JPH02277591A - Method for obtaining pure water from salt-containing water - Google Patents

Method for obtaining pure water from salt-containing water

Info

Publication number
JPH02277591A
JPH02277591A JP1097453A JP9745389A JPH02277591A JP H02277591 A JPH02277591 A JP H02277591A JP 1097453 A JP1097453 A JP 1097453A JP 9745389 A JP9745389 A JP 9745389A JP H02277591 A JPH02277591 A JP H02277591A
Authority
JP
Japan
Prior art keywords
water
groove
pure water
salt
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1097453A
Other languages
Japanese (ja)
Inventor
Masato Kunii
国井 正人
Noriyuki Inoue
典之 井上
Yoichi Nakamura
陽一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIYUURISUTEITSUKU KK
Original Assignee
HIYUURISUTEITSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIYUURISUTEITSUKU KK filed Critical HIYUURISUTEITSUKU KK
Priority to JP1097453A priority Critical patent/JPH02277591A/en
Publication of JPH02277591A publication Critical patent/JPH02277591A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To obtain pure water with a simple device at a low cost by covering a groove through which salt-contg. water is naturally or forcibly allowed to flow with a transparent film, vaporizing the water by solar heat, condensing the vapor on the film surface and collecting the condensed waterdrops flowing down on the surface. CONSTITUTION:A PVC sheet 2 is laid over a frame 1 assembled to cover a groove 4 provided on a slope 5 inclined at an angle of about 5 deg. as the root surface, side surface, groove inlet surface and groove outlet surface. Water is vaporized from the groove and condensed on the sheet part as pure water. The pure water is collected in a trough-shaped water collecting means 3 fixed to the frame 1 downwardly inclined in the flow direction of brine on the inner surface of the tent-shaped device, allowed to flow along the collecting means, and collected in a water storage means 6. Solar heat is utilized as the energy, and pure water is obtained at a low cost with this simple method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塩分含有水から簡単な設備で純水を容易に得
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for easily obtaining pure water from salt-containing water using simple equipment.

(従来の技術) 高温乾燥地、即ち砂漠地帯では、地下水に塩分が含まれ
ているので生活水として用いることができないだけでな
く、温源用水として使用した場合にも塩分が地表に堆積
して植物に塩害を及ぼすという問題がある。そこで、純
水を得る為に、−船釣に海水を多段フラッシュ蒸発法、
イオン交換膜法、冷凍法、蒸気圧縮法もしくは逆浸透法
のような脱塩法が用いられている。
(Prior art) In hot and dry areas, that is, desert areas, groundwater contains salt, so not only can it not be used as daily life water, but even when water is used as a heat source, salt accumulates on the ground surface. There is a problem with salt damage to plants. Therefore, in order to obtain pure water, we used a multi-stage flash evaporation method of seawater while fishing on a boat.
Desalination methods such as ion exchange membrane method, refrigeration method, vapor compression method or reverse osmosis method are used.

(発明が解決しようとする課題) しかしながら、上述のような脱塩法は、塩水から水をつ
くることを可能にするが、多量に得ようとすると大規模
な設備を必要とするので、実施が容易でなく、また、実
施に際し電力等の多大なエネルギーを必要とするので費
用がかかるという問題点があった。
(Problems to be Solved by the Invention) However, although the desalination method described above makes it possible to produce water from salt water, it requires large-scale equipment to obtain large quantities, so it is difficult to implement. This method is not easy to implement and requires a large amount of energy such as electric power, so it is expensive.

一方、地下水の場合には上記脱塩法の問題は生じないが
、上述の通り特に砂漠地の地下水には塩分が含まれてい
る場合が多いので、飲み水としては適しておらず、また
、潅概用水として使用した場合には、水に含有されてい
た塩分が結晶となって地上に生じ、さらに塩の層を形成
する結果地質の低下を招き、植物、特に野菜等に塩害を
及ぼすという問題点があった。
On the other hand, in the case of groundwater, the above-mentioned problems of desalination do not occur, but as mentioned above, groundwater especially in desert areas often contains salt, so it is not suitable as drinking water. When water is used for irrigation, the salt contained in the water crystallizes and forms on the ground, further forming a layer of salt that causes deterioration of the geology and causes salt damage to plants, especially vegetables. There was a problem.

