JPH02276565A - Apparatus for continuous enzymic reaction - Google Patents

Apparatus for continuous enzymic reaction

Info

Publication number
JPH02276565A
JPH02276565A JP9635389A JP9635389A JPH02276565A JP H02276565 A JPH02276565 A JP H02276565A JP 9635389 A JP9635389 A JP 9635389A JP 9635389 A JP9635389 A JP 9635389A JP H02276565 A JPH02276565 A JP H02276565A
Authority
JP
Japan
Prior art keywords
oxygen
membrane
dissolver
bioreactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9635389A
Other languages
Japanese (ja)
Inventor
Shigeo Sakai
酒井 重男
Shusaku Yoshida
吉田 収作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Original Assignee
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Res & Dev Assoc Bio Reactor Syst Food Ind filed Critical Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority to JP9635389A priority Critical patent/JPH02276565A/en
Publication of JPH02276565A publication Critical patent/JPH02276565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To safely, stably and readily enable reaction without microbial contamination by providing an apparatus with a specific O2 dissolver and bioreactor of an immobilized enzyme. CONSTITUTION:A substrate solution in a substrate solution reservoir tank 5 is fed to an ultraviolet ray irradiator 8 with a pump 6, sterilized and then continuously passed through one side (A) divided with a membrane 2 consisting essentially of a hollow fibrous silicone rubber having properties of passing gases therethrough without permeating liquids in an O2 dissolver 1. Oxygen gas is subsequently fed from an O2 gas cylinder 7 through a pressure reducing valve 9 to the other side (B) of the O2 dissolver 1 to increase the pressure in the dissolver 1 to 2-5kg/cm<2> and regulate the dissolved O2 concentration in the substrate solution to 50-60ppm. The resultant substrate solution is then continuously fed to a bioreactor 3 and continuously subjected to enzymic reaction with an immobilized enzyme 4 arranged in the reactor 3.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は食品産業などの分野において使用される固定化
酵素を用いた反応装置に関し、更に詳しくは、酵素反応
を連続的に行わしめるに際して問題となるバイオリアク
ター内での微生物汚染を、酵素活性を何ら阻害すること
なく抑制することのできる連続酵素反応装置に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a reaction device using an immobilized enzyme used in fields such as the food industry. This invention relates to a continuous enzyme reaction device that can suppress microbial contamination within a bioreactor without inhibiting enzyme activity.

〈従来の技術〉 食品産業の分野で用いられているパイオリチクターにお
ける微生物汚染は重大な問題であるが、まだ完全な汚染
対策はないと言って過言ではない。
<Prior Art> Microbial contamination in bioreticctors used in the food industry is a serious problem, but it is no exaggeration to say that there is still no perfect countermeasure against contamination.

汚染対策の問題点の第一は対象が食品であるため、安全
な殺菌剤がほとんどなく、たとえあっても経済的な面で
実用化が難しい点にある。また問題点の第二はバイオリ
アクターに用いる固定化酵素は熱、pH,通液流速など
の環境条件に厳しく制約があり、その条件から著しく外
れた条件下では固定化酵素自体が損傷を受けてしまう点
にある。
The first problem with contamination control is that because the target is food, there are very few safe disinfectants, and even if there are, it is difficult to put them into practical use economically. The second problem is that the immobilized enzymes used in bioreactors are subject to strict environmental conditions such as heat, pH, and flow rate, and under conditions that deviate significantly from these conditions, the immobilized enzymes themselves may be damaged. It's at the point where you can put it away.

そこで、従来行われている汚染対策としてはバイオリア
クターに通液する基質液の紫外線殺菌や、高温殺菌、あ
るいは固定化酵素に影響を与えない範囲のpH領域での
pH調整による殺菌などが行われているがその効果は必
ずしも十分でない、また、たとえ基質液の殺菌が完全に
行われたとしても、バイオリアクターを長期間連続して
運転するうちに、外部から雑菌が混入し、バイオリアク
ター中で雑菌の増殖が起こる。この対策として、バイオ
リアクターの内部および固定化酵素を定期的に薬剤で洗
浄する方法が用いられているが、この場合も薬剤の濃度
や接触時間が固定化酵素の活性に影響を及ぼす欠点があ
る。
Therefore, conventional contamination countermeasures include UV sterilization of the substrate solution passed through the bioreactor, high temperature sterilization, or sterilization by adjusting the pH within a pH range that does not affect the immobilized enzyme. However, even if the substrate solution is completely sterilized, as the bioreactor is operated continuously for a long period of time, bacteria may enter the bioreactor from outside and cause damage to the bioreactor. Bacterial growth occurs. As a countermeasure to this problem, a method is used in which the inside of the bioreactor and the immobilized enzyme are periodically cleaned with a chemical, but this method also has the disadvantage that the concentration of the chemical and the contact time affect the activity of the immobilized enzyme. .

