JPH02276989A - Nuclear fusion device - Google Patents

Nuclear fusion device

Info

Publication number
JPH02276989A
JPH02276989A JP1084814A JP8481489A JPH02276989A JP H02276989 A JPH02276989 A JP H02276989A JP 1084814 A JP1084814 A JP 1084814A JP 8481489 A JP8481489 A JP 8481489A JP H02276989 A JPH02276989 A JP H02276989A
Authority
JP
Japan
Prior art keywords
container
electrodes
heavy water
nuclear fusion
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1084814A
Other languages
Japanese (ja)
Inventor
Hisanao Ogata
久直 尾形
Norihide Saho
典英 佐保
Yuichi Ishikawa
雄一 石川
Yoshimitsu Mihara
三原 芳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1084814A priority Critical patent/JPH02276989A/en
Publication of JPH02276989A publication Critical patent/JPH02276989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To easily obtain heat by putting electrodes in a container which contains heavy water and providing a power source which supplies a current between the electrodes, a means which circulates the heavy water between the container and a heat exchanger, and a heat medium system which couples the heat exchanger and a power output part with each other. CONSTITUTION:When the power source 5 applies a voltage between the electrodes 3 and 4 placed in the container 1, plus heavy hydrogen ions gather at the cathode 4, some of them turn into heavy hydrogen gas, and the remainders enter metal crystal of palladium constituting the cathode 4. The heavy hydrogen ions in the metal are further compressed in the presence of the voltage to cause nuclear fusion reaction shown by a specific formula eventually, and consequently the cathode 4 is heated to conduct its heat to the heavy water 2. The high-temperature heavy water 2 is discharged from the container 1 by a pump 7 and sent to the heat medium system 9 as a secondary medium by the heat exchanger 8. Gaseous oxygen and heavy hydrogen which are produced at the electrode part are separated and collected by collectors 15a and 15b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核融合若しくは核融合類似現象の発明に係り、
特に従来必要とされてきた高温環境を要しない所謂室温
核融合に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the invention of nuclear fusion or nuclear fusion-like phenomena,
In particular, it relates to so-called room-temperature nuclear fusion, which does not require the high-temperature environment conventionally required.

〔従来の技術〕[Conventional technology]

従来、核融合反応はプラズマを加熱して高温度にするこ
とによって起こることが知られていた。
It was previously known that nuclear fusion reactions occur by heating plasma to a high temperature.

しかしこの高温域の形成と保持は大変壁かしい。However, forming and maintaining this high temperature region is extremely difficult.

ところが英国サザンプトン大学のマルチン・フライシュ
マン教授、米国ユタ大学のスタン・ポンズヤ 教授、米国ブリガム・≠ング大学のスチーブン・ジョー
ンズ教授らはこのような高温域の形成、推持を要しない
所謂室温核融合の技術を開発した(朝日新聞、平成元年
3月24日付第13版朝刊第三面、同じく3月30日付
第13版朝刊第三面、読売新聞、平成元年4月3日付第
12版第25面参照)。
However, Professor Martin Fleischmann of the University of Southampton in the United Kingdom, Professor Stan Ponzija of the University of Utah in the United States, and Professor Stephen Jones of Brigham University in the United States have developed so-called room-temperature fusion, which does not require the formation and sustainment of such a high-temperature region. (Asahi Shimbun, March 24, 1989, 13th edition, morning edition, page 3; also March 30, 13th edition, morning edition, page 3; Yomiuri Shimbun, April 3, 1989, 12th edition. (See page 25).

これらの新開発の核融合はパラジウムを陰電極とし、プ
ラチナを陽電極とし、容器中に重水を満たして両極間に
電流を流すことにより生じせしめるという簡便かつ画期
的なものである。
These newly developed nuclear fusion processes are simple and revolutionary, as they are created by using palladium as the negative electrode and platinum as the positive electrode, filling a container with heavy water, and passing an electric current between the two electrodes.