本発明は、従来技術の有するこのような問題点を解決す
るための手段に鑑みてなされたものであり、エネルギー
として太陽熱を利用することにより費用がかからずかつ
簡単な装置で実施できる塩分含有水から純水を得る方法
を提供することを目的としている。
The present invention has been made in view of the means for solving these problems of the prior art. The purpose is to provide a method for obtaining pure water from water.

(課題を解決するための手段) 従って、本発明は、塩分含有水が自然にまたは強制的に
流される溝を透明なフィルムで覆い、太陽熱によって蒸
発されフィルム表面で凝縮されそしてフィルム面を伝わ
って流下する水滴をフィルムの下端または屋根終端部に
設けられた集水手段に集めるかおよび/または屋根の上
方から集水手段までに設けられた水滴の為の案内手段に
よって集めることを特徴とする、塩分含有水から純水を
得る方法を提供するものである。
(Means for Solving the Problems) Accordingly, the present invention covers channels through which salt-containing water flows naturally or forcibly with a transparent film, and evaporates by solar heat, condenses on the film surface, and transmits the water along the film surface. characterized in that the falling water droplets are collected in a water collecting means provided at the lower end of the film or at the end of the roof and/or by a guiding means for water droplets provided from above the roof to the water collecting means; The present invention provides a method for obtaining pure water from salt-containing water.

本発明で設けられる溝は、地面を掘ることによってまた
は盛り土によって形成されていてもまたはコンクリート
によって形成されていてもよく、傾斜地または平地、特
に傾斜地に設けられた直線的なものでも蛇行したもので
もよく、その深さおよび幅は目的に合わせて選択するこ
とができる。しかし溝は、水分が蒸発して塩分の豊富に
成った塩水−即ち、濃厚な塩水−がフィルムに覆われて
いない外部に流出し得るように構成されている必要があ
る。フィルムで覆われた部分から流出した塩分高含有水
は、そのま−放流させてもよいが、溜池に集めて更に蒸
発固化させて塩を得る為に用いてもよい。
The grooves provided in the present invention may be formed by digging the ground or by filling earth, or may be formed by concrete, and may be straight or meandering on sloped or flat land, especially on sloped land. Well, its depth and width can be selected to suit the purpose. However, the grooves must be constructed in such a way that brine, which has become salt-enriched by evaporation of water, i.e., concentrated brine, can flow out to the outside without being covered by the film. The highly salty water flowing out from the area covered with the film may be discharged as is, or it may be collected in a reservoir and further evaporated and solidified to be used to obtain salt.

本発明で使用する透明なフィルムは、耐候性を有するも
のが特に有利であるが、価格的に安価なものであれば交
換に費用がかからず、あらゆる種類のものが可能である
。例えばポリ塩化ビニル、ポリエチレン、ポリビニルア
ルコール、ポリビニルブチラール、ポリカーボネート等
の合成樹脂より成るフィルムを用いることができる。溝
を覆った時のフィルムの全体的形状は、溝の設は方に左
右されるが、テント形、カマボッ形またはドーム形等で
ある。
It is particularly advantageous for the transparent film used in the present invention to be weather resistant, but any type of transparent film can be used as long as it is inexpensive and can be replaced at no cost. For example, a film made of synthetic resin such as polyvinyl chloride, polyethylene, polyvinyl alcohol, polyvinyl butyral, polycarbonate, etc. can be used. The overall shape of the film when covering the grooves depends on the arrangement of the grooves, but may be tent-shaped, kamabot-shaped, or dome-shaped.

