JPH02276740A - Transport device - Google Patents

Transport device

Info

Publication number
JPH02276740A
JPH02276740A JP1095363A JP9536389A JPH02276740A JP H02276740 A JPH02276740 A JP H02276740A JP 1095363 A JP1095363 A JP 1095363A JP 9536389 A JP9536389 A JP 9536389A JP H02276740 A JPH02276740 A JP H02276740A
Authority
JP
Japan
Prior art keywords
piezoelectric element
diaphragm
vibrating body
vibration
conveyance table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1095363A
Other languages
Japanese (ja)
Inventor
Tatsuo Aoki
青木 立央
Masao Yamamoto
山元 征夫
Akira Teratani
章 寺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Electric Works Ltd
Original Assignee
Tamura Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Electric Works Ltd filed Critical Tamura Electric Works Ltd
Priority to JP1095363A priority Critical patent/JPH02276740A/en
Publication of JPH02276740A publication Critical patent/JPH02276740A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Jigging Conveyors (AREA)
  • Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)

Abstract

PURPOSE:To reduce the number of parts and greatly reduce the weight and thickness by shifting a transport board in the revolution direction of an elliptical movement by constituting the title device so that each longitudinal vibration is generated on the first and second vibrating plates by a piezoelectric element. CONSTITUTION:When the high frequency voltage is applied onto the first piezoelectric element 12A, a longitudinal vibration in the longitudinal direction is generated on the first vibrating plate 11A, and when the high frequency voltage is applied onto the second piezoelectric element 12B, a longitudinal vibration is generated similarly on the second vibrating plate 11B. When the phase difference of the high frequency voltage applied onto the first and second piezoelectric elements 12A and 12B is set 90 deg., the vibration of the first and second vibrating plates interfere each other, and composed to generate a multimode vibration, and an elliptical movement is generated by an arbitrary mass point on the edge surface contacting the motion transmission surface of the transport board 2 of the second vibrating plate 11B. When the second vibrating plate vibrates in the longitudinal direction and the edge surface contacts and separates from the motion transmission surface of the transport board, the transport plate 2 is shifted in the turning direction of the elliptical movement by the frictional force in contact.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、カード式自動販売機のカードリーダ等に適用
して好適な搬送装置に係り、特にその駆動源として従来
の駆動モータの代わりに、リニア型超音波モータを利用
した新規な搬送装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a conveyance device suitable for application to a card reader of a card-type vending machine, etc., and particularly to a conveyance device suitable for application to a card reader of a card-type vending machine, and particularly to a conveyance device that can be used as a drive source in place of a conventional drive motor. , relates to a novel conveyance device using a linear ultrasonic motor.

[従来の技術] 従来、カード式自動販売機等に組み込まれているカード
リーグは、カード挿入口より挿入された磁気カード(移
動体)を取り込み、処理し、サービス終了後、カード返
却口より返却するもので、そのカード搬送装置としては
、一般に駆動モータと、この駆動モータの回転伝達を受
けて動作し、磁気カードを一定速度で移動させるローラ
、搬送ベルト等の搬送手段とで構成されていた。
[Conventional technology] Conventionally, a card league built into a card-type vending machine takes in a magnetic card (mobile object) inserted through a card insertion slot, processes it, and returns it through a card return slot after the service is completed. The card transport device generally consists of a drive motor and transport means such as rollers and transport belts that operate in response to the rotation of the drive motor and move the magnetic card at a constant speed. .

[発明が解決しようとする課題] しかしながら、このような従来のカード搬送装置は、駆
動モータおよび搬送手段以外にも軸受部材、歯車、ベル
ト、プーリ等多くの付属部品を必要とすることから、部
品点数および組立工数が増加し、高価になる上、歯車を
使用した場合はバックラッシュのために高精度な送りお
よび位置決めができず、また駆動モータ、ローラ等の大
きさに制約されるため、装置の軽量、薄形化に限界があ
つた。
[Problems to be Solved by the Invention] However, such conventional card conveyance devices require many accessory parts such as bearing members, gears, belts, and pulleys in addition to the drive motor and conveyance means. This increases the number of parts and assembly man-hours, making it expensive. If gears are used, backlash prevents high-precision feeding and positioning, and the equipment is limited by the size of the drive motor, rollers, etc. There was a limit to how lightweight and thin the product could be.

したがって、本発明は上述したような従来の問題点に鑑
みてなされたもので、その目的とするところは、超音波
振動を駆動エネルギ源として使用することにより、部品
点数および組立工数の大幅な削減と、軽量薄形化を可能
にした搬送装置を提供することにある。
Therefore, the present invention has been made in view of the conventional problems as described above, and its purpose is to significantly reduce the number of parts and assembly man-hours by using ultrasonic vibration as a drive energy source. Another object of the present invention is to provide a conveying device that is lightweight and thin.

