JPH02277759A - Formation of oxide film - Google Patents

Formation of oxide film

Info

Publication number
JPH02277759A
JPH02277759A JP1093225A JP9322589A JPH02277759A JP H02277759 A JPH02277759 A JP H02277759A JP 1093225 A JP1093225 A JP 1093225A JP 9322589 A JP9322589 A JP 9322589A JP H02277759 A JPH02277759 A JP H02277759A
Authority
JP
Japan
Prior art keywords
film
nitrate
state
acetate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1093225A
Other languages
Japanese (ja)
Inventor
Moriaki Ono
守章 小野
Yukio Shinpo
幸雄 真保
Makoto Kabasawa
樺沢 真事
Shigechika Kosuge
小菅 茂義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1093225A priority Critical patent/JPH02277759A/en
Publication of JPH02277759A publication Critical patent/JPH02277759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To make film forming velocity large and to enhance both controllability of chemical composition of a film and denseness of the film by spraying an aq. soln. of nitrate or acetate or the like of material for the film in a misty state into a plasma jet. CONSTITUTION:An aq. soln. of nitrate or acetate or the like of material for a film 2 is sprayed in a misty state into a plasma jet 7. Thereby the mists of the aq. soln. of nitrate or acetate or the like are thermally decomposed by high-temp. plasma and made to an atomic state of oxide. When the mists are made to this atomic state, one part is excited or furthermore activated and ionized. Since the mists are deposited on a base plate 3 in such a state as this, denseness of the film 2 is enabled and also film forming velocity is made substantially large. Further when film formation is performed in the low-pressure atmosphere, velocity of the plasma jet 7 is raised and therefore the flying velocity of the fine particles having the atomic state of oxide is made large. The denseness of the film is furthermore enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プラズマ溶射法による酸化物被膜の形成方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming an oxide film by plasma spraying.

[従来の技術] 酸化物セラミックスの被膜を形成する方法として、スパ
ッタリング法、イオンブレーティング法、プラズマ溶射
法等がある。スパッタリング法及びイオンブレーティン
グ法は、粒径5〜10人の原子状粒子を基板の表面上に
堆積するものであるため緻密な膜が得られるが、成膜速
度が1〜3人/seeと遅いため、実用的には0.5〜
5μm厚の膜を形成するのに使用している。また、固体
燃料電池用の電極や超電導部材等を作製する場合には多
元系セラミックスの膜を形成する必要があるが、スパッ
タリング法やイオンブレーティング法では膜の化学組成
を正確にコントロールすることが難しい。
[Prior Art] Methods for forming oxide ceramic films include sputtering, ion blasting, plasma spraying, and the like. The sputtering method and the ion blating method deposit atomic particles with a particle size of 5 to 10 particles on the surface of the substrate, so a dense film can be obtained, but the deposition rate is 1 to 3 particles/see. Because it is slow, it is practically 0.5~
It is used to form a 5 μm thick film. Furthermore, when producing electrodes and superconducting members for solid fuel cells, it is necessary to form multi-component ceramic films, but with sputtering and ion blasting methods, it is not possible to precisely control the chemical composition of the film. difficult.

一方、プラズマ溶射法は、5〜100μmの粉末を溶融
して堆積するものであるため、成膜速度はスパッタリン
グ法やイオンブレーティング法に比べてはるかに大きく
、2〜3桁も大きい。膜厚は通常、50〜500μmで
ある。しかも、膜の化学組成のコントロールも容易であ
る。しかし、膜の緻密性については劣っている。
On the other hand, since the plasma spraying method melts and deposits powder with a size of 5 to 100 μm, the film formation rate is much higher than that of the sputtering method or the ion blasting method, and is 2 to 3 orders of magnitude higher. The film thickness is usually 50 to 500 μm. Furthermore, the chemical composition of the film can be easily controlled. However, the denseness of the film is inferior.

[発明が解決しようとする課題〕 このように従来の被膜形成方法には一長一短があり、緻
密性・化学組成の制御性に優れかつ成膜速度の大きい膜
を得るには問題がある。
[Problems to be Solved by the Invention] As described above, conventional film forming methods have advantages and disadvantages, and there are problems in obtaining a film that is excellent in density, controllability of chemical composition, and has a high deposition rate.