溝に流す塩分含有水は、塩分を含有する地下水でも海水
でもよい。塩分含有水の流速は濃縮によって塩分が溝に
沈澱せず且つ蒸発の為の滞留時間が充分にとれる程度の
速度であるのが有利である。この流速を傾斜地の場合に
はその傾斜によって得ることも可能であるが、平地にお
いては適当な手段、例えばポンプ等によって得ることも
可能である。
The salt-containing water flowing into the ditch may be salt-containing groundwater or seawater. Advantageously, the flow rate of the salt-containing water is such that the salt does not settle in the grooves due to concentration and has sufficient residence time for evaporation. In the case of a slope, this flow rate can be obtained by the slope, but in the case of a flat land, it is also possible to obtain this flow rate by a suitable means, such as a pump.

溝を覆うビニールの下端に設けられる集水手段は、純水
の使用目的に合わせて種々の形状および構造を有し得る
が、生活水とする場合には樋状のものが好ましく、植物
に直接的に給水する目的ではロート状であるのが有利で
ある。
The water collecting means installed at the bottom end of the vinyl covering the groove can have various shapes and structures depending on the purpose of use of pure water, but when using it as domestic water, a gutter-like means is preferable, and it is preferable to collect water directly to plants. For the purpose of water supply, it is advantageous to have a funnel shape.

フィルム覆いの下端近くに設けられる水滴のガイド手段
としては下方から上方に向かって放射状に貼り付けまた
は縫い付けられた非給水性の線状物、例えば合成樹脂の
細い紐状物がを利である。この手段は、植物に直接的に
給水する目的でロート状集水手段の上から放射状に設け
られているのが特に有利である。
As a guide means for water droplets provided near the lower end of the film cover, a non-water-supplying linear object, such as a thin string-like object made of synthetic resin, which is pasted or sewn radially from the bottom to the top, is useful. . It is particularly advantageous for this means to be arranged radially above the funnel-shaped water collection means for the purpose of directly watering the plants.

本発明で得られる純水は、上述の通り、生活水または潅
流用水として使用することもできるが、更にはフィルム
より成る覆いの内側に植えられた植物に直接的に用いる
こともできる。後者の場合について更に詳細に説明する
As mentioned above, the pure water obtained in the present invention can be used as domestic water or water for irrigation, but it can also be used directly for plants planted inside a cover made of a film. The latter case will be explained in more detail.

この目的の為には、水滴ガイド手段をロート状集水手段
の上から合成樹脂製の細いローブ状物を接着して放射状
に設けるのが特に有利である。この場合、植物が必要と
する水の量に合わせてガイド手段の大きさを決める。ガ
イド手段からロート状集水手段の所に達した純水が地面
に吸収される地点に植物の種または植物自体を蒔くか植
える。このようにすることによって、高温乾燥地でも何
ら困難も多大な費用もなしに植物に給水できる。勿論、
地下水をそのまま利用した場合の欠点である塩結晶層の
形成は回避できる。
For this purpose, it is particularly advantageous to provide the water drop guiding means radially on top of the funnel-shaped water collection means by gluing thin synthetic resin lobes. In this case, the size of the guide means is determined according to the amount of water required by the plants. Plant seeds or the plants themselves are sown or planted at the point where the pure water reaching the funnel-like collection means from the guide means is absorbed into the ground. In this way, plants can be watered even in hot and dry areas without any difficulty or great expense. Of course,
The formation of salt crystal layers, which is a drawback when using groundwater as is, can be avoided.

ここに説明した植物への給水手段の他に上記の樋状の給
水手段によって集められた純水を潅瀧用水として用いる
ことができる。
In addition to the plant water supply means described here, pure water collected by the gutter-like water supply means described above can be used as irrigation water.

高温乾燥地でこのような給水手段により育成するのに適
している植物には、トマト、キュウリ、レタス、ナス、
スイカ、キャベツ等の野菜やメロン等の果物並びに種々
の樹木が挙げられる。
Plants suitable for growing in hot, dry areas with this type of water supply include tomatoes, cucumbers, lettuce, eggplants,
Examples include vegetables such as watermelon and cabbage, fruits such as melon, and various trees.

植物を植える土壌は、砂質土壌〜粘質土壌のいずれでも
よい。
The soil for planting plants may be any of sandy soil to clayey soil.

