JPH02276934A - Calorie measuring instrument - Google Patents

Calorie measuring instrument

Info

Publication number
JPH02276934A
JPH02276934A JP9733189A JP9733189A JPH02276934A JP H02276934 A JPH02276934 A JP H02276934A JP 9733189 A JP9733189 A JP 9733189A JP 9733189 A JP9733189 A JP 9733189A JP H02276934 A JPH02276934 A JP H02276934A
Authority
JP
Japan
Prior art keywords
container
temperature
heat
sample
sample container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9733189A
Other languages
Japanese (ja)
Other versions
JP2644887B2 (en
Inventor
Kazutoshi Kaji
和利 鍛示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1097331A priority Critical patent/JP2644887B2/en
Publication of JPH02276934A publication Critical patent/JPH02276934A/en
Application granted granted Critical
Publication of JP2644887B2 publication Critical patent/JP2644887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To remove a thermocouple from a sample container and to prevent heat from leaking from the sample container by fitting a thermometer to a heat insulation container and controlling heat insulation according to its measured temperature and the temperature in the sample container. CONSTITUTION:The thermometer is fitted to the heat insulation container 3, whose heat insulation is controlled according to this measured temperature and the temperature in the sample container 1. Consequently, the thermocouple can be removed from the container 1 and heat is prevented from leaking from the container 1. Further, a metallic resistance wire 2 is used as the thermometer fitted to the container 3 and wound uniformly around the container 3 to measure the mean temperature of the container 3. Consequently, if the container 3 has a temperature distribution, a deviation from the sample temperature due to the detection of only local temperature by the thermocouple can be minimized to prevent the heat from leaking from the container 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱量測定装置に係り、特に微量試料に好適な試
料容器や断熱容器の構造や材料及び断熱制御法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a calorimetry device, and particularly to the structure and material of a sample container or a heat insulating container suitable for a trace amount of sample, and a heat insulation control method.

〔従来の技術〕[Conventional technology]

従来、物質の熱容量を高精度に測定する手段として、断
熱型熱量計が用いられてきた。断熱型熱量計は、試料容
器とその外周にある断熱容器から構成される。試料容器
には、試料加熱用ヒータ。
Conventionally, an adiabatic calorimeter has been used as a means of measuring the heat capacity of a substance with high precision. An adiabatic calorimeter consists of a sample container and an insulating container surrounding the sample container. The sample container has a heater for heating the sample.

試料温度測定用温度計、断熱容器と試料容器との温度を
同一に制御するために両容器間の温度差を検出する熱電
対の一端がある。これらのリード線の最低必要な数は3
,4.2本である。そして、ヒータによって成る量の熱
エネルギー(ΔE)を試料及び試料容器に加え、そのと
きの温度上昇量(ΔT)を測定し、熱容量C=ΔE/Δ
Tを求める。したがって、高精度に熱量や熱容量を測定
するためには断熱容器と試料容器の温度を同一にし。
There is a thermometer for measuring the sample temperature, and one end of the thermocouple that detects the temperature difference between the insulated container and the sample container in order to control the same temperature in both containers. The minimum number of these leads required is 3
, 4.2. Then, the amount of thermal energy (ΔE) generated by the heater is applied to the sample and the sample container, the amount of temperature rise (ΔT) at that time is measured, and the heat capacity C=ΔE/Δ
Find T. Therefore, in order to measure the amount of heat and heat capacity with high accuracy, the temperature of the insulated container and the sample container must be the same.

試料容器からの熱もれを防ぐことが必要である。It is necessary to prevent heat leakage from the sample container.

従来の断熱型熱量計では少なくとも10〜20gの試料
が必要なので、液晶や光デイスク材料等の薄膜材料の研
究開発のためには微量試料用断熱型熱量計の開発が是非
必要である。しかし、微量試料を測定する場合には2つ
の問題点がある。1つは、試料の熱容量の絶対値並びに
、試料容器を含めた全体の熱容量と比べて試料の熱容量
の相対値が小さくなり、検出感度が低下すること、もう
1つは、試料容器と断熱容器との間の温度制御能力に限
界があるため、両者間でリード線を伝わる熱もれを生じ
、温度上昇量(八T)の誤差の原因となり、微量試料は
ど影響が大きいことである。
Since conventional adiabatic calorimeters require at least 10 to 20 g of sample, the development of adiabatic calorimeters for small sample amounts is absolutely necessary for research and development of thin film materials such as liquid crystal and optical disk materials. However, there are two problems when measuring a trace amount of sample. One is that the absolute value of the heat capacity of the sample and the relative value of the heat capacity of the sample is smaller than the overall heat capacity including the sample container, resulting in a decrease in detection sensitivity.The other is that the sample container and the insulated container Since there is a limit to the temperature control ability between the two, heat leaks through the lead wire between the two, causing an error in the amount of temperature rise (8T), and having a large effect on the trace amount of sample.

