JPH02276991A - Nuclear fusion device - Google Patents

Nuclear fusion device

Info

Publication number
JPH02276991A
JPH02276991A JP1084815A JP8481589A JPH02276991A JP H02276991 A JPH02276991 A JP H02276991A JP 1084815 A JP1084815 A JP 1084815A JP 8481589 A JP8481589 A JP 8481589A JP H02276991 A JPH02276991 A JP H02276991A
Authority
JP
Japan
Prior art keywords
container
refrigerant
nuclear fusion
heat
heavy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1084815A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Hisanao Ogata
久直 尾形
Yuichi Ishikawa
雄一 石川
Yoshimitsu Mihara
三原 芳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1084815A priority Critical patent/JPH02276991A/en
Publication of JPH02276991A publication Critical patent/JPH02276991A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To enable efficient heat conversion by filling a cathode with a refrigerant for heat absorption and providing a power output means in a refrigerant circulation system, setting the boiling point of the refrigerant lower than that of heavy water, and providing a separate refining device which gathers gas produced in a container. CONSTITUTION:The heavy water 2 with which, for example, iron sulfate, nickel chloride, etc., are mixed is injected into the container 1 which has heat insulation effect and a platinum comb-shaped anode 3 and a comb-shaped cathode 4 which is made of palladium, titanium foil, etc., and decreases in heat resistance are provided and engaged at a specific interval. The electrodes 3 and 4 are applied with a DC or AC voltage from a power source 5. The electrode 4 is filled with the refrigerant 6 which is lower in boiling point than the heavy water 2, e.g. liquid of, for example, fluorochloride substituent body and the upper part of the electrode 4 is led to a turbine 8 by a communication pipe 7. A cooler 11 is provided between communication pipes 9 and 10 and heat is removed by the cooling material 12. The upper part of the container 1 is led to a gas separator 15 by a communication pipe 14 and its lower part is linked with the container 19 by a communication pipe 16 through a valve 18. A cooler 11' is provided halfway to the communication pipe and heat is removed by a cooling material 12'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核融合若しくは核融合類似現象の発明に係り、
特に従来必要とされてきた高温環境を要しない所謂室温
核融合に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the invention of nuclear fusion or nuclear fusion-like phenomena,
In particular, it relates to so-called room-temperature nuclear fusion, which does not require the high-temperature environment conventionally required.

〔従来の技術〕[Conventional technology]

従来、核融合反応はプラズマを加熱して高温度にするこ
とによって起こることが知られていた。
It was previously known that nuclear fusion reactions occur by heating plasma to a high temperature.

しかしこの高温域の形成と保持は大変難かしい。However, forming and maintaining this high temperature range is extremely difficult.

ところが英国サザンプトン大学のマルチン・フライシュ
マン教授、米国ユタ大学のスタン・ボンズヤ 教授、米国ブリガム・≠ング大学のスチーブン・ジョー
ンズ教授らはこのような高温域の形成、維持を要しない
所謂室温核融合の技術を開発した(朝日新聞、平成元年
3月24日付第13版朝刊第三面、同じく3月30日付
第13版朝刊第三面、読売新聞、平成元年4月3日付第
12版第25面参照)。
However, Professor Martin Fleischmann of the University of Southampton in the UK, Professor Stan Bonsja of the University of Utah in the US, and Professor Stephen Jones of Brigham University in the US have developed so-called room-temperature nuclear fusion, which does not require the creation and maintenance of such a high-temperature region. (Asahi Shimbun, March 24, 1989, 13th edition morning edition, page 3; also March 30, 13th edition, morning edition, page 3; Yomiuri Shimbun, April 3, 1989, 12th edition) (See page 25).

これらの新開発の核融合はパラジウムを陰電極とし、プ
ラチナを陽電極とし、容器中に重水を満たして両極間に
電流を流すことにより生じせしめるという簡便かつ画期
的なものである。
These newly developed nuclear fusion processes are simple and revolutionary, as they are created by using palladium as the negative electrode and platinum as the positive electrode, filling a container with heavy water, and passing an electric current between the two electrodes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は1発生した熱エネルギを他の工文 弄ルギに変換する点について配慮がなされておらず、効
率よくかつ安全にエネルギ変換できないとうい問題があ
った。
The above-mentioned conventional technology does not take into consideration the conversion of the generated thermal energy into other energy, and there is a problem in that the energy cannot be converted efficiently and safely.