また、地温があまり高くなり過ぎると、吸収された水が
すぐに蒸発してしまうので、地温上昇はできる限り抑制
するのが好都合である。この地温上昇抑制手段として、
溝および場合によっては植物の植えられた場所以外の少
なくとも一部分の地表を太陽からの輻射熱を遮蔽する為
の輻射熱遮蔽性シート、例えば銀色のシートで覆うのが
特に有利である。シートは太陽からの輻射熱を遮蔽し得
るものであればいかなるものでもよいが、施工性および
価格の点から合成樹脂、例えばポリ塩化ビニル、ポリエ
チレン等のシート加工性の良い合成樹脂で形成されたも
のが有利である。水滴の落下を防止する為に、用途次第
でシートに界面活性剤を塗布してもよい。
Furthermore, if the soil temperature becomes too high, the absorbed water will quickly evaporate, so it is advantageous to suppress the rise in soil temperature as much as possible. As a means of suppressing this rise in soil temperature,
It is particularly advantageous to cover at least part of the ground surface other than the ditch and where the plants are planted with a radiant heat shielding sheet, for example a silver sheet, for shielding radiant heat from the sun. The sheet may be of any material as long as it can shield radiant heat from the sun, but from the viewpoint of ease of construction and cost, it is preferable to use a sheet made of synthetic resin with good sheet processability, such as polyvinyl chloride or polyethylene. is advantageous. Depending on the application, a surfactant may be applied to the sheet to prevent water droplets from falling.

また水滴の形成を促進する為に、用途次第ではっ水剤を
塗布してもよい。
Depending on the application, a water repellent may also be applied to promote the formation of water droplets.

本発明の方法を以下に図面を用いて更に詳細に説明する
: 第1図は本発明の方法を実施する為の長いテント状装置
の概略的斜視図であり、第2図は該装置のA−A線切断
面図である。
The method of the invention will be explained in more detail below with the aid of the drawings: FIG. 1 is a schematic perspective view of a long tent-like device for carrying out the method of the invention, and FIG. -A line cross-sectional view.

第1図および第2図において、(1)は5“の傾斜角の
ある斜面(5)に設けられた溝(4)を包み込むように
組立られたフレームを意味し、該フレーム(1)の上に
ポリ塩化ビニルシート(2)が屋根面、側面部および一
傾斜面の高い方の一溝入口面および一傾斜面の低い方の
一溝出口面として張られている。(3)はテント状装置
の内面に、塩水の流れ方向に下降する傾斜するフレーム
(1)に取付けられた樋状集水手段を示している。溝か
ら蒸発してシート部で凝集した純水はこの集水手段に集
まり、該集水手段に沿って傾斜方向に流れ、(6)の水
溜手段に集められる。この水溜手段はテントの内部にあ
ってもまたは外部にあってもよいが、何れの場合にも蒸
発量を少なくするために、蒸発面を少なくしたりおよび
/または断熱性素材で形成されているのが望ましい。
In Figures 1 and 2, (1) means a frame assembled so as to wrap around a groove (4) provided in a slope (5) with an inclination angle of 5''; A polyvinyl chloride sheet (2) is stretched over the roof surface, side surfaces, and one groove entrance surface on the higher side of one slope and one groove exit surface on the lower side of one slope.(3) is a tent. A gutter-like water collection means is shown on the inner surface of the device, which is attached to an inclined frame (1) that descends in the direction of flow of the salt water.Pure water that evaporates from the grooves and condenses on the sheet is collected by this water collection means. The water flows in an inclined direction along the water collecting means and is collected in the water collecting means (6). This water collecting means may be located inside or outside the tent, but in either case, In order to reduce the amount of evaporation, it is desirable to have a small evaporation surface and/or to use a heat insulating material.

例えば陶磁器、コンクリート等の無機系素材で形成され
集水手段からの純水が流入する部分を除いて、封鎖され
ている容器またはタンクであるのが特に有利である。
Particularly advantageous is a container or tank made of an inorganic material, such as ceramics or concrete, which is closed except for the part into which the pure water from the water collection means flows.