そこで、従来から微生物汚染を防止する方法に関する研
究が種々なされているが、最近になって高橋らは、細菌
(シュウトモナス・エルギノーザ)、酵母(キャンディ
ダ・トロピカリス)、黴(アスペルギルス・ニガー)の
高溶存酵素濃度下における生育に関する研究により、い
ずれの微生物も約50〜90ppmの溶存酸素濃度下で
は国体の増殖が著しく抑制されることを報告している。
Therefore, various studies have been conducted on methods to prevent microbial contamination, but recently Takahashi et al. Studies on the growth of microorganisms under high dissolved enzyme concentrations have reported that the growth of all microorganisms is significantly suppressed under dissolved oxygen concentrations of about 50 to 90 ppm.

(例えば、J、Fer−ent、Technol、+ 
62 + 71〜75(1984)  、 Agric
、Biol、Che−、,51,257〜258 (1
987)、醗酵工学会誌、第65巻、第501〜506
頁(1987))。
(For example, J, Fer-ent, Technol, +
62 + 71-75 (1984), Agric
, Biol, Che-, , 51, 257-258 (1
987), Journal of the Fermentation Engineering Society, Volume 65, Nos. 501-506
(1987)).

また、高橋らは前記知見を酵素反応に応用し基質液中の
溶存酸素濃度を上述のような高濃度に保持した条件下で
酵素反応を行わせることにより、酵素活性を低下させる
ことなく、雑菌の増殖のみを抑制することができること
を報告している(例えば、昭和63年度日本醗酵工学要
旨集P2O4)。
In addition, Takahashi et al. applied the above findings to enzymatic reactions and performed the enzyme reaction under conditions where the dissolved oxygen concentration in the substrate solution was maintained at a high concentration as described above. It has been reported that only the proliferation of can be suppressed (for example, 1985 Japanese Fermentation Engineering Abstracts P2O4).

上述した高濃度溶存酸素法は、酵素を用いたバイオリア
クター内の微生物汚染を防止し得る可能性を有する優れ
た方法であると考えられるが、当該方法を実装置化する
に際しては基質液中にいかにして多量の酸素を溶解させ
るかということが最大のポイントとなる。
The high-concentration dissolved oxygen method described above is considered to be an excellent method that has the potential to prevent microbial contamination in a bioreactor using enzymes, but when implementing this method into a practical device, it is necessary to The most important point is how to dissolve a large amount of oxygen.

すなわち、基質液中に上述のような高濃度の溶存酸素を
付加するためには、酸素源として通常酸素ガスまたは酸
素濃度が例えば50%以上というような酸素富化ガスを
用い、当該ガスと基質液とを2〜5−/dというような
加圧下において接触させる必要がある。しかし酸素ガス
あるいは酸素富化ガスはコストが高(、従って溶解効率
の高い酸素溶解装置でないとランニングコストが著しく
高(なってしまう。
That is, in order to add the above-mentioned high concentration of dissolved oxygen to the substrate liquid, a normal oxygen gas or an oxygen-enriched gas with an oxygen concentration of, for example, 50% or more is used as the oxygen source, and the gas and the substrate are mixed together. It is necessary to contact the liquid under pressure of 2 to 5-/d. However, oxygen gas or oxygen-enriched gas is expensive (therefore, unless an oxygen dissolving device with high dissolution efficiency is used, running costs will be extremely high).

例えばこのような液体中への気体の溶解装置として良く
知られている、充填材を用いた吸収塔や散気板などの散
気装置を用いた吸収塔は、溶解効率がそれ程高くないた
めに装置が大型化するという問題点がある。更に、当該
吸収塔においては吸収されずに塔外に流出する純酸素ガ
スまたは酸素富化ガスをそのまま使い捨てにしたのでは
ランニングコストが高くなり、一方未吸収ガスを循環使
用しようとすると、装置費が高くなるとともに装置が複
雑になるという問題点もある。
For example, absorption towers using packing materials and absorption towers using diffusers such as diffuser plates, which are well-known devices for dissolving gas into liquids, are not very efficient because their dissolution efficiency is not that high. There is a problem that the device becomes larger. Furthermore, if the pure oxygen gas or oxygen-enriched gas that flows out of the tower without being absorbed in the absorption tower is disposed of as is, running costs will be high.On the other hand, if unabsorbed gas is recycled and used, equipment costs will increase. There is also the problem that as the cost increases, the equipment becomes more complex.