これらの問題点を解決する方法の1つとして。As one way to solve these problems.

試料容器の熱容量を小さくすることが考えられ、特に温
度計と加熱用ヒータを兼用する方法がある。
It is possible to reduce the heat capacity of the sample container, and in particular there is a method of using it as both a thermometer and a heater.

その場合、リード線の数を減らすことができるので、熱
もれも小さくできる6それについては、プロシーデイン
ゲス ロイヤル ソサIティ(ロンドン)A221  
(1954年)267頁(Proc。
In that case, the number of lead wires can be reduced, so heat leakage can also be reduced6.
(1954) p. 267 (Proc.

Roy、 Soc、(London)、 A221 (
1954) p p267)に論じられている。
Roy, Soc, (London), A221 (
1954) p p267).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来装置では、試料容器と断熱容器間の温度差を熱
電対で検出しているため、少なくとも一対の熱雷対が試
料容器に接続されることになり、その熱電対による試料
容器からの熱もれが発生する。その結果、試料の温度上
昇量(ΔT)に誤差を生じるという問題があった。
In the conventional device described above, the temperature difference between the sample container and the insulated container is detected by a thermocouple, so at least one pair of thermoelectric lightning pairs is connected to the sample container, and the thermocouple absorbs heat from the sample container. Leakage occurs. As a result, there was a problem in that an error occurred in the amount of temperature rise (ΔT) of the sample.

また、断熱容器の断熱制御用温度測定に熱電対を用いる
ため、温度検出できる場所の範囲が狭く、断熱容器の温
度分布について配慮がされていないため、仮に断熱容器
に温度分布があり、その部分を熱電対で検出していると
すると、断熱容器の温度が試料温度と異なる結果となり
、試料容器からの熱もれの原因になるという問題があっ
た。
In addition, since thermocouples are used to measure the temperature of the insulated container for insulation control, the range of locations where temperature can be detected is narrow, and no consideration is given to the temperature distribution of the insulated container. If the temperature is detected by a thermocouple, the temperature of the insulated container will be different from the sample temperature, causing a problem of heat leakage from the sample container.

更に、上記従来技術では、試料容器やそれに巻いた金属
抵抗線にCuを用いている。Cuは体積抵抗率が小さい
ために、抵抗測定、即ち温度測定の有効桁数が劣る。ま
た、Cuは熱容量(J/Kd)が大きいため、試料容器
の低熱容量化には問題があった。
Further, in the above-mentioned prior art, Cu is used for the sample container and the metal resistance wire wound thereon. Since Cu has a small volume resistivity, the number of effective digits in resistance measurement, that is, temperature measurement is inferior. Further, since Cu has a large heat capacity (J/Kd), there is a problem in reducing the heat capacity of the sample container.

本発明の目的は、微量試料でも高精度に熱量測定を行う
ために、試料容器からの熱もれを減少させること、温度
測定精度を向上させること、試料容器の低熱容量化を実
現するために適切な材料を用いることにある。
The purpose of the present invention is to reduce heat leakage from a sample container, improve temperature measurement accuracy, and reduce heat capacity of a sample container in order to perform high-precision calorimetry even with a small amount of sample. The key is to use the right materials.

〔課題を解決するための手段〕[Means to solve the problem]

上記の熱もれについては、試料容器に接続している熱電
対を取り除けば達成される。その場合。
The above heat leakage can be achieved by removing the thermocouple connected to the sample container. In that case.