フレームの上に張られたシートは、多少の弛みを付けて
張ることによって凝縮水のガイド路としてもよいしおよ
び/または前述の如く下方から上方に広がるように放射
状に糸状のガイド手段−図示してない−を取りつけても
よい。
The sheet stretched over the frame may be tensioned with some slack to serve as a guide path for condensate water, and/or the sheet may be radially thread-like guiding means extending from bottom to top as described above - not shown. It is also possible to attach a -.

以下に本発明を実施例によって更に詳細に説明する: (実施例) 裏施±且 本発明の方法を実証する為の一つの実験として、本発明
の方法を実施する為の実験装置を造り、それの熱収支の
解析を、水を溝に満たして太陽光線に当てることにより
行った。
The present invention will be explained in more detail with reference to examples below: (Example) As an experiment to demonstrate the method of the present invention, an experimental apparatus for carrying out the method of the present invention was constructed. We analyzed its heat balance by filling a groove with water and exposing it to sunlight.

この実験は東京で行った。この装置のフレームはアルミ
製であり、フィルムとしてはアンチドロップ塩化ビニル
フィルムおよび液滴形成塩化ビニルフィルムを用いた。
This experiment was conducted in Tokyo. The frame of this device was made of aluminum, and the films used were anti-drop vinyl chloride film and droplet-forming vinyl chloride film.

装置の床は発泡ポリエチレンからなる。また該装置の溝
の長さは176C11,フレームの尖端の高さは始端が
68c+aで終端が53C11,樋の高さは始端が23
asで終端が8CI、集水装置の幅は91cmであった
The floor of the device consists of expanded polyethylene. In addition, the length of the groove of the device is 176C11, the height of the tip of the frame is 68C+a at the start end and 53C11 at the end, and the height of the gutter is 23C at the start end.
As, the end was 8 CI, and the width of the water collection device was 91 cm.

装置の熱収支は次式で示される; R= Rx + Qc + Qd + Qv  (1)
各項は熱分率であり、Rは放射により得られる熱の総量
、Rxは水の蒸発に用いられる熱量、Qcは対流による
損失熱量、Qdは伝熱により地下に逃げる熱量そしてQ
vは換気による損失熱量である。
The heat balance of the device is shown by the following formula; R= Rx + Qc + Qd + Qv (1)
Each term is the heat fraction, R is the total amount of heat obtained by radiation, Rx is the amount of heat used to evaporate water, Qc is the amount of heat lost by convection, Qd is the amount of heat escaping underground by heat transfer, and Q
v is the amount of heat lost due to ventilation.

総数射熱量は次式で示される; R= Rs + Rls −Rlh  (2)ここでR
s−AIXtXsである。
The total number of heat radiation is shown by the following formula; R= Rs + Rls - Rlh (2) where R
s-AIXtXs.

Rsは装置に投射される短波長放射熱量であり、AIは
床面積、tは短波放射線のカバー材(ここでは塩化ビニ
ルフィルム)透過度、Sは装置の外部短波放射熱量であ
る。
Rs is the amount of short-wave radiant heat projected onto the device, AI is the floor area, t is the transmittance of the covering material (in this case, vinyl chloride film) for short-wave radiation, and S is the amount of short-wave radiant heat outside the device.

熱分率Qcは次式により計算される; Qc  =  八z  X  hc  X  (Ts 
 −Ta)    (3)Azは装置の表面積(3,2
3rIf) 、hcは対流熱伝達係数であり、 hc = 4.0+風速 で示される。対流熱伝達係数の解析のために、日中平均
風速を4.0 m/secと推定した。
The heat fraction Qc is calculated by the following formula; Qc = 8z X hc
-Ta) (3) Az is the surface area of the device (3,2
3rIf), hc is the convective heat transfer coefficient, given by hc = 4.0 + wind speed. For analysis of the convective heat transfer coefficient, the average wind speed during the day was estimated to be 4.0 m/sec.