[課題を解決するための手段] 本発明は上記目的を達成するために、移動体を保持する
搬送台と、この搬送台を案内保持するガイドと、前記搬
送台の運動伝達面に接触するように前記搬送台の下方に
配設された振動体と、この振動体に取り付けられた圧電
素子と、この圧電素子に高周波電圧を印加する高周波電
源とを備え、前記振動体は、搬送方向に延在する第1振
動板と、搬送方向と直交する方向に延在する前後一対の
第2振動板とで平面視H型に形成されて、第2振動板の
各端面が前記運動伝達面に接触し、前記圧電素子は、前
記第1振動板にその長手方向の縦振動を発生させる第1
圧電素子と、前記第2振動板にその長手方向の縦振動を
発生させる第2圧電素子とで構成され、これらの第1お
よび第2圧電素子に印加される高周波電圧の位相を90
″異ならせたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a conveyance table that holds a movable body, a guide that guides and holds the conveyance table, and a guide that contacts a motion transmission surface of the conveyance table. includes a vibrating body disposed below the conveyance table, a piezoelectric element attached to the vibrating body, and a high-frequency power source that applies a high-frequency voltage to the piezoelectric element, and the vibrating body extends in the conveyance direction. A first diaphragm located in the diaphragm and a pair of front and rear second diaphragms extending in a direction perpendicular to the conveying direction form an H-shape in plan view, and each end surface of the second diaphragm contacts the motion transmission surface. The piezoelectric element generates longitudinal vibration in the longitudinal direction of the first diaphragm.
It is composed of a piezoelectric element and a second piezoelectric element that generates longitudinal vibration in the longitudinal direction of the second diaphragm, and the phase of the high frequency voltage applied to these first and second piezoelectric elements is adjusted to 90°.
``It is different.

また、本発明は上記目的を達成するために、移動体を保
持する搬送台と、この搬送台を案内保持するガイドと、
前記搬送台の運動伝達面に接触するように前記搬送台の
下方に配設された振動体と、この振動体に取り付けられ
た圧電素子と、この圧電素子に高周波電圧を印加する高
周波電源とを備え、前記振動体は、搬送方向に延在する
左右一対の第1振動板と、搬送方向と直交する方向に延
在する前後一対の第2振動板とで平面視矩形枠型に形成
されて5少なくとも第2fi動板の各端面が前記運動伝
達面に接触し、前記圧電素子は、前記第1振動板にその
長手方向の縦振動を発生させる第1圧電素子と、前記第
2振動板にその長手方向の縦振動を発生させる第2圧電
素子とで構成され、これらの第1および第2圧電素子に
印加される高周波電圧の位相を90°異ならせたもので
ある。
Further, in order to achieve the above object, the present invention includes a conveyance table that holds a moving body, a guide that guides and holds this conveyance table,
A vibrating body disposed below the conveying table so as to be in contact with a motion transmission surface of the conveying table, a piezoelectric element attached to the vibrating body, and a high-frequency power source applying a high-frequency voltage to the piezoelectric element. The vibrating body is formed into a rectangular frame shape in plan view, including a pair of left and right first diaphragms extending in the conveyance direction and a pair of front and rear second diaphragms extending in a direction perpendicular to the conveyance direction. 5. Each end surface of at least the second fi moving plate contacts the motion transmission surface, and the piezoelectric element includes a first piezoelectric element that generates longitudinal vibration in the longitudinal direction of the first vibration plate, and a first piezoelectric element that generates longitudinal vibration in the longitudinal direction of the first vibration plate; and a second piezoelectric element that generates longitudinal vibration in the longitudinal direction, and the phases of the high-frequency voltages applied to the first and second piezoelectric elements are made to differ by 90 degrees.

「作用コ 本発明において、第1圧電素子に高周波電圧を印加する
と、第1振動板にはその長手方向の縦振動が発生し、第
2圧電素子に高周波電圧を印加すると第2振動板に同じ
くその長手方向の縦振動が発生する。第1および第2圧
電素子に印加する高周波電圧の位相差Φ−90°にする
と、第1および第2振動板の振動が互いに干渉して合成
され多重モード振動を起こすことから、第2振動板の搬
送台の運動伝達面に接触する端面の任意の質点に楕円運
動を発生させる。第2振動板がその長手方向に振動して
端面が前記搬送台の運動伝達面と接散、離間するように
なると、接触時の摩擦力により搬送台を前記楕円運動の
回転方向に移動させる。
In the present invention, when a high-frequency voltage is applied to the first piezoelectric element, longitudinal vibration occurs in the first diaphragm in its longitudinal direction, and when a high-frequency voltage is applied to the second piezoelectric element, the second diaphragm also generates longitudinal vibration. Longitudinal vibration occurs in the longitudinal direction.If the phase difference between the high-frequency voltages applied to the first and second piezoelectric elements is set to Φ-90°, the vibrations of the first and second diaphragms interfere with each other and are combined, resulting in multiple modes. Since the vibration is caused, an elliptical motion is generated at an arbitrary mass point on the end surface of the second diaphragm that contacts the motion transmission surface of the transport platform.The second diaphragm vibrates in its longitudinal direction, causing the end surface to move When it comes into contact with and separates from the motion transmission surface, the frictional force at the time of contact causes the conveyance table to move in the rotational direction of the elliptical motion.