試料容器と断熱容器間の断熱制御の方法は以下のように
行なう。つまり、断熱容器の絶対温度を測定し、それが
試料容器と同一になるよう制御を行なう。断熱容器の測
温方法は、断熱容器全体に均一に金属抵抗線を巻きつけ
、その抵抗値より温度を測定する。このように断熱容器
全体の平均温度を測定することで、断熱容器に温度分布
があっても、従来装置のように試料容器の温度から断熱
容器の温度が大きくずれることがなくなり、熱もれを防
ぐことができる。
The insulation control between the sample container and the insulation container is performed as follows. That is, the absolute temperature of the heat insulating container is measured and controlled so that it is the same as that of the sample container. To measure the temperature of an insulated container, a metal resistance wire is evenly wrapped around the entire insulated container, and the temperature is measured from the resistance value. By measuring the average temperature of the entire insulated container in this way, even if there is a temperature distribution in the insulated container, the temperature of the insulated container will not deviate significantly from the sample container temperature as in conventional equipment, and heat leaks can be prevented. It can be prevented.

一方、上記の温度測定精度の向上及び、試料容器の低熱
容量化については、Cuより体積抵抗率が大きく、熱容
量(J/に−ci)の小さい金属材料を用いれば達成さ
れる。
On the other hand, the above-described improvement in temperature measurement accuracy and reduction in heat capacity of the sample container can be achieved by using a metal material that has a higher volume resistivity and a lower heat capacity (J/-ci) than Cu.

〔作用〕[Effect]

本発明のように、断熱容器に温度計を取りつけその測定
温度と試料容器の温度とをもとに、断熱制御を行なう。
As in the present invention, a thermometer is attached to the heat insulating container, and heat insulation control is performed based on the temperature measured by the thermometer and the temperature of the sample container.

それによって、従来、断熱制御に必要であって熱電対を
試料容器から取り除くことができ、熱もれ経路を少なく
できるので、試料容器からの熱もれを防ぐことができる
As a result, the thermocouple, which is conventionally required for heat insulation control, can be removed from the sample container, and the path of heat leakage can be reduced, so that heat leakage from the sample container can be prevented.

更に、断熱容器に取りつける温度計を金属抵抗線にし、
それを断熱容器全体に均一に巻きつけることによって、
断熱容器の平均温度を測定することができる。これによ
って、仮に断熱容器に温度分布がある場合、従来装置の
ように局所温度のみ熱電対で検出することによる試料容
器温度からのずれを最小にすることができ、その結果試
料容器からの熱もれを防ぐことができる。
Furthermore, the thermometer attached to the insulated container is made of metal resistance wire,
By wrapping it evenly around the entire insulated container,
The average temperature of the insulated container can be measured. As a result, even if there is a temperature distribution in the insulated container, it is possible to minimize the deviation from the sample container temperature caused by detecting only the local temperature with a thermocouple as in conventional devices, and as a result, the heat from the sample container can also be minimized. This can be prevented.

一方、Cuより体積抵抗率の大きい(但し、体積抵抗率
の温度係数はほぼ同程度)金属抵抗線を用いた場合、抵
抗値の温度変化量がほぼ等しいため抵抗値の絶対値が大
きく、即ち抵抗値の有効桁数が多くなる。したがって、
抵抗値測定、即ち温度測定精度が向上させることができ
る。
On the other hand, when using a metal resistance wire that has a higher volume resistivity than Cu (however, the temperature coefficient of the volume resistivity is approximately the same), the absolute value of the resistance value is large because the amount of temperature change in the resistance value is almost the same, i.e. The number of effective digits of the resistance value increases. therefore,
The accuracy of resistance value measurement, that is, temperature measurement, can be improved.

また、試料容器の低熱容量化については、Cuより低熱
容量の金属材料を用いることにより、同体積の試料容器
を用いた場合でも、熱容量を小さくすることができる。
Furthermore, regarding the reduction in heat capacity of the sample container, by using a metal material having a lower heat capacity than Cu, the heat capacity can be reduced even when using a sample container with the same volume.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ詳細に説明する。 An example of the present invention will be described below in detail.

[実施例1] 本発明の実施例を第1図に示す。これは断熱型熱量計の
試料容器1と断熱容器2のふかん図及び断面図である。
[Example 1] An example of the present invention is shown in FIG. This is a diagram and a cross-sectional view of the sample container 1 and the insulation container 2 of the adiabatic calorimeter.

試料容器1はフタ59本体6.金属抵抗線2.金属抵抗
線保護用円筒管7から構成される。また、断熱容器2に
も金属抵抗線4が巻いである。材料は全てptである。
The sample container 1 has a lid 59 body 6. Metal resistance wire 2. It is composed of a cylindrical tube 7 for protecting metal resistance wires. Further, a metal resistance wire 4 is also wound around the heat insulating container 2. All materials are PT.