伝導により地下に逃げる熱分率Odは以下の式%式% ここでAIは装置の床面積(1,6rrr)であり、d
2は発泡ポリエチレンで作った床の厚さ(d2・0.0
5a+)、Lは発泡ポリエチレンの熱伝導率(L・0.
033 Kcal/m/hr−C)、TpおよびTuは
それぞれ溝と地下の温度である。
The heat fraction Od escaping underground by conduction is expressed by the following formula % formula % Here, AI is the floor area of the equipment (1.6 rrr), and d
2 is the thickness of the floor made of foamed polyethylene (d2・0.0
5a+), L is the thermal conductivity of polyethylene foam (L・0.
033 Kcal/m/hr-C), Tp and Tu are the trench and underground temperatures, respectively.

大気からの装置への下降長波長放射熱量(Rls)は次
の式で示される; RIs=八3Xへ s  XTa’  Xe1(0,6
1+0.58X (ea)””)XVここでA3は装置
の屋根面積(2,19イ)、Sはステファン・ボルツマ
ン定数(8,26X 10” ’cal/cd−min
  −に’) 、elは塩化ビニルフィルムの長波長放
射線吸収度(0,95)、Taは空気温度、eaは空気
の蒸気圧(m鱈g)、■は装置の屋根と空とのビューフ
ァクター(view factor) (0,80)で
ある。
The amount of long wavelength radiant heat (Rls) falling from the atmosphere to the device is given by the following formula; RIs=83X to s XTa'
1+0.58X (ea)"")
-'), el is the long-wavelength radiation absorption of vinyl chloride film (0,95), Ta is the air temperature, ea is the vapor pressure of the air (m), ■ is the view factor between the roof of the equipment and the sky. (view factor) (0,80).

装置から空に向けての長波長放射熱量(Rlh)は次式
で示される; Rlh 、^3 X e2 X Ts ’ X V  
(6)ここでTsはカバーフィルムの表面温度(K)、
e2はフィルムの発光度(0,95)である。
The amount of long-wavelength radiation heat (Rlh) from the device toward the sky is expressed by the following formula; Rlh , ^3 X e2 X Ts ' X V
(6) Here, Ts is the surface temperature (K) of the cover film,
e2 is the luminous intensity of the film (0,95).

以上の式から東京で測定して得られたデーターを用いて
熱収支の解析を行う。第3図は日中の装置内および装置
外の温度変化、および放射熱の変化を示している。この
装置の各熱分率を第4図に示した。熱収支の解析によれ
ば、太陽熱の60〜70%が装置内に取り込まれ、その
エネルギーは水を蒸発させるための熱として使用された
。太陽熱で水が溝から蒸発する。水蒸気は塩化ビニルフ
ィルムの表面で冷却されて純粋な水となる。水生成速度
はフィルム表面での冷却、即ち対流による熱移動と長波
長放射熱に依存する。この装置が取り込む太陽光熱量は 8843Kcal/dayであった。装置より得られる
水の量は2125zf /+”/dayであり、コレハ
1206にcal/m”/dayに等しい。それ故、当
該装置の太陽熱効率は22%である。
Using the above formula, we will analyze the heat balance using the data obtained from measurements in Tokyo. FIG. 3 shows temperature changes inside and outside the device and changes in radiant heat during the day. Figure 4 shows the heat fractions of this device. According to heat balance analysis, 60-70% of the solar heat was captured in the device, and that energy was used as heat to evaporate water. Water evaporates from the gutter due to solar heat. The water vapor is cooled on the surface of the vinyl chloride film and becomes pure water. The rate of water production depends on cooling at the film surface, ie, heat transfer by convection and long-wavelength radiation heat. The amount of solar heat taken in by this device was 8843 Kcal/day. The amount of water obtained from the device is 2125 zf /+"/day, which is equal to 1206 cal/m"/day. Therefore, the solar efficiency of the device is 22%.

裏施拠」: 第1図および第2図に説明した装置を、千葉系の外房総
の砂質土壌に設置して本発明の方法を夏の時期(8月中
旬)に実施した。
Back Facility: The apparatus described in FIGS. 1 and 2 was installed in the sandy soil of Sotoboso, a Chiba region, and the method of the present invention was carried out during the summer season (mid-August).

その際の集水装置の熱収支の解析を、海水を溝に満たし
て太陽光線に当てることにより行った。
The heat balance of the water collection system was analyzed by filling a trench with seawater and exposing it to sunlight.