〈発明が解決しようとする問題点〉 本発明は前述した殺菌剤などを用いる従来の微生物汚染
対秦の欠点を解決し得る可能性のある上記高濃度溶存酸
素法の考えを踏襲し、当該方法の工業的実施を可能とす
るものであって、溶解効率をほぼ100%とし得る酸素
溶解器を備えることにより、長期間にわたり微生物の増
殖を抑制できる連続酵素反応装置を提供することを目的
とする。
<Problems to be Solved by the Invention> The present invention follows the idea of the above-mentioned high-concentration dissolved oxygen method, which has the potential to solve the drawbacks of the conventional microbial contamination method using disinfectants, etc., and solves the above-described method. The purpose of the present invention is to provide a continuous enzyme reaction device that can suppress the growth of microorganisms over a long period of time by being equipped with an oxygen dissolver that can achieve a dissolution efficiency of almost 100%. .

く問題点を解決するための手段〉 前述の目的を実現するため、本発明者らは鋭意研究を行
った結果、酸素の溶解装置として酸素ガスなどの気体は
透過させるが液体は透過させない性質を有する疎水性膜
を装着した膜ユニットを用いることにより、基質液中に
酸素を高濃度に、かつ効率よく溶解させることができ、
更に高溶存酸素濃度とした基質液をバイオリアクターに
連続通液した場合は、長期間にわたり安定して微生物の
増殖を抑制できることを知見した。
Means for Solving the Problems In order to achieve the above-mentioned object, the inventors conducted extensive research and found that an oxygen dissolving device has the property of allowing gases such as oxygen gas to pass through but not liquids. By using a membrane unit equipped with a hydrophobic membrane, it is possible to efficiently dissolve oxygen in the substrate liquid at a high concentration.
Furthermore, it was found that when a substrate solution with a high dissolved oxygen concentration was continuously passed through a bioreactor, microbial growth could be stably suppressed over a long period of time.

本発明はかかる知見に基づいてなされたものであり、気
体は通過させるが液体は透過させない性質を有する膜で
区画した一方の側に基質液を接触させるとともに、他方
の側に酸素ガスまたは酸素富化ガスを接触させることに
より、前記膜を介して基質液中に酸素を移動、溶解させ
るようになした酸素溶解器と、当該酸素溶解器によって
溶存酸素を付加された基質液を反応させるための、固定
化酵素を用いたバイオリアクターとを組み合わせたこと
を特(衣とする連続酵素反応装置である。
The present invention was made based on this knowledge, and the substrate liquid is brought into contact with one side of a membrane partitioned by a membrane that allows gases to pass through but not liquids, and the other side is provided with oxygen gas or an oxygen-rich membrane. an oxygen dissolver that moves and dissolves oxygen into the substrate liquid through the membrane by contacting with a chemical gas; and a substrate liquid to which dissolved oxygen has been added by the oxygen dissolver. This is a continuous enzyme reaction device that combines a bioreactor that uses immobilized enzymes.

〈作用〉 以下に本発明の詳細な説明する。<Effect> The present invention will be explained in detail below.

本発明における酸素溶解器に用いる膜は、気体は透過さ
せるが液体は透過させない性質を有する膜であればいか
なるものでもよく、例えばシリコンゴムを主成分とし、
物理的な微細孔を全くゆうしていない疎水性均質膜、あ
るいは四弗化エチレン製、ポリプロピレン製、ポリエチ
レン製などの膜に孔径として例えば0.02μm〜10
μm程度の微細孔を多数有した疎水性多孔質膜、あるい
はポリスルホンやセルロース樹脂のような親水性樹脂か
らなる多孔質膜の表面に、前記シリコンゴムや四弗化エ
チレン樹脂を被覆した膜などの公知の膜が例示できる。
The membrane used in the oxygen dissolver in the present invention may be any membrane as long as it allows gas to pass through but not liquid. For example, it may be made of silicone rubber as a main component,
A hydrophobic homogeneous membrane without any physical micropores, or a membrane made of tetrafluoroethylene, polypropylene, polyethylene, etc., has a pore size of, for example, 0.02 μm to 10 μm.
Hydrophobic porous membranes with many microscopic pores on the order of micrometers, or membranes coated with the silicone rubber or tetrafluoroethylene resin on the surface of a porous membrane made of a hydrophilic resin such as polysulfone or cellulose resin, etc. Examples include known membranes.

なお、上記均質膜と多孔質膜とは、その酸素透過作用に
それぞれ相違があり、微細孔を有していない均質膜の場
合はまず酸素分子が膜素材に溶解し、次いで膜中を拡散
し、そして膜素材から脱離して基質液中に溶解するのに
対し、多孔質膜の場合は酸素が直接微細孔を通過して基
質液中に移動、溶解するのであるが、いずれにしてもこ
れらの膜で区画した一方の側に基質液を接触させ、他方
の側に酸素または酸素含有ガスを接触させることにより
、膜を介して酸素を基質液中に移動、溶解させることが
できるのは同じである。
Note that the above-mentioned homogeneous membranes and porous membranes have different oxygen permeation effects. In the case of a homogeneous membrane that does not have micropores, oxygen molecules first dissolve in the membrane material and then diffuse through the membrane. , and is desorbed from the membrane material and dissolved in the substrate liquid, whereas in the case of a porous membrane, oxygen directly passes through the micropores and moves into the substrate liquid and dissolves in the substrate liquid. By bringing the substrate liquid into contact with one side of the membrane and bringing oxygen or an oxygen-containing gas into contact with the other side, oxygen can be transferred and dissolved into the substrate liquid through the membrane. It is.