本発明の目的は、核融合で発生する熱を簡便な装@i方
法で他のエネルギに効率よく、かつ、安全に変換するこ
とにある。尚、以下の説明では、所謂従来から提唱され
てきた核融合と同一原理とは言い切れない点も考慮して
核融合類似現象とも言い得るところ、説明便宜上、核融
合の語に含めること片する。いずれにせよ1重水を原料
として高熱を発するという点では、軌を−とするもので
ある。
An object of the present invention is to efficiently and safely convert the heat generated by nuclear fusion into other energy using a simple method. In addition, in the following explanation, taking into consideration the fact that it cannot be said that it is the same principle as the so-called nuclear fusion that has been proposed in the past, we will include it in the term nuclear fusion for convenience of explanation, since it can be said to be a phenomenon similar to nuclear fusion. . In any case, it is unusual in that it uses monoheavy water as a raw material and generates high heat.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、重水を収納する容
器と、この容器内に装着した電極と、この電極間に電流
を流す電源とからなる核融合装置において、陰電極内に
吸熱用の冷媒を満たし、該冷媒蒸気凝縮手段を内蔵した
上記冷媒循環系内に動力取出手段を設け、上記冷媒の沸
点を重水の沸点よりも低くして、上記容器に、容器中で
生成されたガスを捕集分離精製する装置を付設したもの
である。尚、高電圧をかけるべく高抵抗の純水の使用も
有効である。
In order to achieve the above object, the present invention provides a nuclear fusion device consisting of a container for storing heavy water, an electrode installed in the container, and a power source for passing a current between the electrodes. A power extraction means is provided in the refrigerant circulation system filled with a refrigerant and incorporating the refrigerant vapor condensing means, the boiling point of the refrigerant is lower than the boiling point of heavy water, and the gas generated in the container is transferred to the container. It is equipped with equipment for collection, separation and purification. Note that it is also effective to use high-resistance pure water in order to apply a high voltage.

〔作用〕[Effect]

低温核融合は、硫酸鉄や、塩化ニッケルや、塩化パラジ
ウムや、炭酸力ルシュウムや、硝酸等を混ぜた重水(D
i○)中に、パラジウムまたはチタン製の陰電極と金や
白金の陽電極を浸し、両電極間に電圧をかけると、陰電
極内で発生する。これは、陰電極に使ったパラジウムな
どの金属結晶の中に、プラスの電気を帯びた重水素イオ
ンが電圧の力でどんどん取り込まれて結晶の中で高密度
となり、重水素(D)同志が核融合する。この時の反応
では、次の核融合反応式に示すように、多量の熱が発生
する。
Low-temperature nuclear fusion uses heavy water (D
When a negative electrode made of palladium or titanium and a positive electrode made of gold or platinum are immersed in i○) and a voltage is applied between the two electrodes, it is generated within the negative electrode. This is due to the fact that positively charged deuterium ions are rapidly incorporated into the metal crystal such as palladium used for the negative electrode due to the force of the voltage, becoming highly dense inside the crystal, and deuterium (D) comrades are Nuclear fusion. In this reaction, a large amount of heat is generated, as shown in the following nuclear fusion reaction equation.

D+D−+n+3He+3.27MeV    $(1
)D+D→P+T+4.03MeV     4(2)
また同時に、中性子(n)、ヘリウム(3He)。
D+D-+n+3He+3.27MeV $(1
)D+D→P+T+4.03MeV 4(2)
At the same time, neutrons (n) and helium (3He).

陽子(P)、トリチウム(T)が生成される。この中性
子は、他の物質を放射化し有害である。
Protons (P) and tritium (T) are generated. These neutrons radiate other substances and are harmful.

また、電気分解により陰電極の表面には水素ガスが、陽
電極の表面には酸素ガスが生成される。
Further, by electrolysis, hydrogen gas is generated on the surface of the negative electrode, and oxygen gas is generated on the surface of the positive electrode.