本発明の目的は、プラズマ溶射法が持つ膜組成の制御性
が容易、成膜速度大なる特色を活かし、かつ緻密性に優
れた新規な被膜形成方法を提供することである。
An object of the present invention is to provide a novel film forming method that takes advantage of the characteristics of plasma spraying, such as easy controllability of film composition and high film formation speed, and that has excellent density.

[課題を解決するための手段] 上記の目的を達成するため、本発明に係る酸化物被膜の
形成方法は、溶射トーチより噴射されるプラズマ化され
たガスジェット中に、硝酸塩あるいは酢酸塩等の水溶液
を霧状にして吹き込み、これによって基板の表面上に酸
化物被膜を形成するものである。
[Means for Solving the Problems] In order to achieve the above object, the method for forming an oxide film according to the present invention includes adding nitrates, acetates, etc. to a plasma gas jet sprayed from a thermal spray torch. An oxide film is formed on the surface of a substrate by blowing an aqueous solution in the form of a mist.

本発明において使用する膜材料の酸化物は、単元系、多
元系のいずれでも良く、また、成膜時の雰囲気圧は大気
圧であり、膜の緻密性をさらに向上させるためには低圧
雰囲気下で成膜を行うとさらに良い。
The oxide of the film material used in the present invention may be either mono-component or multi-component, and the atmospheric pressure during film formation is atmospheric pressure. It is even better if the film is formed using .

[作 用] プラズマジェット中に膜材料の硝酸塩あるいは酢酸塩等
の水溶液を霧状にして吹き付けると、硝酸塩あるいは酢
酸塩等の水溶液のミストは高温のプラズマによって熱分
解して酸化物原子状となり、この原子状となる時に一部
は励起され、あるいはさらに活性化されて電離する。こ
のような状態となって基板上に堆積するため、膜の緻密
化が可能になり、かつ成膜速度は相当に大きい。
[Function] When an aqueous solution of membrane material such as nitrate or acetate is sprayed in the form of a mist during a plasma jet, the mist of the aqueous solution of nitrate or acetate is thermally decomposed by the high temperature plasma and becomes atomic oxide. When it becomes atomic, a part of it is excited or further activated and ionized. Since the film is deposited on the substrate in such a state, the film can be made denser and the film formation rate is considerably high.

なお、本発明は大気圧下で行うこともできるが、上記の
成膜を数+torrの低圧雰囲気下で行うと、プラズマ
ジェットの速度が上がるため、酸化物原子の微粒子の飛
行速度が大となり、膜の緻密性はさらに向上する。
Although the present invention can be carried out under atmospheric pressure, if the above film formation is carried out in a low pressure atmosphere of several + torr, the speed of the plasma jet increases, so the flight speed of fine particles of oxide atoms increases, The denseness of the film is further improved.

[実施例] 以下、本発明の一実施例を図により説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

ただ1つの図面は本発明の被膜形成方法の説明図である
。図に示すように、溶射トーチ1の前方に被膜2を形成
すべき基板3を、ヒーター4を内蔵した支持台5上に取
り付ける。ヒーター4は被膜の接着性向上のために基板
3を予熱するのに用いられる。
The only drawing is an illustration of the coating forming method of the present invention. As shown in the figure, a substrate 3 on which a coating 2 is to be formed is mounted in front of a thermal spraying torch 1 on a support 5 having a built-in heater 4. The heater 4 is used to preheat the substrate 3 to improve the adhesion of the coating.

硝酸塩あるいは酢酸塩等の水溶液は溶射トーチ1のノズ
ル近辺に配設された噴霧ノズル6よりプラズマジェット
7の方向に対してほぼ直角方向に噴霧するようになって
いる。
The aqueous solution of nitrate or acetate is sprayed from a spray nozzle 6 disposed near the nozzle of the thermal spray torch 1 in a direction substantially perpendicular to the direction of the plasma jet 7.