以下に本発明装置の具体的構成について説明する。The specific configuration of the device of the present invention will be explained below.

第1図は本発明の実施態様の一例を示すフローの説明図
であり、1は気体は透過させるが液体は透過させない性
質を有する膜2を装着した酸素溶解器である。当該酸素
溶解器lは、膜2によって区画した一方の側Aに基質液
を通流させ得るように、また他方の側Bに酸素ガスを供
給し得るように構成する。なお、当該他方の側には酸素
ガスの流出口を設けず、供給した酸素ガスの全量を基質
液中に移動させるように構成する。3は当該酸素溶解器
2の後段に接続した、固定化酵素4を用いたバイオリア
クターであり、第1図では例えば粒状の担体に酵素を固
定化してなる固定化酵素4を塔内に充填した、充填層型
のバイオリアクタ゛−を示しである。また、5は基質液
を貯留するための基質液貯留槽であり、6は当該貯留槽
内の基質液を酸素溶解器lの前記膜2で区画された一方
の側Aに供給するためのポンプであり、更に7は前記膜
2で区画された他方の側Bに供給すべき、酸素ガスを収
容した酸素ボンベである。なお、8は前記ポンプ6と、
酸素溶解器1との間に設けた紫外線照射装置であり、当
該紫外線照射装置8は基質液中に当初から存在する細菌
類を殺菌するためのものであって、基質液中に存在する
細菌類の量が少ない場合には当該紫外線照射装置8を省
略してもよい。また、9は酸素ボンベ7と酸素溶解器1
とを連通ずる配管の途中に付設した減圧弁である。
FIG. 1 is an explanatory diagram of a flow showing an example of an embodiment of the present invention, and 1 is an oxygen dissolver equipped with a membrane 2 that allows gas to pass through but not liquid. The oxygen dissolver 1 is configured so that a substrate liquid can flow through one side A partitioned by the membrane 2, and oxygen gas can be supplied to the other side B. Note that the other side is not provided with an oxygen gas outlet, and is configured so that the entire amount of the supplied oxygen gas is transferred into the substrate liquid. 3 is a bioreactor connected to the rear stage of the oxygen dissolver 2 and using an immobilized enzyme 4. In FIG. , which shows a packed bed type bioreactor. Further, 5 is a substrate liquid storage tank for storing the substrate liquid, and 6 is a pump for supplying the substrate liquid in the storage tank to one side A partitioned by the membrane 2 of the oxygen dissolver l. Further, 7 is an oxygen cylinder containing oxygen gas to be supplied to the other side B partitioned by the membrane 2. Note that 8 is the pump 6,
This is an ultraviolet irradiation device installed between the oxygen dissolver 1 and the ultraviolet irradiation device 8, which is used to sterilize bacteria existing in the substrate liquid from the beginning. If the amount of UV radiation is small, the ultraviolet irradiation device 8 may be omitted. In addition, 9 is an oxygen cylinder 7 and an oxygen dissolver 1
This is a pressure reducing valve installed in the middle of the piping that communicates with the

次に操作について説明すると、まずポンプ6を駆動させ
て基質液貯留槽5内の基質液を紫外線照射装置8内に供
給し、紫外線照射を行って予め基質液の殺菌を行う9次
いで、当該殺菌後の基質液を酸素溶解器1内の、膜2で
区画した一方の側Aに供給して酸素溶解器1内に連続し
て通流させ、一方当該酸素溶解器1内の、膜2で区画し
た他方の側Bには減圧弁9を介して酸素ボンベ7から酸
素ガスを供給する。
Next, to explain the operation, first, the pump 6 is driven to supply the substrate liquid in the substrate liquid storage tank 5 into the ultraviolet irradiation device 8, and the substrate liquid is sterilized in advance by ultraviolet irradiation. The subsequent substrate liquid is supplied to one side A of the oxygen dissolver 1 partitioned by the membrane 2 and allowed to flow continuously through the oxygen dissolver 1, while the substrate liquid is supplied to one side A of the oxygen dissolver 1 partitioned by the membrane 2, Oxygen gas is supplied to the other partitioned side B from an oxygen cylinder 7 via a pressure reducing valve 9.