第1図のように試料容器と断熱容器を構成し、試料容器
は熱抵抗が大きい、電気絶縁物8で断熱容器からつり下
げる。絶縁物8はナイロンやテフロン等である。
As shown in FIG. 1, a sample container and a heat insulating container are constructed, and the sample container is suspended from the heat insulating container by an electrical insulator 8 having a high thermal resistance. The insulator 8 is made of nylon, Teflon, or the like.

断熱制御回路及び熱容量測定回路のブロックダイヤグラ
ムを第2図に示す。金属抵抗線2及び4より試料容器1
及び断熱容器3の温度をそれぞれ電圧計あるいは抵抗計
測器9及び10を用いて測定する。両者の温度差を電圧
としてPID制御器11に送り、増幅器12を経て、断
熱容器3の金属抵抗線4に送られる。このような回路に
よって断熱制御を行なう。一方、電流、電圧計13で試
料容器1に加ねえた熱エネルギー(ΔE)を測定し、電
圧計あるいは抵抗測定器9により温度上昇量(ΔT)を
測定する。それらより、熱容量C=ΔE/ΔTを求める
ことができる。
A block diagram of the heat insulation control circuit and heat capacity measurement circuit is shown in FIG. Sample container 1 from metal resistance wires 2 and 4
and the temperature of the heat insulating container 3 are measured using voltmeters or resistance measuring devices 9 and 10, respectively. The temperature difference between the two is sent to the PID controller 11 as a voltage, which is then sent to the metal resistance wire 4 of the heat insulating container 3 via the amplifier 12. Adiabatic control is performed by such a circuit. On the other hand, the thermal energy (ΔE) applied to the sample container 1 is measured with the current and voltmeter 13, and the amount of temperature rise (ΔT) is measured with the voltmeter or resistance measuring device 9. From these, heat capacity C=ΔE/ΔT can be determined.

第1図のように、試料容器1と断熱容器3を構成するこ
とにより、両容器間の温度差を検出するための熱電対を
試料容器1から取り除くことができるので、試料容器か
らの熱もれを防ぐことができる。更に、熱電対の温度分
解能はmKオーダーであり、pt抵抗線の場合温度分解
能は10′″2mKオーダーである。したがって、より
精密な断熱制御が可能となる。
By configuring the sample container 1 and the heat-insulating container 3 as shown in Figure 1, the thermocouple for detecting the temperature difference between the two containers can be removed from the sample container 1, so that heat from the sample container can also be removed. This can be prevented. Furthermore, the temperature resolution of a thermocouple is on the order of mK, and in the case of a PT resistance wire, the temperature resolution is on the order of 10'''2 mK. Therefore, more precise adiabatic control is possible.

また、断熱容器3に金属抵抗線4を第1図のように全体
に均一に巻くことにより、断熱容器3の平均温度を測定
できる。
Furthermore, by uniformly wrapping the metal resistance wire 4 around the heat insulating container 3 as shown in FIG. 1, the average temperature of the heat insulating container 3 can be measured.

Cu、Ptの体積抵抗率と熱容量に表に示す。The volume resistivity and heat capacity of Cu and Pt are shown in the table.

体積抵抗率はptの方がCuより約1桁大きく、ptの
熱容量はCuの約83%である。したがって、温度測定
精度が約1桁向上し、同じ体積の試料容器の場合ptの
方が約83%低熱容量の試料容器となる。
The volume resistivity of PT is about one digit larger than that of Cu, and the heat capacity of PT is about 83% of that of Cu. Therefore, temperature measurement accuracy is improved by about one order of magnitude, and for sample containers of the same volume, the PT sample container has a lower heat capacity by about 83%.

[実施例2] 実施例1と同じ構造ではあるが、材料がPdである断熱
型熱量測定装置の場合、Pdの体積抵抗率及び熱容量は
表に示す通りであるので、温度測定精度で約1桁、同体
積の試料容器の熱容量を約86%に小さくすることがで
きる。
[Example 2] In the case of an adiabatic calorimetry device that has the same structure as Example 1 but is made of Pd, the volume resistivity and heat capacity of Pd are as shown in the table, so the temperature measurement accuracy is approximately 1. The heat capacity of a sample container with the same volume can be reduced to about 86%.