上記のように構成された被膜形成装置において、溶射ト
ーチ1にアルゴンガスあるいはヘリウムガス等を供給し
プラズマガスをつくってプラズマジェット7を噴出させ
る。このプラズマジェット7中に噴霧ノズル6より酸化
物水溶液を霧状にして吹き付けると、酸化物水溶液の微
粒子が前述のようにプラズマ熱によって分解し、原子状
となって基[3の表面上に堆積し被膜2を形成すること
になる。
In the film forming apparatus configured as described above, argon gas, helium gas, or the like is supplied to the thermal spraying torch 1 to generate plasma gas, and the plasma jet 7 is ejected. When the atomized oxide aqueous solution is sprayed into the plasma jet 7 from the spray nozzle 6, the fine particles of the oxide aqueous solution are decomposed by the plasma heat as described above, become atomic, and deposit on the surface of the group [3]. Then, a coating 2 is formed.

例えば、ABOという多元系酸化物の披x    y 
   z 膜2をつくる場合、モル比が A(No  )   :B(NOa)b=x:ya となるように水溶液をつくり、これを霧状にしてプラズ
マジェット7中に入れる。
For example, a multi-component oxide called ABO
When forming the z film 2, an aqueous solution is prepared such that the molar ratio is A(No):B(NOa)b=x:ya, and this is atomized and introduced into the plasma jet 7.

具体的に説明する。I will explain in detail.

YBaCuO系超電導膜を形成するにあたり、成膜条件
を次のように設定した。
In forming a YBaCuO-based superconducting film, film forming conditions were set as follows.

■硝酸塩水溶液のモル比と濃度 Y(No  )   :Ba  (No3)2 :Cu
  (No3)2”1:2:3 ■プラズマ電流・電圧 600A−50v(アルゴンガス使用)■基板 MgO ■基板−溶射トーチ間間隔 80 mm■チャンバ内圧
力 20 torr なお、成膜速度は500人/see、膜厚は8μmであ
った。また、成膜後、酸素ガス中で900℃、1時間の
アニールを行った。この結果、膜の超電導特性;臨界温
度TC−88に膜組成;Y: Ba : Cu=  1
:  2.05 :  3.02が得られた。
■Molar ratio and concentration of nitrate aqueous solution Y(No):Ba(No3)2:Cu
(No. 3) 2” 1:2:3 ■Plasma current/voltage 600A-50V (using argon gas) ■Substrate MgO ■Substrate-to-spray torch spacing 80 mm ■Chamber internal pressure 20 torr The film-forming rate was 500 people/ See, the film thickness was 8 μm.After the film was formed, it was annealed at 900°C for 1 hour in oxygen gas.As a result, the superconducting properties of the film; Ba: Cu=1
: 2.05 : 3.02 were obtained.

このように膜組成において、理論値にきわめて近いもの
が得られ、従来のスパッタリング法やイオンブレーティ
ング法では、 Y:Ba:Cu −1:  1.8:  3.5程度の
ものしか得られないのに比べ、緻密性が著しく向上して
いることがわかる。また、BL−S r−Ca−Cu−
0系の超電導膜を形成する場合にももちろん可能であっ
た。
In this way, a film composition very close to the theoretical value can be obtained, and conventional sputtering methods and ion blating methods can only obtain a film composition of approximately Y:Ba:Cu -1: 1.8: 3.5. It can be seen that the density is significantly improved compared to the previous one. Also, BL-S r-Ca-Cu-
Of course, this was also possible when forming a 0-based superconducting film.

なお、膜材料の酸化物は単元系のものであっても良いこ
とはいうまでもなく、また、本発明は大気圧下でも行う
ことができる。しかし、適当な低圧雰囲気下で行った場
合には成膜速度は1000人/secにも達する。
Note that it goes without saying that the oxide of the film material may be a monomer type, and the present invention can also be carried out under atmospheric pressure. However, when carried out under an appropriate low pressure atmosphere, the film formation rate reaches as high as 1000 people/sec.