この装置のフレームはアルミ製であり、フィルムとして
は界面活性剤を塗布した塩化ビニルフィルムおよびはっ
水剤を塗布した塩化ビニルフィルムを用いた。溝を設け
ていない部分には銀色のポリ塩化ビニルシートを張った
。溝の長さは27.6−で、幅は7.5 mで、深さは
20 cmである。フレームの尖端の高さは始端が3.
5眉で終端が1.8m、樋の高さは始端が2.2鵠で終
端が0.7m。
The frame of this device was made of aluminum, and the film used was a vinyl chloride film coated with a surfactant and a vinyl chloride film coated with a water repellent. A silver polyvinyl chloride sheet was placed over the areas where the grooves were not provided. The length of the groove is 27.6-, the width is 7.5 m, and the depth is 20 cm. The height of the tip of the frame is 3.
The height of the gutter is 1.8m at the beginning and 0.7m at the end.

装置の幅は9mであった。The width of the device was 9 m.

溝に流す流水の量は、2027分であった。水溜手段に
集まる純水の量は日照時間80時で約3tであった。
The amount of water flowing into the groove was 2027 minutes. The amount of pure water collected in the water storage means was about 3 tons at 80:00 sunshine hours.

実1LLカー 実施例2の装置を使用して、なすの育成を行った。Real 1LL car Eggplants were grown using the apparatus of Example 2.

但し、実施例2に記載の装置の下記の点を変更する:即
ち、樋状の集水手段が無く、フレームの所に3ra間隔
でロート状の集水手段を、該ロート状物の滴加口がフレ
ームから20all離れるようにクランプによって取付
け、ロート状物の逆円錐口に細いロープ状ガイドの集合
末端束が垂れ下がっており、該ロープ状ガイドは太さ3
mtm−、長さ3raの8本のローブ状物が互いにそれ
ぞれ8°の角度で屋根の頂上の方向に伸びるようにフィ
ルムに貼り付けられている。そしてロート状物の滴加口
に地面にまで達する太さ3m111の細いローブ状物を
下げである。このロープ状物の末端から5 cva離れ
た所に、ナスの苗(身長:平均15cm)を植えた。
However, the following points of the apparatus described in Example 2 are changed: There is no gutter-like water collection means, and funnel-like water collection means are placed at the frame at 3 ra intervals, and the funnel-like water collection means are added dropwise. It is attached with a clamp so that the mouth is 20all away from the frame, and a collective terminal bundle of thin rope-like guides hangs down from the inverted conical mouth of the funnel-like object, and the rope-like guide has a thickness of 3
mtm-, 8 lobes of length 3 ra are applied to the film at an angle of 8° to each other and extending in the direction of the top of the roof. Then, a thin lobe-like object with a thickness of 3 m111 that reaches all the way to the ground was lowered into the inlet of the funnel-like object. Eggplant seedlings (average height: 15 cm) were planted 5 cva away from the end of the rope.

3週間、実施例2と同様の条件で実験を行ったところ、
ナスの苗は平均20.5ca+に成育した。
When an experiment was conducted for 3 weeks under the same conditions as in Example 2,
Eggplant seedlings grew to an average capacity of 20.5 ca+.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いる装置の一例を示す斜視図
であり、第2図は該装置のA−A線截断面図である。第
3図は日中の装置内および装置外の温度変化を表すグラ
フであり、第4図は実施例1で使用した実験用装置の各
熱分率を表すグラフであり、第5図は該装置で集められ
た水の積算量を表すグラフである。第1および第2図中
の記号は以下の意味を有する: 1・・・フレーム、2・・・フィルム、3・・・樋状集
水手段、4・・・溝、5・・・地面、6・・・水溜手段
。 第 図
FIG. 1 is a perspective view showing an example of an apparatus used in the method of the present invention, and FIG. 2 is a cross-sectional view taken along the line A--A of the apparatus. FIG. 3 is a graph showing temperature changes inside and outside the device during the day, FIG. 4 is a graph showing each heat fraction of the experimental device used in Example 1, and FIG. 1 is a graph representing the cumulative amount of water collected by the device. The symbols in Figures 1 and 2 have the following meanings: 1...Frame, 2...Film, 3...Gutter-like water collection means, 4...Gutter, 5...Ground. 6...Water storage means. Diagram