[実施例3コ 断熱容器3の断面図を第3図に示す。断熱容器3はトッ
プ部14.サイド部15.ボトム部16から構成される
。それらは個々に金属抵抗′MAl 7゜18.19を
巻き、それぞれの温度を測定する。
[Embodiment 3] A cross-sectional view of the heat-insulating container 3 is shown in FIG. The heat insulating container 3 has a top portion 14. Side part 15. It is composed of a bottom part 16. They are individually wound with a metal resistor 'MAl 7°18.19, and the temperature of each is measured.

そして、それぞれ独立に試料容器1の温度に対して断熱
制御する。
Then, adiabatic control is performed on the temperature of the sample container 1, respectively, independently.

こうすることによって、断熱容器3の温度分布を小さく
することができ、熱もれを防ぐことができる。
By doing so, the temperature distribution of the heat insulating container 3 can be made small, and heat leakage can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明のように、断熱容器の温度を測定し、それをもと
に断熱制御することにより、試料容器から熱雷対を取り
除くことができるので、試料容器からの熱もれを防ぐ効
果がある。また、金属抵抗線を断熱容器全体に均一に巻
くことにより、平均温度を測定することができ、断熱容
器の温度分布の断熱制御への影響を少なくすることがで
きるので、試料容器と断熱容器とを同一温度にし、熱も
れを防ぐことができる。
As in the present invention, by measuring the temperature of the heat insulating container and performing heat insulation control based on the temperature, it is possible to remove the thermal lightning couple from the sample container, which is effective in preventing heat leakage from the sample container. . In addition, by uniformly wrapping the metal resistance wire around the entire insulated container, the average temperature can be measured and the influence of the temperature distribution of the insulated container on the adiabatic control can be reduced. can be kept at the same temperature to prevent heat leakage.

また、Cuより高体積抵抗率で低熱容量の金属材料を用
いることにより、温度測定精度を向上させ試料容器を低
熱容量化できるので、微量試料でも高精度に熱容量を測
定できる効果がある。
In addition, by using a metal material with a higher volume resistivity and lower heat capacity than Cu, temperature measurement accuracy can be improved and the sample container can have a lower heat capacity, which has the effect of allowing high precision measurement of heat capacity even in a small amount of sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は本発明の一実施例の試料容器
と断熱容器のふかん図及び断面図、第2図(a)及び(
b 、)は断熱制御回路図及び熱容量測定回路のブロッ
クダイヤグラムを示す図、第3図は断熱容器の断面図で
ある。
FIGS. 1(a) and (b) are a tank diagram and a sectional view of a sample container and a heat-insulating container according to an embodiment of the present invention, and FIGS. 2(a) and (
b, ) is a diagram showing a block diagram of a heat insulation control circuit and a heat capacity measurement circuit, and FIG. 3 is a sectional view of the heat insulation container.

Claims (1)

【特許請求の範囲】 1、試料容器とその外周に断熱容器を備えた断熱型熱量
計において、加熱用ヒータ線と温度測定用温度計とを兼
用した金属抵抗線を有する試料容器及び温度測定用金属
抵抗線を有する断熱容器を備えたことを特徴とする断熱
型熱量測定装置。 2、温度測定と加熱用ヒータを兼用する金属抵抗線を巻
きつけた断熱容器を備えたことを特徴とする特許請求の
範囲第1項記載の熱量測定装置。 3、試料容器と断熱容器のそれぞれの絶対温度を測定す
ることにより断熱制御することを特徴とする特許請求の
範囲第1項記載の熱量測定装置。 4、体積抵抗率がCuより大きく、熱容量(J/K・c
m^3)がCuより小さい金属を材料とする金属抵抗線
及び試料容器を備えたことを特徴とする特許請求の範囲
第1項記載の熱量測定装置。 5、体積抵抗率がCuより大きく、熱容量(J/K・c
m^3)がCuより小さい金属を材料とする金属抵抗線
及び断熱容器を備えたことを特徴とする特許請求の範囲
第1項記載の熱量測定装置。
[Claims] 1. In an adiabatic calorimeter that includes a sample container and a heat insulating container around its outer periphery, the sample container has a metal resistance wire that serves both as a heater wire for heating and a thermometer for temperature measurement, and for temperature measurement. An adiabatic calorimetry device characterized by comprising an adiabatic container having a metal resistance wire. 2. The calorific value measuring device according to claim 1, further comprising a heat insulating container wrapped around a metal resistance wire which serves both as a temperature measurement and a heating heater. 3. The calorific value measuring device according to claim 1, characterized in that adiabatic control is performed by measuring the absolute temperature of each of the sample container and the insulating container. 4. Volume resistivity is larger than Cu, heat capacity (J/K・c
2. The calorific value measuring device according to claim 1, further comprising a metal resistance wire and a sample container made of a metal having m^3) smaller than Cu. 5. Volume resistivity is larger than Cu, heat capacity (J/K・c
2. The calorific value measuring device according to claim 1, further comprising a metal resistance wire made of a metal having m^3) smaller than Cu and a heat insulating container.
JP1097331A 1989-04-19 1989-04-19 Adiabatic calorimeter Expired - Lifetime JP2644887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097331A JP2644887B2 (en) 1989-04-19 1989-04-19 Adiabatic calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097331A JP2644887B2 (en) 1989-04-19 1989-04-19 Adiabatic calorimeter