このようなフローにより、膜2を介して基質液中に酸素
を移動、溶解させることができる。この場合、酸素の溶
解度は酸素溶解器1系内の圧力の上昇とともに増大する
が、後段のバイオリアクター3内での雑菌の増殖を抑制
するためには基質液中の溶存酸素濃度を50〜60pp
m以上とする必要があり、そのため通常は酸素溶解器1
系内の圧力を2〜5kg/d程度に加圧するとよい、ま
た、酸素溶解器1系内における酸素ガス側の圧力の方が
、基質液側の圧力より若干高くなるように制御するとよ
い。
Such a flow allows oxygen to be moved and dissolved into the substrate liquid through the membrane 2. In this case, the solubility of oxygen increases as the pressure within the oxygen dissolver 1 system increases, but in order to suppress the growth of bacteria in the subsequent bioreactor 3, the dissolved oxygen concentration in the substrate solution must be reduced to 50 to 60 pp.
m or more, so usually an oxygen dissolver 1
The pressure in the system is preferably increased to about 2 to 5 kg/d, and the pressure on the oxygen gas side in the oxygen dissolver 1 system is preferably controlled to be slightly higher than the pressure on the substrate liquid side.

次いで、酸素溶解器lにより所定量の溶存酸素を付加し
た基質液を、後段のバイオリアクター3に連続的に供給
し、酵素反応を行わせる。なお、本発明装置においてば
、酸素溶解器1以後の配管内やバイオリアクター3内も
前記酸素溶解器l系内とほぼ同じ圧力条件に維持し、基
質液中に付加された溶存酸素が配管内やバイオリアクタ
ー3内などで気泡となって放出されるのを防止する必要
がある。当該バイオリアクター3においては、流入基質
液の高濃度溶存酸素化によって塔内での雑菌の増殖を確
実に防止することができ、従って長期間安定した酵素反
応を行うことができる。
Next, the substrate liquid to which a predetermined amount of dissolved oxygen has been added by the oxygen dissolver 1 is continuously supplied to the subsequent bioreactor 3 to perform an enzyme reaction. In addition, in the apparatus of the present invention, the inside of the piping after the oxygen dissolver 1 and the inside of the bioreactor 3 are maintained at almost the same pressure conditions as the inside of the oxygen dissolver 1 system, so that the dissolved oxygen added in the substrate liquid is kept within the piping. It is necessary to prevent the gas from being released as bubbles inside the bioreactor 3 or the like. In the bioreactor 3, the growth of various bacteria within the column can be reliably prevented by high-concentration dissolved oxygenation of the inflowing substrate liquid, and therefore a stable enzymatic reaction can be performed for a long period of time.

本発明における酸素溶解器に用いる膜の形状はホローフ
ァイバー状、チューブ状、スパイラル状、平膜状など、
どのようなものでもよいが、通常はホローファイバー状
あるいはチューブ状のものを用いるのがよく、これらホ
ローファイバーあるいはチューブの内側を前述した一方
の側としてその一端からホローファイバー内あるいはチ
ューブ内に基質液を通過させ、その外側に酸素ガスまた
は酸素富化ガスを供給することによりこれらの膜の外側
から内側に酸素を移動させ、溶存酸素を付加した基質液
をホローファイバーあるいはチューブの他端から取り出
すように構成する。
The shape of the membrane used in the oxygen dissolver in the present invention includes hollow fiber shape, tube shape, spiral shape, flat membrane shape, etc.
Any type of material may be used, but it is usually best to use a hollow fiber or tube shape. By passing oxygen gas or oxygen-enriched gas to the outside of the membrane, oxygen is moved from the outside to the inside of these membranes, and the substrate liquid with dissolved oxygen added thereto is taken out from the other end of the hollow fiber or tube. Configure.

次に、本発明に用いるバイオリアクタは、上述のような
充填層型のものに限らず、管理、検量、膜もしくはフィ
ルム型のいわゆるメンブレンバイオリアクターなど、酵
素反応に通常使用されるバイオリアクターであればいか
なるものでもよいが、特に加圧可能な構造のバイオリア
クターが好適である。
Next, the bioreactor used in the present invention is not limited to the packed bed type described above, but may be any bioreactor commonly used for enzyme reactions, such as a control, calibration, membrane or film type so-called membrane bioreactor. Any type of bioreactor may be used, but a bioreactor with a structure that can be pressurized is particularly suitable.

なお、上述の実施態様では、酸素溶解器に供給するガス
として酸素ガスを用いた例について説明したが、本発明
においては酸素ガスの代わりに酸素富化ガスを用いるこ
ともでき、その場合に使用する酸素富化ガスとしては酸
素濃度が高いほど好ましいが、通常は酸素濃度50%以
上のものを用いるとよい。
In addition, in the above-mentioned embodiment, an example was explained in which oxygen gas was used as the gas supplied to the oxygen dissolver, but in the present invention, oxygen-enriched gas can also be used instead of oxygen gas, and in that case, the The higher the oxygen concentration, the more preferable the oxygen-enriched gas is, but it is usually best to use an oxygen-enriched gas with an oxygen concentration of 50% or more.