そして印加電圧の位相差Φ=−90°にすると、楕円運
動の回転方向が反転するため、搬送台を反対方向に移動
させる。平面視矩形枠型の振動体においては第1振動板
の外側面も搬送台の運動案内面に接触させることが可能
で、平面視H型の振動体と比較して大きな駆動力を発生
させる。
Then, when the phase difference of the applied voltages is set to Φ=-90°, the rotational direction of the elliptical motion is reversed, so the conveyance table is moved in the opposite direction. In the vibrating body having a rectangular frame shape in plan view, the outer surface of the first diaphragm can also be brought into contact with the movement guide surface of the conveyance table, and a larger driving force is generated compared to the vibrating body having an H shape in plan view.

[実施例] 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
[Example] Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は本発明に係る搬送装置の一実施例を示す平面図
、第2図は断面図、第3図は振動体の平面図である。こ
れらの図において、1はテレホンカード等の磁気カード
(移動体)、2は磁気カード1を保持する板状の搬送台
で、この搬送台2の上面には磁気カード1を収容するカ
ード収納溝3が長手方向、すなわち搬送方向(矢印A方
向)全長に亙って形成され、下面には対向する内側面が
運動伝達面4a、4bを構成する左右一対の突状体5A
、5Bが長手方向全長に亙って形成されている。
FIG. 1 is a plan view showing an embodiment of a conveying device according to the present invention, FIG. 2 is a sectional view, and FIG. 3 is a plan view of a vibrating body. In these figures, 1 is a magnetic card (moving object) such as a telephone card, 2 is a plate-shaped carrier that holds the magnetic card 1, and the upper surface of this carrier 2 has a card storage groove that accommodates the magnetic card 1. 3 is formed over the entire length in the longitudinal direction, that is, in the conveyance direction (direction of arrow A), and on the lower surface, a pair of left and right protrusions 5A whose opposing inner surfaces constitute motion transmission surfaces 4a and 4b are formed.
, 5B are formed over the entire length in the longitudinal direction.

6は基台で、この基台6上には搬送方向に沿って長く延
在する左右一対のガイド7A、7Bが対設されており、
これらのガイド7A、7Bの上端部で互いに対向する内
側面には前記搬送台2の両側端部2a、2bを摺動自在
に案内保持するガイド溝8A、8Bが形成され、また基
台6の表面で両ガイド7A、7B間には前記搬送台2の
駆動手段9が保持部材10を介して配置されている。
6 is a base, and on this base 6, a pair of left and right guides 7A and 7B extending long along the conveyance direction are provided oppositely.
Guide grooves 8A and 8B are formed on the inner surfaces of the upper ends of these guides 7A and 7B, which are opposed to each other, to guide and hold the opposite ends 2a and 2b of the carrier 2 in a slidable manner. A driving means 9 for the conveyance table 2 is disposed on the surface between the guides 7A and 7B via a holding member 10.

前記駆動手段9は、リニア型超音波モータを形成するも
ので、振動体11と、この振動体11の表面に接合され
たPZT等からなる圧電素子12とで構成されている。
The driving means 9 forms a linear ultrasonic motor, and is composed of a vibrating body 11 and a piezoelectric element 12 made of PZT or the like bonded to the surface of the vibrating body 11.

振動体11は、平面視H形に形成されることにより、搬
送方向に長く延在する板状の第1@動板11Aと、搬送
方向と直交する方向にそれぞれ延在し中央部が前記第1
振動板11Aの両端に接合された何後一対からなる板状
の第2振動板11 B (llla、1llb >とで
構成され、各第2振動板111a、111bの両端面1
3が前記搬送台2の運動伝達面4a、4bにそれぞれ接
触している。なお、第1振動板11Aと第2振動板11
Bの固有振動数は等しい。
The vibrating body 11 is formed into an H-shape in a plan view, and has a plate-shaped first moving plate 11A that extends long in the conveyance direction, and a central portion that extends in a direction perpendicular to the conveyance direction. 1
A plate-shaped second diaphragm 11B (lla, 1llb) is connected to both ends of the diaphragm 11A, and both end surfaces 1 of each of the second diaphragms 111a and 111b are connected to both ends of the diaphragm 11A.
3 are in contact with the motion transmission surfaces 4a and 4b of the conveyance table 2, respectively. Note that the first diaphragm 11A and the second diaphragm 11
The natural frequencies of B are equal.

