spectrometer, 15...detector. 16... Arithmetic unit, 17... Display. 18... Recording device, 19... Thermocouple. 20... Recording device.

Claims (1)

【特許請求の範囲】[Claims] 気体分子の回転準位を検出するカース分光法を用いて雰
囲気温度を測定するに際し、該気体の回転準位の2つ以
上の信号スペクトルの極大値をもとにして、この極大値
を通る正規分布曲線の関係式における平均値および分散
の値をそれぞれ求め、予め与えておいた検量線から雰囲
気温度を求めることを特徴とするカース分光法による雰
囲気温度測定方法。
When measuring the ambient temperature using Kars spectroscopy, which detects the rotational level of gas molecules, a normal 1. A method for measuring atmospheric temperature using Kerse spectroscopy, characterized in that the average value and the dispersion value in a relational expression of a distribution curve are respectively determined, and the atmospheric temperature is determined from a calibration curve given in advance.
JP1098837A 1989-04-20 1989-04-20 Measurement of temperature of atmosphere by coherent anti-stokes raman spectroscopy Pending JPH02278133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1098837A JPH02278133A (en) 1989-04-20 1989-04-20 Measurement of temperature of atmosphere by coherent anti-stokes raman spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1098837A JPH02278133A (en) 1989-04-20 1989-04-20 Measurement of temperature of atmosphere by coherent anti-stokes raman spectroscopy

Publications (1)

Publication Number Publication Date
JPH02278133A true JPH02278133A (en) 1990-11-14

Family

ID=14230382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1098837A Pending JPH02278133A (en) 1989-04-20 1989-04-20 Measurement of temperature of atmosphere by coherent anti-stokes raman spectroscopy

Country Status (1)

Country Link
JP (1) JPH02278133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115452202A (en) * 2022-11-10 2022-12-09 中国空气动力研究与发展中心设备设计与测试技术研究所 High-temperature thermocouple calibration method based on coherent anti-Stokes Raman scattering spectrum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115452202A (en) * 2022-11-10 2022-12-09 中国空气动力研究与发展中心设备设计与测试技术研究所 High-temperature thermocouple calibration method based on coherent anti-Stokes Raman scattering spectrum

Similar Documents

Publication Publication Date Title
US6318891B1 (en) Method of temperature measurement by correlation of chemiluminescent spectrum emitted by a flame with stored theoretical emission spectra for OH and/or CH radicals
JPS6049847B2 (en) Method and spectrometer for measuring light intensity
Hamers et al. Fourier transform phase shift cavity ring down spectroscopy
JPH11512529A (en) Authentic temperature determination method and device
US7274028B2 (en) Characterizing fluorescent and/or phosphorescent materials
Vestin et al. Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame
JPH02278133A (en) Measurement of temperature of atmosphere by coherent anti-stokes raman spectroscopy
JP4146697B2 (en) Temperature measuring method and temperature measuring device
JPH0572039A (en) Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting function
Nafa et al. Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N 2 thermometry
JPS6140928B2 (en)
Vestin et al. Improved species concentration measurements using a species‐specific weighting procedure on rotational CARS spectra
WO2021053804A1 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
JPH0377030A (en) Reaction vapor phase monitor device
JPH02162219A (en) Atmospheric temperature measuring method using cars spectroscopic method
JPH029290B2 (en)
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JP2002062197A (en) Temperature measuring device and method
He et al. Study on organic molecular vibrational dynamics by TR-box-CARS spectroscopy
JP2755418B2 (en) Optical sensor spectral sensitivity measurement method
JPS5910822A (en) Method for measuring temperature using kerr&#39;s spectroscopic method
JPH11108868A (en) Method and apparatus for heat analysis control type raman spectroscopy
JPH02268253A (en) Measuring method of transmittance of material
JPH03220433A (en) Evaluating method of stress in silicon crystal
JPH026721A (en) Method and device for measuring atmospheric temperature by using curse spectrophotometric method