ここで、陰電極に冶金的に接合したヒートパイプは、陰
電極で発生した熱を素早く、ヒートパイプ内で相変化を
伴う流体例えばフルオルクロル置換体等の冷媒に伝え陰
電極の過熱及偽熱に伴う重水素の沸騰、しいては、電気
絶縁を生じる重水素の膜沸騰や、電極のバーレアウト現
象による溶融を防止する。したがって、この冷却冷媒の
沸点は、重水素よりも十分小さい方が好ましい。陰電極
の熱で蒸発した冷媒は、膨張し、冷媒サイクル内に設け
たタービンを回し、タービンに直結した発電機で電気エ
ネルギーに変換する。タービンを回した後の蒸発冷媒は
、水又は空気で冷却されて凝縮し、液状冷媒となって再
びヒートパイプ内に戻る。このようにして、陰電極内で
重水素の核融合反応で発生した熱エネルギを効率よく電
気エネルギに変換することができる。
Here, the heat pipe metallurgically bonded to the cathode quickly transfers the heat generated at the cathode to a fluid that undergoes a phase change within the heat pipe, such as a refrigerant such as a fluorochloride, thereby preventing overheating and pseudoheating of the cathode. This prevents the accompanying boiling of deuterium, film boiling of deuterium that causes electrical insulation, and melting due to the barreout phenomenon of the electrode. Therefore, it is preferable that the boiling point of this cooling refrigerant is sufficiently lower than that of deuterium. The refrigerant evaporated by the heat of the cathode expands, turns a turbine installed in the refrigerant cycle, and is converted into electrical energy by a generator directly connected to the turbine. After turning the turbine, the evaporative refrigerant is cooled by water or air, condenses, becomes a liquid refrigerant, and returns to the heat pipe. In this way, the thermal energy generated by the deuterium fusion reaction within the cathode can be efficiently converted into electrical energy.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。断熱
効果のある容器1には、硫酸鉄や、塩化ニッケル、塩化
パラジウム、炭酸力ルシュウム。
An embodiment of the present invention will be described below with reference to FIG. Container 1, which has an insulating effect, contains iron sulfate, nickel chloride, palladium chloride, and lucium carbonate.

硝酸等を混ぜた重水2が注入され、金や白金製のくし歯
状の陽極電極3と、パラジウムやチタンの箔や粒状物を
熱抵抗が小さくなる様に外面に着けたくし歯状の陰電極
4があり、陽電極3と陰電極4は、所定の間隔を保持し
てかみ合い状態にある。
Heavy water 2 mixed with nitric acid, etc. is injected into a comb-shaped anode electrode 3 made of gold or platinum, and a comb-shaped negative electrode with palladium or titanium foil or granules attached to the outer surface to reduce thermal resistance. 4, and the positive electrode 3 and the negative electrode 4 are in an engaged state with a predetermined distance maintained between them.

両電極には、電源5より、直流又は交流の電圧が供給さ
れる。陰電極4内には、重水2の沸点よりも低い沸点を
有する冷媒6、例えばフルオルクロル置換体等の液体を
充てんし、防電極内上部は。
A DC or AC voltage is supplied to both electrodes from a power source 5. The cathode 4 is filled with a refrigerant 6 having a boiling point lower than the boiling point of heavy water 2, such as a liquid such as a fluorochlorosubstituted product, and the upper part of the inside of the shield electrode is filled with a liquid such as a fluorochlorosubstituted product.

連通管7によりタービン8と導かれ、連通管9゜10で
、同除電極内上部と継がっている。また、連通管9と1
0と間には、クーラー11を設け、冷却機12で排熱す
る。タービン8には発電機13が直結されている。
It is led to the turbine 8 through a communication pipe 7, and is connected to the inner upper part of the electrode through a communication pipe 9 and 10. In addition, communication pipes 9 and 1
A cooler 11 is provided between 0 and 0, and heat is exhausted by a cooler 12. A generator 13 is directly connected to the turbine 8 .

容器1の上部は、連通管14で、ガス分離器15に導び
かれその下部は連通管16で弁18を介して容器19と
連通している。また、その途中には、クーラ11′を設
は冷却機12′で排熱する。ガス分離器15内では、重
水蒸気中の酸素や水素を吸着剤や、深冷分離法で分離さ
せる。分離されたガスは反応器17により水になり容器
19に溜められる。一方、分離された他のガスは弁20
により、容器1外に排出される。
The upper part of the container 1 is a communication pipe 14 that leads to a gas separator 15 , and the lower part thereof is a communication pipe 16 that communicates with a container 19 via a valve 18 . Further, a cooler 11' is installed along the way, and heat is exhausted by a cooler 12'. In the gas separator 15, oxygen and hydrogen in heavy water vapor are separated using an adsorbent or cryogenic separation method. The separated gas is turned into water by the reactor 17 and stored in the container 19. On the other hand, the other separated gas is
As a result, it is discharged outside the container 1.