前記保持部材10は、第111ii動板11Aの1次の
tIIi動時において節部となる位置に位置づけられて
いる。
The holding member 10 is positioned at a position that becomes a node during the first tIIi movement of the 111ii movement plate 11A.

前記圧電素子12は、前記第1振動板11Aにその長手
方向、すなわち搬送方向の一次(Ll)の縦振動S1を
発生させる第1圧電素子12Aと、各第2振動板111
a、111bにそれぞれその長手方向、すなわち搬送方
向と直交する方向の一次(LL)の縦振動S2を発生さ
せる第2圧電素子12 B (112a、112b )
とで構成されている。そして、第1および第2圧電素子
12A、12Bは第1および第2の高周波電源14.1
5 (15a、15b)にそれぞれ接続されている。
The piezoelectric element 12 includes a first piezoelectric element 12A that generates a first-order (Ll) longitudinal vibration S1 in the longitudinal direction of the first diaphragm 11A, that is, in the transport direction, and each second diaphragm 111.
Second piezoelectric elements 12B (112a, 112b) that generate first-order (LL) longitudinal vibration S2 in the longitudinal direction of a and 111b, that is, in the direction orthogonal to the conveyance direction.
It is made up of. The first and second piezoelectric elements 12A and 12B are connected to the first and second high frequency power sources 14.1.
5 (15a, 15b), respectively.

この場合、第1および第2の高周波電源14.15によ
って第1および第2圧電素子12A、12Bに印加され
る高周波電圧(sinωt、c。
In this case, a high frequency voltage (sin ωt, c) is applied to the first and second piezoelectric elements 12A, 12B by the first and second high frequency power supplies 14.15.

Sωt)は、相互に時間的位相差Φが90°異なってい
る。また各第2圧電素子112a、112bに印加され
る高周波電圧(+c o sωt、−CO5ωt)は互
いに位相差Φが180°異なっている。
Sωt) have a temporal phase difference Φ of 90° from each other. Further, the high frequency voltages (+cosωt, -CO5ωt) applied to each of the second piezoelectric elements 112a and 112b have a phase difference Φ of 180° from each other.

このような構成からなる搬送装置において、第1圧電素
子12Aおよび第2圧電素子112a、112bに第1
、第2振動板11A、IIBの固有振動数と一致する3
0KHz〜40KHzの高周波電圧sinωt、+co
sωt+−cosωtをそれぞれ印加してこれらを2相
駆動する。すると、第1圧電素子12Aはその面方向で
搬送方向(矢印A方向)に伸びたり、縮んだりして第1
振動板11Aにその長手方向の一次の縦振動を発生させ
る。一方、第2圧電素子112a、112bはその面方
向で搬送方向と直交する方向にそれぞれ伸びたり、縮ん
だりし、第2振動板111a、111bにその長手方向
の一次の縦振動を発生させる。但し、印加電圧(+co
sωt、−cosωt)の位相差Φが180°異なるこ
とから、第2振動板111aと第2振動板111bの伸
縮モードが反対になる。すなわち、第2振動板111a
は、第2振動板111bが縮むと伸び、反対に伸びると
縮む、このような第1振動板11Aの振動S1と第2振
動板111a、111bの振動S2はいずれも定在波で
、振動方向が第3図矢印方向の時、互いに同調している
ものとする。そして、これらの定在波が相互に干渉を起
こして合成されると、多重モード振動となり、この振動
による振動体11と搬送台2との接触によるrg!擦力
が搬送台2の搬送力に変換される。
In the conveyance device having such a configuration, the first piezoelectric element 12A and the second piezoelectric elements 112a, 112b have a first
, 3, which matches the natural frequency of the second diaphragm 11A, IIB.
High frequency voltage sinωt, +co from 0KHz to 40KHz
These are driven in two phases by respectively applying sωt+−cosωt. Then, the first piezoelectric element 12A expands or contracts in the conveying direction (arrow A direction) in its surface direction, and the first piezoelectric element 12A
A primary longitudinal vibration is generated in the longitudinal direction of the diaphragm 11A. On the other hand, the second piezoelectric elements 112a and 112b extend and contract, respectively, in a direction perpendicular to the conveying direction in their plane directions, and generate primary longitudinal vibration in the longitudinal direction of the second diaphragms 111a and 111b. However, the applied voltage (+co
Since the phase difference Φ of sωt, -cosωt) differs by 180°, the expansion and contraction modes of the second diaphragm 111a and the second diaphragm 111b are opposite. That is, the second diaphragm 111a
The vibration S1 of the first vibration plate 11A and the vibration S2 of the second vibration plates 111a and 111b are both standing waves, and the vibration direction is When they are in the direction of the arrow in FIG. 3, it is assumed that they are in sync with each other. When these standing waves interfere with each other and are combined, multi-mode vibration occurs, and the contact between the vibrating body 11 and the carrier 2 due to this vibration causes rg! The frictional force is converted into a conveying force of the conveying table 2.