く効果〉 以上説明したごとく気体は透過させるが液体は透過させ
ない性質を有する膜を装着した酸素溶解器を用いること
により、基質液中に酸素を高濃度に、かつ効率よく溶解
させることができ、従って従来の吸収塔に比べて酸素溶
解装置がコンパクトになる。また、酸素濃度を高めた基
質液を後段のバイオリアクターに供給することによって
バイオリアクター内での雑菌の増殖を確実に抑制するこ
とができる。
Effect> As explained above, by using an oxygen dissolver equipped with a membrane that allows gas to pass through but not liquid, oxygen can be efficiently dissolved in the substrate liquid at a high concentration. Therefore, the oxygen dissolving device becomes more compact than a conventional absorption tower. Furthermore, by supplying a substrate liquid with increased oxygen concentration to the subsequent bioreactor, it is possible to reliably suppress the growth of germs within the bioreactor.

更に本発明装置は、■極めて簡単な操作で非常に安定し
た酸素濃度管理が可能である。■酸素溶解器内に供給さ
れる酸素は、基質液側にほぼ100%移行し、従って酸
素の浪費がない、■膜を介して移動した酸素は基質液中
に完全に溶解され、気泡のまま存在することが全くない
ので、当該基質液をパイ、オリアクタ−内に導入しても
バイオリアクター上部などの空間部に酸素ガスが蓄積す
る恐れはほとんどなく、よって爆発の危険性がない。
Furthermore, the device of the present invention allows extremely stable oxygen concentration management with extremely simple operation. ■Almost 100% of the oxygen supplied into the oxygen dissolver transfers to the substrate liquid side, so there is no wastage of oxygen.■Oxygen that has migrated through the membrane is completely dissolved in the substrate liquid and remains as bubbles. Therefore, even if the substrate liquid is introduced into the bioreactor, there is almost no possibility that oxygen gas will accumulate in the space such as the upper part of the bioreactor, and therefore there is no danger of explosion.

■有害な薬剤を一切使用しないので、食品衛生上極めて
安全である。■基質液中の溶存酸素濃度を高めても酵素
活性の低下は全くみられない、などの特徴を有している
。従って本発明装置は、食品産業の分野に橿めて好適で
あるとともに、他のあらゆる分野に適用することができ
る極めて有用な装置である。
■Since no harmful chemicals are used, it is extremely safe in terms of food hygiene. ■It has the characteristics that there is no decrease in enzyme activity even if the dissolved oxygen concentration in the substrate solution is increased. Therefore, the device of the present invention is highly suitable for the food industry, and is also an extremely useful device that can be applied to all other fields.

以下に本発明の効果をより明確とするために実施例を説
明する。
Examples will be described below to make the effects of the present invention more clear.

〈実施例〉 第1図に示したような装置を用いて、サイクロデキスト
リングルカノトランスフェラーゼ(以下CGTa s 
eという)の作用によって分岐デキストリンを反応させ
て分岐サイクロデキストリーン(以下分岐CDという)
を生成させる連続酵素反応を行った。
<Example> Using the apparatus shown in FIG.
Branched cyclodextrin (hereinafter referred to as branched CD) is produced by reacting the branched dextrin with the action of
A continuous enzymatic reaction was carried out to produce .

すなわち、グリシジルメタアクリル酸ポリマー担体(第
1級アミン)にCGTa s eを共有結合で固定化し
た固定化酵素201を塔内に充填してなる第1図に示し
たようなバイオリアクタを用意した。一方、4%分岐C
DをpH6の酢酸緩衝液で溶解し、温度50℃に加熱し
、ポンプで連続的に3.21 / h rの流速で、気
体は透過させるが液体は透過させない性質を有する、シ
リコンゴムを主成分とするホローファイバー状均質膜を
装着した酸素溶解器に送るとともに、系内を5 kg 
/ cjに加圧しながら酸素ボンベから純酸素を前記酸
素溶解器に送って溶解させた。このような操作により、
基質液中に約180ppmの溶存酸素を連続して溶解さ
せることができた。次に、当該基質液を上述のバイオリ
アクターに送り、連続的に酵素反応を行わせたところ、
第2図に示したように約70日間にわたり雑菌の増殖が
抑制されるとともに、第3図に示したように、連続使用
に伴う通常程度の酵素活性の低下はあるものの総体的に
は非常に安定して分岐CDの生成が認められた。
That is, a bioreactor as shown in FIG. 1 was prepared in which the column was filled with immobilized enzyme 201 in which CGTase was covalently immobilized on a glycidyl methacrylic acid polymer carrier (primary amine). . On the other hand, 4% branch C
D was dissolved in acetate buffer with pH 6, heated to a temperature of 50 °C, and continuously pumped at a flow rate of 3.21/hr. In addition to sending it to an oxygen dissolver equipped with a hollow fiber-like homogeneous membrane as a component, 5 kg of
/cj, pure oxygen was sent from an oxygen cylinder to the oxygen dissolver and dissolved therein. With such operations,
Approximately 180 ppm of dissolved oxygen could be continuously dissolved in the substrate solution. Next, the substrate solution was sent to the above-mentioned bioreactor and the enzymatic reaction was carried out continuously.
As shown in Figure 2, bacterial growth was suppressed for about 70 days, and as shown in Figure 3, although there was a normal decrease in enzyme activity due to continuous use, the overall effect was very low. Stable generation of branched CDs was observed.