また、従来の熱核融合を用いた核融合炉の概念について
は、伏見康治編プラズマ・核融合(井守出版、昭和54
年発行)に述べられている。
Regarding the concept of a nuclear fusion reactor using conventional thermonuclear fusion, see Plasma and Nuclear Fusion, edited by Koji Fushimi (Imori Publishing, 1972).
(published in 2013).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、未だに加えたエネルギーよりもも発
生したエネルギーが少なく、臨界条件を実現していない
。臨界達成には、磁気閉じ込めやプラズマ加熱等にさら
に巨大な施設と費用が要求されている。
In the above-mentioned conventional technology, the generated energy is still less than the applied energy, and the critical condition has not been achieved. Achieving criticality requires even larger facilities and costs for magnetic confinement, plasma heating, etc.

本発明の目的は、上記室温核融合によって生じた熱を簡
便な装置で得ることにある。尚以下の説明では、所謂従
来から提唱されてきた核融合と同一原理とは言い切れな
い点も考慮して、核融合類似現象とも言いつるところ、
説明便宜上核融合の語に含めることとする。いずれにせ
よ、重水素を原料として熱エネルギーを得るという点で
は軌を−にするものである。
An object of the present invention is to obtain the heat generated by the above-mentioned room temperature nuclear fusion using a simple device. In the following explanation, we will take into consideration the fact that it cannot be said that it is the same principle as the so-called nuclear fusion that has been proposed in the past, and we will also refer to it as a phenomenon similar to nuclear fusion.
For convenience of explanation, it will be included in the term nuclear fusion. In any case, it is a breakthrough in terms of obtaining thermal energy using deuterium as a raw material.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は以下の装置を提供
する。
In order to achieve the above object, the present invention provides the following device.

(1)重水を収納する容器中に、電極が装着され、この
電極間に電流を流す電源と、上記容器と熱交換器間に上
記重水を循環させる手段と、上記熱交換器と動力取出部
とを連結する熱媒系とを主要構成要素とする。
(1) Electrodes are installed in a container for storing heavy water, a power source for passing current between the electrodes, a means for circulating the heavy water between the container and the heat exchanger, and the heat exchanger and a power extraction section. The main component is a heating medium system that connects the

(2)上記容器中においてその電極部に生成した酸素及
び重水素ガスを捕集し、燃料電池に導き、生成した重水
を上記容器に戻す系統を備える。
(2) A system is provided in which the oxygen and deuterium gas generated at the electrode portion in the container are collected, guided to the fuel cell, and the generated heavy water is returned to the container.

(3)上記容器中において生成したガスを捕集し、分離
精製する装置を付設する。
(3) A device is attached to collect, separate and purify the gas generated in the container.

(4)上記電極が上記容器中に格子状に配列された棒状
体である。
(4) The electrodes are rod-shaped bodies arranged in a grid in the container.

(5)上記電極が、上記容器中に陰極と陽極とを交互に
積層するように配列された板状体である。
(5) The electrode is a plate-shaped body in which cathodes and anodes are arranged in alternating layers in the container.

〔作用〕[Effect]

上記容器中の重水には、金属塩等を加え電気伝導性を高
めである。電極の陰極にパラジウム、陽極を白金とし、
この電極間に直流電流を流すと、重水は電気分解され、
陰極の表面に重水素の気泡を生ずる。パラジウムはその
金属結晶の中に重水素イオンを大量に取りこむ。電極間
の電圧がこの効果を高める。重水素(Dと書く)同志が
原子間反発力に抗して接近すると下記の反応で融合する
Metal salts and the like are added to the heavy water in the container to increase electrical conductivity. Palladium is used as the cathode and platinum is used as the anode.
When a direct current is passed between these electrodes, heavy water is electrolyzed,
Deuterium bubbles are generated on the surface of the cathode. Palladium incorporates large amounts of deuterium ions into its metal crystals. The voltage between the electrodes enhances this effect. When deuterium (written as D) approaches each other against atomic repulsion, they fuse in the following reaction.