すなわち、振動体11の側端面の質点のうち、搬送台2
の運動伝達面4a、4bに接触する各第2振動板111
a、111bの各端面13における質点P1、P2に着
目すると、これらの質点P1、P2は振動体11自体の
多重モード振動に伴い搬送方向と同方向に回転する楕円
運動20(横振幅U、縦振幅W)を行っており、その頂
点における振動速度は v=2πfu(fは振動の周波数) で表される。このような楕円運動20を行う2つの質点
P1、P2は第2振動板111a、111bが伸長した
際、前記運動伝達面4a、4bに当接し、収縮した際運
動伝達面4a、4bから離間するため、当接時における
これら相互間の摩擦力によって搬送台2を楕円運動20
の回転方向に微少量移動させ、時間的経過に伴う各第2
振動板111a、111bの収縮により、質点P1、P
2が運動伝達面4a、4bから離間すると、搬送台2を
移動させることができず、このような動作を繰り返し行
うことにより搬送台2を搬送方向に一定速度で移動させ
ることができるものである。この結果、磁気カード1は
搬送台2と共にガイド7A、7Bに沿って所望位置に移
動されることになる。
That is, among the mass points on the side end surface of the vibrating body 11, the transport platform 2
each second diaphragm 111 in contact with the motion transmission surfaces 4a, 4b of
Focusing on the mass points P1 and P2 on each end face 13 of the vibrating body 11 itself, these mass points P1 and P2 exhibit an elliptical motion 20 (transverse amplitude U, vertical amplitude W), and the vibration velocity at the apex is expressed as v=2πfu (f is the frequency of vibration). The two mass points P1 and P2 that perform such an elliptical motion 20 come into contact with the motion transmission surfaces 4a and 4b when the second diaphragms 111a and 111b extend, and separate from the motion transmission surfaces 4a and 4b when they contract. Therefore, due to the frictional force between them when they come into contact, the conveyor table 2 is moved in an elliptical motion 20.
, and each second
Due to the contraction of the diaphragms 111a and 111b, the mass points P1 and P
2 is separated from the motion transmission surfaces 4a and 4b, the conveyance table 2 cannot be moved, and by repeating such an operation, the conveyance table 2 can be moved at a constant speed in the conveyance direction. . As a result, the magnetic card 1 is moved together with the carrier 2 to a desired position along the guides 7A and 7B.

次に、第1、第2圧電素子12A、12Bに対する印加
電圧の位相差Φを反転(Φ=−90°)すると、第1振
動板1.1Aと第2振動板11B(111a、1llb
)の振動周期が上記とは逆になるため、質点P1、P2
の楕円運動20の回転方向が反対方向となり、搬送台2
を搬送方向と反対方向に移動させ、もって搬送台2の往
復移動を可能にする。
Next, when the phase difference Φ of the voltages applied to the first and second piezoelectric elements 12A and 12B is reversed (Φ=-90°), the first diaphragm 1.1A and the second diaphragm 11B (111a, 1llb
) is opposite to the above, so the mass points P1 and P2
The rotational direction of the elliptical motion 20 is in the opposite direction, and the transport platform 2
is moved in the opposite direction to the transport direction, thereby making it possible to reciprocate the transport platform 2.

第4図は本発明の他の実施例を示す振動体の平面図であ
る。この実施例は振動体11を4辺の長さが等しい四角
な枠型に形成することにより、搬送方向と平行な左右一
対の第1振動板30(30a、30b)と、搬送方向と
直交する方向において平行に対向する前後一対の第2振
動板31(31a、31b)とで構成したものである。
FIG. 4 is a plan view of a vibrating body showing another embodiment of the present invention. In this embodiment, the vibrating body 11 is formed into a rectangular frame shape with equal lengths on four sides, so that a pair of left and right first vibrating plates 30 (30a, 30b) parallel to the conveying direction and a pair of first vibrating plates 30 (30a, 30b) perpendicular to the conveying direction are formed. It is composed of a pair of front and rear second diaphragms 31 (31a, 31b) that face each other in parallel in the direction.