Publications (2)

Publication Number Publication Date
JPH02276934A true JPH02276934A (en) 1990-11-13
JP2644887B2 JP2644887B2 (en) 1997-08-25

Family

ID=14189506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097331A Expired - Lifetime JP2644887B2 (en) 1989-04-19 1989-04-19 Adiabatic calorimeter

Country Status (1)

Country Link
JP (1) JP2644887B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222977A (en) * 1975-08-14 1977-02-21 Shinku Riko Kk Adiabatic type calorimeter
JPS5238915A (en) * 1975-09-22 1977-03-25 Mitsubishi Electric Corp Electric sound transducer
JPS6375855U (en) * 1986-05-07 1988-05-20
JPS6426136A (en) * 1987-07-22 1989-01-27 Toshiba Ceramics Co Heat quantity measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222977A (en) * 1975-08-14 1977-02-21 Shinku Riko Kk Adiabatic type calorimeter
JPS5238915A (en) * 1975-09-22 1977-03-25 Mitsubishi Electric Corp Electric sound transducer
JPS6375855U (en) * 1986-05-07 1988-05-20
JPS6426136A (en) * 1987-07-22 1989-01-27 Toshiba Ceramics Co Heat quantity measuring instrument

Also Published As

Publication number Publication date
JP2644887B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
Furukawa et al. Thermal properties of aluminum oxide from 0 to 1200 K
US3321974A (en) Surface temperature measuring device
Cochran et al. Specific heat measurements in 1–10 K range using continuous warming method
Lasjaunias et al. Heat capacity and thermal conductivity measurements down to 25 mk on samples of poor thermal diffusivity and small specific heat
Tatsumi et al. An adiabatic calorimeter for high-resolution heat capacity measurements in the temperature range from 12 to 300 K
US3365944A (en) Adiabatic calorimeter
US3266307A (en) Adiabatic calorimeter
Wilkins et al. Multijunction thermal convertor. An accurate dc/ac transfer instrument
US3267730A (en) Sensing element for the measurement of liquid level
JPH03225268A (en) Direct heating type calorimetric instrument
Dauphinee et al. A new semi-automatic apparatus for measurement of specific heats and the specific heat of sodium between 55 and 315 K
Kopp et al. Carbon resistors as low temperature thermometers
Dole et al. Calorimetry of high polymers. I. Automatic temperature recording and control of adiabatic jackets
JP2644887B2 (en) Adiabatic calorimeter
Churney et al. Studies in Bomb Calorimetry. A New Determination of the Energy of Combustion of Benzoic Acid in Terms of Electrical Units
US3833145A (en) Quick-responding thermometer
JP2949314B2 (en) Calorimeter and method
Bayly A calorimetric measurement of the disintegration rate of a P32 source
US4379118A (en) Process for measuring a continuous neutron flux and measuring apparatus for carrying out this process
JPS6351253B2 (en)
US3217537A (en) Method and apparatus for determining specific heat
Plumb et al. Thermal cycling apparatus to test germanium thermometer stabilities
Sostmann et al. Fundamentals of thermometry (Part I)
Wood et al. Pyrometry
US2995708A (en) Dry static calorimeter for rf power measurement