D+D−)n+3He+3.27MeV  −f(1)
D+D−+P+T+4.03MeV    /((2)
ここで、nは中性子、pは陽子、3He は質量数3の
He同位元素、Tはトリチウム、M e Vは106電
子ボルトを示す。
D+D-)n+3He+3.27MeV-f(1)
D+D-+P+T+4.03MeV/((2)
Here, n is a neutron, p is a proton, 3He is a He isotope with a mass number of 3, T is tritium, and M e V is 106 electron volts.

この反応により、陰極は加熱され、その熱を周囲の重水
に伝える。
This reaction heats the cathode and transfers that heat to the surrounding heavy water.

高温の重水は熱交換器との間を循環し、その熱を動力取
出部を含む熱媒系に伝える。
High-temperature heavy water circulates between the heat exchanger and the heat transfer system, which includes the power take-off section.

電極には重水の電気分解により酸素及び重水素のガスが
発生する。それらは、別々に捕集され、酸素及び重水素
を燃料とする燃料電池に送られ、再び重水となって上記
容器に戻る。
Oxygen and deuterium gases are generated at the electrodes by electrolysis of heavy water. They are collected separately, sent to a fuel cell powered by oxygen and deuterium, and returned to the container as heavy water again.

また、δHe  やTなどの核融合生成物も捕集され1
分離精製される。
In addition, fusion products such as δHe and T are also collected.
Separated and purified.

また、上記電極は配列密度を高めるために、三角又は四
角格子状に棒状体の陰極及び陽極を交互に配列するか、
板状体の陰極及び陽極を交互に積層する。尚、高電圧を
かけるべく高抵抗の純水の使用も有効である。
In addition, in order to increase the arrangement density, the electrodes may have rod-shaped cathodes and anodes arranged alternately in a triangular or square lattice pattern, or
The cathodes and anodes of the plate-like bodies are alternately stacked. Note that it is also effective to use high-resistance pure water in order to apply a high voltage.

〔実施例〕 以下、本発明の一実施例を第1図により説明する。1は
重水2及び陽電極3、陰電極4を収納する容器、5は電
源である。重水2には、少量の硫酸鉄、塩化ニッケル、
塩化パラジウム、炭酸カルシウムなどの金属塩あるいは
硝酸、塩化リチウムなどの単一又は複合物を混合する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIG. 1 is a container containing heavy water 2, a positive electrode 3, and a negative electrode 4; 5 is a power source. Heavy water 2 contains small amounts of iron sulfate, nickel chloride,
Mix metal salts such as palladium chloride and calcium carbonate, or single or composite materials such as nitric acid and lithium chloride.

陽電極3は白金または金、陰電極4はパラジウム又はチ
タンを使用する。6は高温の重水2を、ポンプ7により
熱交換器8に循環させる系統である。9は熱交換器8で
熱を受けとり、動力取出部10で仕事をしたあと冷却器
11、ポンプ12を経て循環路を形成する熱媒系である
。熱媒系10中の媒体としては水やフロンなどがある。
The positive electrode 3 uses platinum or gold, and the negative electrode 4 uses palladium or titanium. 6 is a system for circulating high-temperature heavy water 2 to a heat exchanger 8 by a pump 7. 9 is a heat medium system that receives heat in a heat exchanger 8, performs work in a power extraction section 10, and then passes through a cooler 11 and a pump 12 to form a circulation path. The medium in the heat transfer system 10 includes water, fluorocarbon, and the like.