各第1振動板30a、30bには第1圧電素子12Aが
それぞれ取付けられており、この第1圧電素子12Aは
、各第1振動板30a、30bの長手方向の1次の縦振
動時における節部に位置づけられている。その他の構成
は上記実施例と略同様である。
A first piezoelectric element 12A is attached to each of the first diaphragms 30a, 30b, and the first piezoelectric element 12A is a node at the time of first-order longitudinal vibration in the longitudinal direction of each of the first diaphragms 30a, 30b. It is located in the department. The other configurations are substantially the same as those of the above embodiment.

このような構成において、第1圧電素子12Aおよび第
2圧電素子12Bにそれぞれ高周波電圧s inωt、
+cosωt+−cosωtを印加すると、第1振動板
30と第2振動板31がそれぞれその長手方向に1次の
縦振動S1、S2を起こし、これら振動が互いに干渉し
て合成され多重モード振動を起こすと、上記実施例と同
様、第2振動板31の各端面の任意の質点が楕円運動を
行うため、搬送台を搬送方向に移動させることができる
。なお、−cosωtの印加は圧電素子を裏返して接着
することにより+cosωtの電源を兼用することもで
きる。
In such a configuration, high frequency voltages s inωt,
When +cosωt+-cosωt is applied, the first diaphragm 30 and the second diaphragm 31 cause first-order longitudinal vibrations S1 and S2 in their longitudinal directions, and these vibrations interfere with each other and are combined to cause multimode vibration. As in the above embodiment, arbitrary mass points on each end surface of the second diaphragm 31 perform elliptical motion, so that the conveyance table can be moved in the conveyance direction. Note that for the application of -cosωt, the piezoelectric element can also be used as a +cosωt power source by turning it upside down and bonding it.

第5図は更に本発明の他の実施例を示す振動体の平面図
である。この実施例は上記実施例の変形例で、振動体1
1を搬送方向に長い矩形枠型とし、同方向に延在する一
対の第1振動板30 (30a、30b)にそれぞれ第
1圧電素子12Aを取り付けてその長手方向に2次(L
2)の縦振動を発生させるようにしたものである。第1
振動板30と第2振動板31の固有振動数は等しい。
FIG. 5 is a plan view of a vibrating body showing another embodiment of the present invention. This embodiment is a modification of the above embodiment, in which the vibrating body 1
1 has a rectangular frame shape that is long in the transport direction, and a first piezoelectric element 12A is attached to each of a pair of first diaphragms 30 (30a, 30b) extending in the same direction, and a secondary (L)
2) is designed to generate longitudinal vibration. 1st
The natural frequencies of the diaphragm 30 and the second diaphragm 31 are equal.

このような構成においては第1振動板30を長くした分
、搬送距離をかせげる。また、第4図P1、P2の楕円
運動においては周期が半周期骨ずれているため、滑らか
な搬送が期待でき、第5図の場合は同周期であり、微視
的にみて大きな搬送駆動力を得られる。
In such a configuration, the length of the first diaphragm 30 increases the conveyance distance. In addition, in the elliptical motions shown in P1 and P2 in Fig. 4, the period is shifted by half a period, so smooth conveyance can be expected. You can get

なお、本発明においては振動体11の第1および第2振
動板にその長平方向の低次の縦振動を発生させるように
した例を示したが、これに限らず振動モードの次数を2
次、3次・・・等自由に変え得るものである。また、そ
の時の次数に応じた節の数まで複数個の圧電素子を配設
し、駆動力を増すことができる。
In the present invention, an example has been shown in which low-order longitudinal vibration is generated in the longitudinal direction of the first and second diaphragms of the vibrating body 11, but the present invention is not limited to this.
It can be changed freely, such as next, third, etc. Further, by arranging a plurality of piezoelectric elements up to the number of nodes corresponding to the order at that time, the driving force can be increased.