いま、電源5で、陽電極3及び陰電極4間に電圧をかけ
、電流を流すと、陰電極4外面のパラジウム内に重水素
が取り込まれ、低温核融合反応が生じ、多量の熱が発生
する。この熱で、陰電極内の冷媒6は蒸発し、その蒸気
でタービン8が回転し、発電機13で発電する。発電し
た一部の電気は、電g5に供給される。タービンを回し
た後の蒸気は、クーラ11で冷却されて凝縮し、再び陰
@t’JiA内に戻る。
Now, when a voltage is applied between the positive electrode 3 and the negative electrode 4 using the power supply 5 and a current is passed, deuterium is incorporated into the palladium on the outer surface of the negative electrode 4, a low-temperature nuclear fusion reaction occurs, and a large amount of heat is generated. do. This heat evaporates the refrigerant 6 in the cathode, and the steam rotates the turbine 8, causing the generator 13 to generate electricity. A part of the generated electricity is supplied to electricity g5. The steam after rotating the turbine is cooled and condensed in the cooler 11, and returns to the shade @t'JiA again.

いっぽう、陽陰電極表面に発生した酸素、水素ヘリウム
及び重水素の蒸気は、連通管14を上昇し、重水素はク
ーラ11′で凝縮して容器1内に戻り、水素、酸素は、
ガス分離精製器内15で分廻され、下部で反応器17で
水となり、容器19内に溜める。一方、ヘリウムガスは
、弁20を介して容器1外に排出される。
On the other hand, the vapors of oxygen, hydrogen, helium, and deuterium generated on the surfaces of the positive and negative electrodes rise through the communication pipe 14, and the deuterium condenses in the cooler 11' and returns to the container 1.
The water is divided in the gas separation purifier 15, turned into water in the reactor 17 at the bottom, and stored in the container 19. On the other hand, helium gas is discharged to the outside of the container 1 via the valve 20.

尚、本例では、連通管7,10.14は電気絶縁されて
いる。また核融合反応の抑制は、電源5からの供給電圧
の低下、及び、くし歯状にかみ合せた両電極を離し、か
み合い面を低減させることによって容易に行える。いっ
ぽう、重水よりも低沸点の冷媒で陰電極の熱を吸熱する
ので、陰電極外面での重水の沸騰を抑制でき、陰電極の
電気絶縁状態を防止するとともに、電極の溶融等の危険
な状態を回避できる。また、本冷媒とタービンのの間に
、第2冷媒循環系を設けて、発電しても同様な効果が生
じる。また、陰電極内の冷媒が、減圧された重水であっ
ても同様な効果を生じる。
In this example, the communication pipes 7, 10.14 are electrically insulated. Further, the nuclear fusion reaction can be easily suppressed by lowering the voltage supplied from the power source 5 and by separating the two electrodes that are interlocked in a comb-like shape to reduce the interlocking surface. On the other hand, since the heat of the cathode is absorbed by a refrigerant with a boiling point lower than that of heavy water, boiling of heavy water on the outer surface of the cathode can be suppressed, preventing electrical insulation of the cathode and dangerous situations such as melting of the electrode. can be avoided. Further, the same effect can be obtained even if a second refrigerant circulation system is provided between the main refrigerant and the turbine to generate electricity. Further, even if the refrigerant in the negative electrode is depressurized heavy water, the same effect is produced.

従って、本実施例によれば、低温核融合で発生した熱エ
ネルギを、重水よりも低沸点の冷媒を介して効率よく安
全に電気エネルギーに変換することができる。
Therefore, according to this embodiment, thermal energy generated by low-temperature nuclear fusion can be efficiently and safely converted into electrical energy via a refrigerant with a boiling point lower than that of heavy water.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、陰電極で発生、する核融合反応による
熱を、陰電極内部の低沸点冷媒で吸熱し、この冷媒蒸気
で発電することができるので、この熱を簡便に、かつ、
有効にそして安全に電気エネルギーに変換することがで
きる。
According to the present invention, the heat generated by the nuclear fusion reaction generated at the cathode can be absorbed by the low boiling point refrigerant inside the cathode, and the refrigerant vapor can be used to generate electricity, so this heat can be easily used and
It can be effectively and safely converted into electrical energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する核融合装置のシス
テム構成図である。 1・・容器、2・・・重水、3・・陽電極、4・・・陰
電極、5・・・電源、6・・・冷媒、8・・・タービン
、13・・・発電機、15・・・ガス分離器、17・・
・反応器。
FIG. 1 is a system configuration diagram of a nuclear fusion device illustrating an embodiment of the present invention. 1... Container, 2... Heavy water, 3... Positive electrode, 4... Negative electrode, 5... Power source, 6... Refrigerant, 8... Turbine, 13... Generator, 15 ...Gas separator, 17...
・Reactor.