動力取出部10はタービンなどがある。13は動力取出
部に連結した発電機である。ここで発電した電力の一部
は変換器14により、電源5に給電するのに好適な電力
に変換する。電極では、水の電気分解により生成された
酸素(陽電極3側)及び重水素(陰電極)が泡となって
上昇し、捕集器15a、15bに捕えられたガスは燃料
電池16に送り込まれ、化学反応により再び重水となっ
て回収系統17より容器1に戻る。このとき、燃料電池
16の電極には電圧が発生し、蓄電池17に蓄えられる
。18は、容器1中もしくは燃料電池16中に計まって
くる不純ガス例えばヘリウムやトリチウムなどを回収す
る分前精製装置である。
The power extraction section 10 includes a turbine and the like. 13 is a generator connected to the power take-off section. A part of the electric power generated here is converted by the converter 14 into electric power suitable for supplying power to the power source 5. At the electrode, oxygen (on the positive electrode 3 side) and deuterium (on the negative electrode) generated by water electrolysis rise as bubbles, and the gases captured by the collectors 15a and 15b are sent to the fuel cell 16. Then, it becomes heavy water again through a chemical reaction and returns to the container 1 through the recovery system 17. At this time, voltage is generated at the electrodes of the fuel cell 16 and stored in the storage battery 17. Reference numeral 18 denotes a preparative purification device for recovering impurity gases such as helium and tritium collected in the container 1 or the fuel cell 16.

この装置によれば、容器1中に置かれた電極3゜4間に
電g5により電圧が加えられ、陰電極4にはプラスの重
水素イオンが集まり、一部は重水素ガスになり、一部は
陰電極4を構成するパラジウムの金属結晶の中に取り込
まれる。陰電極としては水素貯蔵金属として知られてい
る各種の金属、化合物、合金が使える可能性がある。こ
うして、金属中に取り込まれた重水素イオンは、電圧下
のもとさらに圧縮され、ついには式(1)や(2)に示
されるような融合が起こると考えられる。その結果。
According to this device, a voltage g5 is applied between electrodes 3 and 4 placed in a container 1, and positive deuterium ions gather at the negative electrode 4, some of which become deuterium gas, and portion is incorporated into the palladium metal crystal constituting the negative electrode 4. A variety of metals, compounds, and alloys known as hydrogen storage metals may be used as the negative electrode. In this way, the deuterium ions incorporated into the metal are further compressed under voltage, and it is thought that fusion as shown in equations (1) and (2) will finally occur. the result.

陰電極4は加熱され、その熱は重水2へ伝えられる。こ
のとき発生した中性子も加熱源となりうる。
The negative electrode 4 is heated and the heat is transferred to the heavy water 2. The neutrons generated at this time can also serve as a heating source.

高温になった重水はポンプ液状もしくは蒸気となって7
により容器1外に取り出され熱交換器8で2次的媒体で
ある熱媒の系9に伝達される。熱媒を水とすると、熱交
換器8で加熱気化された蒸気がタービン(動力取出部)
10を回し、冷却器11で水に戻る。電極部で発生した
酸素及び重水素ガスは捕集器15a、15bにより分離
捕集され、燃焼して重水になり1元の容器1に戻すこと
ができる。燃料電池16からの発生電力は電源5の動力
に利用でき効率的である。第1図中の鎖線は電力の供給
系を示す。
The high-temperature heavy water turns into pump liquid or steam7.
The heat is taken out of the container 1 by a heat exchanger 8 and transferred to a heat medium system 9 which is a secondary medium. When the heat medium is water, the steam heated and vaporized in the heat exchanger 8 is sent to the turbine (power extraction section).
Turn 10 and return to water with cooler 11. Oxygen and deuterium gas generated in the electrode section are separated and collected by the collectors 15a and 15b, and burned to become heavy water, which can be returned to the original container 1. The electric power generated from the fuel cell 16 can be efficiently used to power the power source 5. The chain line in FIG. 1 indicates the power supply system.

また、電極3及び4をいずれも水素吸蔵金属とし、極性
を一定期間間隔で反転させることもできる。こうすれば
、電極集辺への電解質の濃度の偏りを防げる。
Alternatively, both electrodes 3 and 4 may be made of hydrogen storage metal, and the polarity may be reversed at regular intervals. In this way, it is possible to prevent the concentration of electrolyte from being biased toward the electrode collection side.