[発明の効果] 以上のように本発明によれば、プラズマジェット中に硝
酸塩あるいは酢酸塩等の水溶液を霧状にして吹き付ける
ことにより、硝酸塩あるいは酢酸塩等の水溶液の微粒子
が原子状となって被膜を形成することができるため、成
膜速度が大であり、膜の化学組成の制御性も容易で、か
つその緻密性が著しく向上するという効果が得られる。
[Effects of the Invention] As described above, according to the present invention, by spraying an aqueous solution of nitrate or acetate in the form of a mist into a plasma jet, fine particles of the aqueous solution of nitrate or acetate become atomic. Since a film can be formed, the film formation rate is high, the chemical composition of the film can be easily controlled, and the denseness of the film is significantly improved.

したがって、本発明は、膜組成の特に厳密な条件が要求
される超電導部材や固体燃料電池の電極等に利用して効
果を発揮する。
Therefore, the present invention can be effectively applied to superconducting members, electrodes of solid fuel cells, etc., which require particularly strict conditions for membrane composition.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の被膜形成方法を実施する装置の概念図で
ある。 1・・・溶射トーチ 2・・・被膜 3・・・基板 6・・・噴霧ノズル 7・・・プラズマジェット
The drawing is a conceptual diagram of an apparatus for carrying out the film forming method of the present invention. 1...Thermal spray torch 2...Coating 3...Substrate 6...Spray nozzle 7...Plasma jet

Claims (1)

【特許請求の範囲】[Claims] 単元系または多元系の硝酸塩あるいは酢酸塩等の水溶液
を霧状にしてプラズマジェット中に吹き付けることによ
り基板面上に被膜を形成することを特徴とする酸化物被
膜の形成方法。
1. A method for forming an oxide film, which comprises forming a film on a substrate surface by spraying a mono- or multi-component aqueous solution of nitrate, acetate, etc. in the form of a mist into a plasma jet.
JP1093225A 1989-04-14 1989-04-14 Formation of oxide film Pending JPH02277759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093225A JPH02277759A (en) 1989-04-14 1989-04-14 Formation of oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093225A JPH02277759A (en) 1989-04-14 1989-04-14 Formation of oxide film

Publications (1)

Publication Number Publication Date
JPH02277759A true JPH02277759A (en) 1990-11-14

Family

ID=14076606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093225A Pending JPH02277759A (en) 1989-04-14 1989-04-14 Formation of oxide film

Country Status (1)

Country Link
JP (1) JPH02277759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145515A (en) * 2014-01-31 2015-08-13 三菱重工業株式会社 Film deposition apparatus, film deposition method, high-temperature part, and gas turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145515A (en) * 2014-01-31 2015-08-13 三菱重工業株式会社 Film deposition apparatus, film deposition method, high-temperature part, and gas turbine

Similar Documents

Publication Publication Date Title
US10679829B1 (en) Reactors and methods for making diamond coatings
US3791852A (en) High rate deposition of carbides by activated reactive evaporation
CA2107242A1 (en) An Evaporation System for Gas Jet Deposition on Thin Film Materials
US4374162A (en) Thin-film deposition
JP2012082519A (en) Method of manufacturing thermal barrier coating structure
US3503787A (en) Method of making refractory aluminum nitride coatings
AU2002356523A1 (en) Method and apparatus application of metallic alloy coatings
US7556695B2 (en) Apparatus to make nanolaminate thermal barrier coatings
EA023563B1 (en) Process and apparatus for controlling coating deposition
US20180240656A1 (en) Hybrid Filtered Arc-Magnetron Deposition Method, Apparatus And Applications Thereof
US6296910B1 (en) Film or coating deposition on a substrate
Ishii et al. Hollow cathode sputtering cluster source for low energy deposition: Deposition of Fe small clusters
JPH02277759A (en) Formation of oxide film
Van Ingen Angle‐resolved time‐of‐flight spectrometry of neutrals laser ablated from Nd1. 85Ce0. 15CuO4
JPS588640B2 (en) speaker
JPS6196721A (en) Film forming method
JPH0480116B2 (en)
US7784306B1 (en) Material deposition
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JP2001164379A (en) Surface treating method and joining method
JP2975145B2 (en) Thermal plasma deposition method
US20240043142A1 (en) Sources for plasma assisted electric propulsion
EP1679390B1 (en) Method for forming a protective layer on a metallic turbine substrate
JPS59217332A (en) Manufacture of silicon dioxide film
Gadepally et al. Aerosol Deposition and Film Formation using Silicon Powder