なお、酸素溶解器に使用した膜は、人工肺用の市販され
ているガス交換用のホローファイバー状膜(泉工医科工
業■製メラシロック=S)で、膜面積0.8イ、膜外径
400μ、厚み100μのものである。
The membrane used in the oxygen dissolver was a commercially available hollow fiber membrane for gas exchange for oxygenators (Merashirock = S, manufactured by Senko Medical Industry Co., Ltd.), with a membrane area of 0.8 mm and a membrane outer diameter of 0.8 mm. It is 400μ and 100μ thick.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施a様の一例を示すフローの説明図
であり、第2図および第3図は実施例における連続酵素
反応の結果を示したグラフで、第2図は通液日数(日)
と反応液中の生菌数(個/mA’)との関係を示したグ
ラフ、第3図は通液日数と反応液中の全糖分に占める生
成分岐CDの含量(重量%)との関係を示したグラフで
ある。 1・・・酸素溶解器 3・・・バイオリアクター 5・・・基質液貯留槽 7・・・酸素ボンベ 9・・・減圧弁 2・・・膜 4・・・固定化酵素 6・・・ポンプ 8・・・紫外線照射装置
FIG. 1 is an explanatory diagram of a flow showing an example of embodiment a of the present invention, and FIGS. 2 and 3 are graphs showing the results of continuous enzyme reactions in the example, and FIG. (Day)
A graph showing the relationship between the number of viable bacteria in the reaction solution (cells/mA'), and Figure 3 shows the relationship between the number of days in which the solution was passed and the content (wt%) of branched CD formed in the total sugar content in the reaction solution. This is a graph showing 1... Oxygen dissolver 3... Bioreactor 5... Substrate liquid storage tank 7... Oxygen cylinder 9... Pressure reducing valve 2... Membrane 4... Immobilized enzyme 6... Pump 8... Ultraviolet irradiation device

Claims (1)

【特許請求の範囲】 1、気体は透過させるが液体は透過させない性質を有す
る膜で区画した一方の側に基質液を接触させるとともに
、他方の側に酸素ガスまたは酸素富化ガスを接触させる
ことにより、前記膜を介して基質液中に酸素を移動、溶
解させるようになした酸素溶解器と、当該酸素溶解器に
よって溶存酸素を付加した基質液を反応させるための、
固定化酵素を用いたバイオリアクターとを組み合わせた
ことを特徴とする連続酵素反応装置。 2、気体は透過させるが液体は透過させない性質を有す
る膜が、シリコンゴムを主成分とする膜である請求項1
記載の連続酵素反応装置。
[Claims] 1. A substrate liquid is brought into contact with one side of the membrane partitioned by a membrane that allows gas to pass through but not a liquid, and oxygen gas or oxygen-enriched gas comes into contact with the other side. An oxygen dissolver configured to move and dissolve oxygen into the substrate liquid through the membrane, and a substrate liquid to which dissolved oxygen has been added by the oxygen dissolver, for reacting.
A continuous enzyme reaction device characterized by combining a bioreactor using an immobilized enzyme. 2. Claim 1, wherein the membrane that allows gas to pass through but not liquid is a membrane whose main component is silicone rubber.
The continuous enzyme reaction apparatus described.
JP9635389A 1989-04-18 1989-04-18 Apparatus for continuous enzymic reaction Pending JPH02276565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9635389A JPH02276565A (en) 1989-04-18 1989-04-18 Apparatus for continuous enzymic reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9635389A JPH02276565A (en) 1989-04-18 1989-04-18 Apparatus for continuous enzymic reaction

Publications (1)

Publication Number Publication Date
JPH02276565A true JPH02276565A (en) 1990-11-13

Family

ID=14162632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9635389A Pending JPH02276565A (en) 1989-04-18 1989-04-18 Apparatus for continuous enzymic reaction

Country Status (1)