第2図は容器1横断面中の電極の配列を示したもので、
棒状の陰電極21と陽電極が三角格子状に配列されてい
る。画電極が近接して多数配列されているので、エネル
ギー発生密度の均一化と増大に有効である。
Figure 2 shows the arrangement of electrodes in the cross section of the container 1.
Rod-shaped negative electrodes 21 and positive electrodes are arranged in a triangular lattice. Since a large number of picture electrodes are arranged close to each other, it is effective in making the energy generation density uniform and increasing.

第3図は、棒状の陰電極3oの断面である。星形を呈し
、電極表面積を増やし、重水素イオンの取り込み量を増
やすことができる。
FIG. 3 is a cross section of a rod-shaped negative electrode 3o. It has a star shape, increases the electrode surface area, and can increase the amount of deuterium ions taken up.

第4図は、板状の除電vi40と陽電極41を交互に積
層した一部分を示す。42a、42bは導線、43a、
43bは捕集器、44a、44bはガス回収管、45は
小孔で電極の周囲に多数開けである。電極付近で発生し
たガスは、その部分に滞溜すると電気抵抗になるので、
小孔45を有する捕集器43a、43bで覆い、下部か
らの重水の循環流を捕集器43a、43bと電極40゜
41の間隙に導き、ガスの滞溜を防ぐ。小孔45はイオ
ンの通路である。
FIG. 4 shows a portion in which plate-shaped charge eliminating vi 40 and positive electrodes 41 are alternately laminated. 42a and 42b are conducting wires, 43a,
43b is a collector, 44a and 44b are gas recovery pipes, and 45 is a large number of small holes around the electrode. Gas generated near the electrode becomes electrically resistive when it accumulates in that area, so
It is covered with collectors 43a and 43b having small holes 45, and a circulating flow of heavy water from the lower part is guided into the gap between the collectors 43a and 43b and the electrodes 40 and 41, thereby preventing gas from accumulating. The small hole 45 is a passage for ions.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、室温核融合を適用した簡便なエネルギ
ー変換装置を得ることができ、産業上大きな効果がある
According to the present invention, it is possible to obtain a simple energy conversion device using room temperature nuclear fusion, which has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の概念を示す模式図、第2図は本発明
の実施例の部分断面図、第3図は本発明の他の実施例を
示す部分断面図、第4図は本発明のさらに他の実施例を
示す部分斜視図である。 1・・・容器、2・・・重水、3,4・・電極、5・・
・電極、7・・・ポンプ(循環手段)、8・・・熱交換
器、9・・・熱媒系、10・・・動力取出部、16・・
・燃料電池、18図面の浄書(内容に変舅なし〉 y 区 第 ? 図 手続補正書彷式) %式% 1、事件の表示 平成1年特許願第 2、発明の名称 核融合装置 3、補正をする者 事件との関係
Fig. 1 is a schematic diagram showing the concept of the present invention, Fig. 2 is a partial sectional view of an embodiment of the invention, Fig. 3 is a partial sectional view showing another embodiment of the invention, and Fig. 4 is a schematic diagram of the present invention. FIG. 7 is a partial perspective view showing still another embodiment of the invention. 1... Container, 2... Heavy water, 3, 4... Electrode, 5...
・Electrode, 7... Pump (circulation means), 8... Heat exchanger, 9... Heat medium system, 10... Power extraction part, 16...
・Fuel cell, engraving of 18 drawings (no changes in content) y Ward number? Drawing procedure amendment form) % formula % 1, Indication of incident 1999 patent application No. 2, Title of invention Nuclear fusion device 3, Relationship with the case of the person making the amendment

Claims (5)