Claims (1)

【特許請求の範囲】[Claims] 塩分含有水が自然にまたは強制的に流される溝を透明な
フィルムで覆い、太陽熱によって蒸発されフィルム表面
で凝縮されそしてフィルム面を伝わって流下する水滴を
フィルムの下端または屋根終端部に設けられた集水手段
に集めるかおよび/または屋根の上方から集水手段まで
に設けられた水滴の為の案内手段によって集めることを
特徴とする、塩分含有水から純水を得る方法。
A transparent film is used to cover the grooves through which salt-containing water flows naturally or forcibly, and to prevent water droplets from being evaporated by solar heat, condensed on the film surface, and flowing down the film surface. A method for obtaining pure water from saline water, characterized in that it is collected in a water collection means and/or by a guide means for water droplets provided from above the roof to the water collection means.
JP1097453A 1989-04-19 1989-04-19 Method for obtaining pure water from salt-containing water Pending JPH02277591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097453A JPH02277591A (en) 1989-04-19 1989-04-19 Method for obtaining pure water from salt-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097453A JPH02277591A (en) 1989-04-19 1989-04-19 Method for obtaining pure water from salt-containing water

Publications (1)

Publication Number Publication Date
JPH02277591A true JPH02277591A (en) 1990-11-14

Family

ID=14192728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097453A Pending JPH02277591A (en) 1989-04-19 1989-04-19 Method for obtaining pure water from salt-containing water

Country Status (1)

Country Link
JP (1) JPH02277591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612691A1 (en) * 1993-02-26 1994-08-31 Mitsubishi Corporation Apparatus for recovering fresh water or concentrating liquid
ES2110913A1 (en) * 1996-01-19 1998-02-16 Tapia Graciano Jorge Solar panels for desalinating sea water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612691A1 (en) * 1993-02-26 1994-08-31 Mitsubishi Corporation Apparatus for recovering fresh water or concentrating liquid
ES2110913A1 (en) * 1996-01-19 1998-02-16 Tapia Graciano Jorge Solar panels for desalinating sea water

Similar Documents

Publication Publication Date Title
Ghani et al. Design challenges of agricultural greenhouses in hot and arid environments A review
Jensen et al. Protected agriculture: a global review
EP2892320B1 (en) Method for controlling the environment in a greenhouse
Sethi et al. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications
EP0517432A1 (en) Method of and means for conditioning air in an enclosure
TW590736B (en) Method and devices for forestation and flood prevention
CA2756563C (en) Structure and method for the collection of an evaporated fluid
El-Gayar et al. Greenhouse operation and management in Egypt
US20160044875A1 (en) Environenmetally controlled plant protective apparatus
US5575109A (en) Plant protection device
JPH02277591A (en) Method for obtaining pure water from salt-containing water
KR102114528B1 (en) Energy collection device for air purification in planted water
CN107986360B (en) Simple device for producing distilled water
Von Zabeltitz et al. Greenhouses and shelter structures for tropical regions
CN103109694A (en) Atmospheric pattern circulation conversion type multifunctional water / land building three-dimensional planting device
RU2295854C1 (en) Method of soil moistening in plant growing
Ntinas et al. The influence of a hybrid solar energy saving system on the growth and the yield of tomato crop in greenhouses
WO2024134637A2 (en) A solar plant with enclosed space system
JP2971393B2 (en) Distillation irrigation equipment
JP2004313154A (en) Water-feeding device for tree planting in desert or arid region
SU1655378A1 (en) Device for irrigation with mineralized water
Shapiro et al. An innovative way for heating greenhouses using solar energy during the winter for summer crop production
CN203251697U (en) Multifunctional land and water building three-dimensional planting device guaranteeing atmosphere form circulation conversion
CN219612676U (en) Cross-season solar active heat storage and release structure suitable for greenhouse
Daunicht Problems of desert greenhouses