Country Link
JP (1) JPH02276565A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185581A (en) * 1983-04-07 1984-10-22 フオルクスウア−ゲンウエルク・アクチエンゲゼルシヤフト Resistance spot welding method and apparatus
JPS6027379A (en) * 1983-07-26 1985-02-12 Ishikawa Seisakusho:Kk Biochemical reactor
JPS6312280A (en) * 1986-06-30 1988-01-19 Agency Of Ind Science & Technol Reaction carrier for bioreactor
JPS63240774A (en) * 1987-03-27 1988-10-06 Ube Ind Ltd Bioreactor
JPS63309177A (en) * 1987-06-10 1988-12-16 Nagayanagi Kogyo Kk Culture tank provided with hollow fiber gas-separation module made of silicone rubber
JPS6471494A (en) * 1987-09-09 1989-03-16 Korea Advanced Inst Sci & Tech Method for continuously manufacturing citric acid by reactor of double capillaries
JPH01101878A (en) * 1987-10-14 1989-04-19 Korea Advanced Inst Of Sci Technol Method for fixing all cell enzymes simultaneously with growth of cell
JPH01148476A (en) * 1987-12-01 1989-06-09 Dengensha Mfg Co Ltd Electrode pressurization measuring method for resistance welding machine and electrode device
JPH02249478A (en) * 1989-03-24 1990-10-05 Ngk Insulators Ltd Bioreactor for alcohol fermentation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185581A (en) * 1983-04-07 1984-10-22 フオルクスウア−ゲンウエルク・アクチエンゲゼルシヤフト Resistance spot welding method and apparatus
JPS6027379A (en) * 1983-07-26 1985-02-12 Ishikawa Seisakusho:Kk Biochemical reactor
JPS6312280A (en) * 1986-06-30 1988-01-19 Agency Of Ind Science & Technol Reaction carrier for bioreactor
JPS63240774A (en) * 1987-03-27 1988-10-06 Ube Ind Ltd Bioreactor
JPS63309177A (en) * 1987-06-10 1988-12-16 Nagayanagi Kogyo Kk Culture tank provided with hollow fiber gas-separation module made of silicone rubber
JPS6471494A (en) * 1987-09-09 1989-03-16 Korea Advanced Inst Sci & Tech Method for continuously manufacturing citric acid by reactor of double capillaries
JPH01101878A (en) * 1987-10-14 1989-04-19 Korea Advanced Inst Of Sci Technol Method for fixing all cell enzymes simultaneously with growth of cell
JPH01148476A (en) * 1987-12-01 1989-06-09 Dengensha Mfg Co Ltd Electrode pressurization measuring method for resistance welding machine and electrode device
JPH02249478A (en) * 1989-03-24 1990-10-05 Ngk Insulators Ltd Bioreactor for alcohol fermentation

Similar Documents

Publication Publication Date Title
KR101090881B1 (en) Membrane bioreactor
JP5869038B2 (en) Degassing liquid with membrane contactor
Farooq et al. Basic concepts in disinfection with ozone
US6096226A (en) Method of combating phytopathogenic microorganisms in the water circuits of greenhouses
JPH03164169A (en) Cell culture
WO2016117599A1 (en) Bioreactor provided with device for supplying micro/nano-bubbles containing oxygen and micro/nano-bubbles containing microbicidal gas such as ozone
US5240853A (en) Apparatus and method for continuously removing oxygen from fluid streams using bacterial membranes
Roy et al. Microbial hollow fiber bioreactors
AU778141B2 (en) Method for cultivating cells, a membrane module, utilization of a membrane module and reaction system for cultivation of said cells
JPH02203982A (en) Manufacture of bacteriostatic water
JPS61111198A (en) Apparatus for producing ultra-pure water
JPH02276565A (en) Apparatus for continuous enzymic reaction
JPH012567A (en) biological reactor
JPH01225475A (en) Culture apparatus
US9828266B2 (en) Systems and methods for sterilizing liquid media
JPH04122412A (en) Method and equipment for dissolving oxygen
JP3527830B2 (en) Bioreactor element, method for producing the element, and bioreactor using the element
WO2003030628A1 (en) Method and apparatus for rearing plant
US6268204B1 (en) Method and device for bioremediation
JPS61111192A (en) Method for suppressing propagation of microorganism in water
JP2984748B2 (en) Method for culturing microorganisms using air-permeable membrane
JP6499203B2 (en) Biological reaction device provided with device for supplying micro-nano bubbles of oxygen-containing gas, device for removing dissolved carbon dioxide, and biological reaction method using this biological reaction device
JPH03172170A (en) Method for cell culture and system therefor
JP3454015B2 (en) Fluid bed biological treatment equipment
JPH07328398A (en) Treatment solution for atibacterial/antifungal separation membrane and separation membrane module filled with treatment solution