Claims (1)

【特許請求の範囲】 1、重水を収納する容器と、容器内に装着された電極と
、この電極間に電流を流す電源とからなる核融合装置に
おいて、陰電極間に吸熱用の冷媒を満し、該冷媒蒸気凝
縮手段を含む上記冷媒循環系内に動力取出手段を設けた
ことを特徴とする核融合装置。 2、上記陰電極内の冷媒の沸点を陰電極外の重水の沸点
よりも低くしたことを特徴とする特許請求の範囲第1項
記載の核融合装置。 3、上記容器に、容器中で生成されたガスを補集分離精
製する装置を付設したことを特徴とする特許請求の範囲
第1項記載の核融合装置。 4、上記容器上部に、容器中で生成したガスの一部を、
密度の大きい他の物質に化学反応させる反応装置を付設
したことを特徴とする特許請求の範囲第3項記載の核融
合装置。 5、電極をくし歯状に形成し、両電極をかみ合わせ状に
設置したことを特徴とする特許請求の範囲第1項記載の
核融合装置。
[Scope of Claims] 1. In a nuclear fusion device consisting of a container for storing heavy water, electrodes installed in the container, and a power source for passing a current between the electrodes, a refrigerant for heat absorption is filled between the cathode electrodes. A nuclear fusion device characterized in that a power extraction means is provided in the refrigerant circulation system including the refrigerant vapor condensing means. 2. The nuclear fusion device according to claim 1, wherein the boiling point of the refrigerant in the cathode is lower than the boiling point of heavy water outside the cathode. 3. The nuclear fusion device according to claim 1, wherein the container is provided with a device for collecting, separating and purifying the gas generated in the container. 4. Pour some of the gas generated in the container into the upper part of the container,
4. The nuclear fusion device according to claim 3, further comprising a reaction device for chemically reacting other substances with high density. 5. The nuclear fusion device according to claim 1, wherein the electrodes are formed in a comb-teeth shape, and both electrodes are installed in an interlocking manner.
JP1084815A 1989-04-05 1989-04-05 Nuclear fusion device Pending JPH02276991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084815A JPH02276991A (en) 1989-04-05 1989-04-05 Nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084815A JPH02276991A (en) 1989-04-05 1989-04-05 Nuclear fusion device

Publications (1)

Publication Number Publication Date
JPH02276991A true JPH02276991A (en) 1990-11-13

Family

ID=13841235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084815A Pending JPH02276991A (en) 1989-04-05 1989-04-05 Nuclear fusion device

Country Status (1)

Country Link
JP (1) JPH02276991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242274A (en) * 1993-02-15 1994-09-02 Isao Yukimura Electric power and heat energy generator using alternating current water electrolysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242274A (en) * 1993-02-15 1994-09-02 Isao Yukimura Electric power and heat energy generator using alternating current water electrolysis method

Similar Documents

Publication Publication Date Title
BR112021013983A2 (en) MAGNETO-HYDRODYNAMIC HYDROGEN ELECTRIC POWER GENERATOR
JP2023512790A (en) Magnetohydrodynamic hydrogen generator
Mariotti et al. Microplasmas for nanomaterials synthesis
AU705379B2 (en) Lower-energy hydrogen methods and structures
US20120097532A1 (en) Apparatus for hot fusion of fusion-reactive gases
US20200066416A1 (en) Tabletop reactor
US10767271B2 (en) Electrolysis reactor system
WO2016206443A1 (en) Cold fusion reaction tube
US3957597A (en) Process for recovering tritium from molten lithium metal
JPH02276991A (en) Nuclear fusion device
US3277321A (en) Static converters of thermal energy, in particular of nuclear origin, into electric energy
WO2015130820A1 (en) An electrolysis reactor system
JPH1179701A (en) Gas generating device and system in which gas generating device is incorporated
JP2003130976A (en) Nuclear fusion reactor
JP2009150709A (en) Method for generating lithium cluster chemical nuclear fusion and lithium cluster chemical nuclear fusion device
US10229756B2 (en) In space startup method for nuclear fusion rocket engines
Bonet Thermal plasma technology for processing of refractory materials
US20140138257A1 (en) System for extraction of tritium from liquid metal coolants
Wang et al. Performance Improvement of a Direct Carbon Fuel Cell through an Irreversible Vacuum Thermionic Generator
JPH02276989A (en) Nuclear fusion device
JPH06163089A (en) Alkali metal thermoelectric generating device
JPH03274488A (en) Low-temperature nuclear fusion reactor
WO2018208808A1 (en) Helium generator
WO2004020330A9 (en) Method of thermochemical decomposition of water
JPH02287289A (en) Energy generation device