[発明の効果コ 以上説明したように本発明に係る搬送装置は、圧電素子
を備えた振動体を駆動源とし、この振動体を搬送方向に
延在する第1振動板と、搬送方向と直交する方向に延在
する第2振動板とでH型または矩形枠型に形成し、少な
くとも第2WR動板の端面を搬送台の運動伝達面に接触
させ、前記圧電素子により、第1および第2振動板にそ
の長手方向の縦振動を発生させるように構成したので、
これら両振動の干渉合成により第2振動板の端面の質点
が楕円運動を行い、この楕円運動による前記質点と前記
搬送台の運動伝達面との間の摩擦力により搬送台を楕円
運動の回転方向に移動させることができ、したがって従
来必要不可欠とされていた駆動モータ、ローラ、搬送ベ
ルト等の搬送手段が不要で、部品の削減と、大幅な軽量
薄形化を可能とし、また歯車によるバックラッシュの影
響もないので、磁気カード、プリンタの給紙、値札等の
移動体を高精度に移動、位置決めすることができ、装置
の軽量薄形化を実現し得る。また、矩形枠型の振動体に
おいてはH型に比べて振動伝達面との接触面積を太きく
ることができるため、大きな駆動力を得ることができる
[Effects of the Invention] As explained above, the conveying device according to the present invention uses a vibrating body provided with a piezoelectric element as a driving source, and connects this vibrating body to a first vibrating plate extending in the conveying direction and perpendicular to the conveying direction. The second WR motion plate is formed into an H-shape or a rectangular frame shape with a second vibration plate extending in the direction of Since the diaphragm is configured to generate longitudinal vibration in its longitudinal direction,
Due to the interference synthesis of both of these vibrations, the mass point on the end surface of the second diaphragm moves in an elliptical motion, and the friction force between the mass point and the motion transmission surface of the conveyance table due to this elliptical motion moves the conveyance table in the rotational direction of the elliptical motion. Therefore, there is no need for conveyance means such as drive motors, rollers, and conveyor belts, which were previously considered indispensable.This reduces the number of parts and makes it possible to significantly reduce weight and thickness, and also eliminates backlash caused by gears. Therefore, movable objects such as magnetic cards, printer paper feed, price tags, etc. can be moved and positioned with high precision, and the device can be made lighter and thinner. Further, in the case of a rectangular frame type vibrating body, the contact area with the vibration transmission surface can be made larger than that of the H type vibrating body, so that a large driving force can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る搬送装置の一実施例を示す平面図
、第2図は断面図、第3図は振動体の平面図、第4図は
本発明の他の実施例を示す振動体の平面図、第5図は本
発明の更に他の実施例を示す振動体の平面図である。 ■・・・磁気カード、2・・ 搬送台、4a、4b・・
・運動伝達面、7A、7B・・・ガイド、9・・・駆動
手段、11・・・振動体、11人・・・第1振動板、1
1B・・・第2振動板、12・・・圧電素子、12A・
・・・第1圧電素子、12B・・・第2圧電素子、14
.15・・・高周波電源、Pl、P2・・・質点。 特許出願人   株式会社田村電機製作所代 理 人 
   山  川  政  樹手続補正書(自発) 補正の内容 第5図を別紙の通り補正する。
FIG. 1 is a plan view showing one embodiment of the conveying device according to the present invention, FIG. 2 is a sectional view, FIG. 3 is a plan view of a vibrating body, and FIG. 4 is a vibration showing another embodiment of the present invention. FIG. 5 is a plan view of a vibrating body showing still another embodiment of the present invention. ■... Magnetic card, 2... Transport platform, 4a, 4b...
- Motion transmission surface, 7A, 7B... Guide, 9... Drive means, 11... Vibrating body, 11 people... First diaphragm, 1
1B...Second diaphragm, 12...Piezoelectric element, 12A.
...first piezoelectric element, 12B...second piezoelectric element, 14
.. 15...High frequency power supply, Pl, P2... Mass point. Patent applicant Tamura Electric Manufacturing Co., Ltd. Agent
Procedural amendment by Masaki Yamakawa (voluntary) Details of the amendment Figure 5 will be amended as shown in the attached sheet.

Claims (2)