【特許請求の範囲】[Claims] 1.重水を収納する容器中に、電極が装着され、この電
極間に電流を流す電源と、上記容器と熱交換器間に上記
重水を循環させる手段と、上記熱交換器と動力取出部と
を連結する熱媒系とを主要構成要素とすることを特徴と
する核融合装置。
1. Electrodes are installed in a container for storing heavy water, and a power source for passing a current between the electrodes, a means for circulating the heavy water between the container and the heat exchanger, and a connection between the heat exchanger and the power extraction section. A nuclear fusion device characterized by having a heating medium system as a main component.
2.上記容器中の電極部に生成した酸素及び重水素ガス
を捕集し、燃料電池に導き、生成した重水を上記容器に
戻す系統を備えたことを特徴とする特許請求の範囲第1
項記載の核融合装置。
2. Claim 1, characterized in that it is equipped with a system for collecting oxygen and deuterium gas generated in the electrode portion in the container, guiding them to the fuel cell, and returning the generated heavy water to the container.
Nuclear fusion device as described in section.
3.上記容器中において生成したガスを捕集し、分離精
製する装置を付設した特許請求の範囲第1項記載の核融
合装置。
3. The nuclear fusion device according to claim 1, further comprising a device for collecting, separating and purifying the gas generated in the container.
4.上記電極が上記容器中に格子状に配列された棒状体
であることを特徴とする特許請求の範囲第1項記載の核
融合装置。
4. 2. The nuclear fusion device according to claim 1, wherein the electrodes are rod-shaped bodies arranged in a grid in the container.
5.上記電極が、上記容器中に陰極と陽極とを交互に積
層するように配列された板状体であることを特徴とする
特許請求の範囲第1項記載の核融合装置。
5. 2. The nuclear fusion device according to claim 1, wherein the electrode is a plate-shaped body in which cathodes and anodes are arranged in alternating layers in the container.
JP1084814A 1989-04-05 1989-04-05 Nuclear fusion device Pending JPH02276989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084814A JPH02276989A (en) 1989-04-05 1989-04-05 Nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084814A JPH02276989A (en) 1989-04-05 1989-04-05 Nuclear fusion device

Publications (1)

Publication Number Publication Date
JPH02276989A true JPH02276989A (en) 1990-11-13

Family

ID=13841205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084814A Pending JPH02276989A (en) 1989-04-05 1989-04-05 Nuclear fusion device

Country Status (1)

Country Link
JP (1) JPH02276989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006123A1 (en) * 1992-08-28 1994-03-17 Arthur D. Little, Inc. Material symmetry breaking for reversible energy storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006123A1 (en) * 1992-08-28 1994-03-17 Arthur D. Little, Inc. Material symmetry breaking for reversible energy storage

Similar Documents

Publication Publication Date Title
Doenitz et al. Concepts and design for scaling up high temperature water vapour electrolysis
US4692390A (en) Method and system for hydrogen thermal-electrochemical conversion
US4818638A (en) System for hydrogen thermal-electrochemical conversion
EP1690308A2 (en) Nuclear voltaic cell
Wang et al. Conceptual design of lead cooled reactor for hydrogen production
Sharafat et al. ARIES-I fusion-power-core engineering
KR950009880B1 (en) Element and energy production device
JPH02276989A (en) Nuclear fusion device
Nakagiri et al. Development of a new thermochemical and electrolytic hybrid hydrogen production system for sodium cooled FBR
US10229756B2 (en) In space startup method for nuclear fusion rocket engines
Fillo et al. Synfuels production from fusion reactors
Schultz Production of hydrogen by fusion energy: a review and perspective
JP2009150709A (en) Method for generating lithium cluster chemical nuclear fusion and lithium cluster chemical nuclear fusion device
Underwood et al. Performance projections of alternative AMTEC systems and devices
Cavaliere Nuclear Hydrogen Production
JPH02276991A (en) Nuclear fusion device
Johnson The chemical engineering side of nuclear fusion power
Lee Tritium breeding and direct energy conversion
Fillo Review of fusion synfuels
Isacs et al. Hydrogen production from fusion reactions coupled with high temperature electrolysis
Fillo et al. Fusion energy for hydrogen production
JPH04137366A (en) Energy generating device
Wong et al. The low aspect ratio design concept possibility of an acceptable fusion power system
Morozov Comparative analysis of hydrogen production methods with nuclear reactors
Krakowski et al. Synfuel (hydrogen) production from fusion power