【特許請求の範囲】[Claims] (1)移動体を保持する搬送台と、この搬送台を案内保
持するガイドと、前記搬送台の運動伝達面に接触するよ
うに前記搬送台の下方に配設された振動体と、この振動
体に取り付けられた圧電素子と、この圧電素子に高周波
電圧を印加する高周波電源とを備え、前記振動体は、搬
送方向に延在する第1振動板と、搬送方向と直交する方
向に延在する前後一対の第2振動板とで平面視H形に形
成されて、第2振動板の各端面が前記運動伝達面に接触
し、前記圧電素子は、前記第1振動板にその長手方向の
縦振動を発生させる第1圧電素子と、前記第2振動板に
その長手方向の縦振動を発生させる第2圧電素子とで構
成され、これらの第1および第2圧電素子に印加される
高周波電圧の位相を90°異ならせたことを特徴とする
搬送装置。
(1) A conveyance table that holds a moving body, a guide that guides and holds the conveyance table, a vibrating body disposed below the conveyance table so as to be in contact with a motion transmission surface of the conveyance table, and a vibrating body that vibrates the conveyance table. The vibrating body includes a piezoelectric element attached to the body and a high-frequency power source that applies a high-frequency voltage to the piezoelectric element, and the vibrating body includes a first vibration plate extending in the conveying direction and a first vibrating plate extending in a direction perpendicular to the conveying direction. A pair of front and rear second diaphragms are formed into an H-shape in plan view, each end surface of the second diaphragm contacts the motion transmission surface, and the piezoelectric element is attached to the first diaphragm in the longitudinal direction. a first piezoelectric element that generates longitudinal vibration; and a second piezoelectric element that causes the second diaphragm to generate longitudinal vibration in its longitudinal direction; and a high-frequency voltage that is applied to the first and second piezoelectric elements. A conveyance device characterized in that the phases of the two are different by 90 degrees.
(2)移動体を保持する搬送台と、この搬送台を案内保
持するガイドと、前記搬送台の運動伝達面に接触するよ
うに前記搬送台の下方に配設された振動体と、この振動
体に取り付けられた圧電素子と、この圧電素子に高周波
電圧を印加する高周波電源とを備え、前記振動体は、搬
送方向に延在する左右一対の第1振動板と、搬送方向と
直交する方向に延在する前後一対の第2振動板とで平面
視矩形枠型に形成されて、少なくとも第2振動板の各端
面が前記運動伝達面に接触し、前記圧電素子は、前記第
1振動板にその長手方向の縦振動を発生させる第1圧電
素子と、前記第2振動板にその長手方向の縦振動を発生
させる第2圧電素子とで構成され、これらの第1および
第2圧電素子に印加される高周波電圧の位相を90°異
ならせたことを特徴とする搬送装置。
(2) A conveyance table that holds a moving object, a guide that guides and holds the conveyance table, a vibrating body disposed below the conveyance table so as to contact a motion transmission surface of the conveyance table, and a vibrating body that vibrates the conveyance table. The vibrating body includes a piezoelectric element attached to the body and a high-frequency power source that applies a high-frequency voltage to the piezoelectric element, and the vibrating body includes a pair of left and right first diaphragms extending in the conveying direction, and a pair of first vibrating plates extending in a direction perpendicular to the conveying direction. The piezoelectric element is formed into a rectangular frame shape in plan view with a pair of front and rear second diaphragms extending from each other, each end surface of at least the second diaphragm is in contact with the motion transmission surface, and the piezoelectric element is connected to the first diaphragm. a first piezoelectric element that generates longitudinal vibration in the longitudinal direction of the second diaphragm; and a second piezoelectric element that generates longitudinal vibration of the second diaphragm in the longitudinal direction; A conveying device characterized in that the phases of applied high frequency voltages are different by 90 degrees.
JP1095363A 1989-04-17 1989-04-17 Transport device Pending JPH02276740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095363A JPH02276740A (en) 1989-04-17 1989-04-17 Transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095363A JPH02276740A (en) 1989-04-17 1989-04-17 Transport device

Publications (1)

Publication Number Publication Date
JPH02276740A true JPH02276740A (en) 1990-11-13

Family

ID=14135547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095363A Pending JPH02276740A (en) 1989-04-17 1989-04-17 Transport device

Country Status (1)

Country Link
JP (1) JPH02276740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019509A (en) * 2012-07-12 2014-02-03 Hacchando:Kk Conveying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019509A (en) * 2012-07-12 2014-02-03 Hacchando:Kk Conveying apparatus

Similar Documents

Publication Publication Date Title
US4763776A (en) Method and apparatus for transporting an article
JP3792864B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
EP0878853A1 (en) Ultrasonic motor and ultrasonic motor-equipped electronic appliance
JPH03289370A (en) Oscillation wave motor
US5698930A (en) Ultrasonic wave motor and method of manufacture
EP0635930A1 (en) Ultrasonic motor and ultrasonic wave carrier
JPH02276740A (en) Transport device
JPH0331140A (en) Sheet feeder
EP0382253A2 (en) Sheet Feeder
JP2010172196A (en) Vibrating body, ultrasonic motor, and electronic apparatus with ultrasonic motor
JPS6059980A (en) Piezoelectric drive device
JPH02276721A (en) Transport device
KR100712591B1 (en) Omni-directional ultrasonic piezoelectric actuator system
JP2715157B2 (en) Card carrier
JPH05137359A (en) Ultrasonic vibrator and ultrasonic driving apparatus
JPH0819939B2 (en) Feed guide mechanism
JP2000125576A (en) Carrying device using vibration actuator
JPH05122949A (en) Linear actuator
JPH04145880A (en) Ultrasonic motor
JPH06141564A (en) Wave circulation actuator
JPH0469072A (en) Apparatus for carrying card
JPH04281A (en) Micro-slide device
JP2667931B2 (en) Multi-degree-of-freedom actuator
JPH0626994B2 (en) Card carrier
JPH05115846A (en) Ultrasonic vibrator and driver having the same