JPH01101878A - Method for fixing all cell enzymes simultaneously with growth of cell - Google Patents

Method for fixing all cell enzymes simultaneously with growth of cell

Info

Publication number
JPH01101878A
JPH01101878A JP63136634A JP13663488A JPH01101878A JP H01101878 A JPH01101878 A JP H01101878A JP 63136634 A JP63136634 A JP 63136634A JP 13663488 A JP13663488 A JP 13663488A JP H01101878 A JPH01101878 A JP H01101878A
Authority
JP
Japan
Prior art keywords
reactor
tube
cells
silicone tube
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63136634A
Other languages
Japanese (ja)
Other versions
JPH0547193B2 (en
Inventor
Ho Nam Chang
ホー ナム チャン
Pong-Hyon Jeong
ボン ヒュン チュン
Un-Ha Hwang
ウン ハ フウァン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH01101878A publication Critical patent/JPH01101878A/en
Publication of JPH0547193B2 publication Critical patent/JPH0547193B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/24Apparatus for enzymology or microbiology tube or bottle type

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: To perform the subject immobilization at a simplified process and at high productivity by inoculating cells in a space between a silicone tube and polypropylene fine tubes in a double-layered fine tube reactor and subsequently treating the reactor under specific conditions to carry out continuous enzymatic reaction.
CONSTITUTION: Cells are inoculated in a space between a silicone tube 1 and polypropylene fine tubes 2 of a double-layered fine tune reactor. Subsequently, cells having specific enzymatic activity is cultured at a high concentration and simultaneously immobilizing the grown cells in the reactor while an enzyme is placed outside the silicone tube and an liquid nutrient is injected and allowed to flow inside the polypropylene fine tubes. Further, while passing temperature-controlling water outside the silicone tube and a substrate solution inside the polypropylene fine tubes, continuous enzymatic reaction is carried out. Thus, whole cell enzyme is simultaneously cultured and immobilized. This immobilization method enables the simplification from two processes to one process by using a double-layered fine-tube membrane reactor and further enables the filling of whole cell enzyme at a high concentration in a reactor to achieve a high productivity per unit volume of the reactor.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 産業上の利用分野 本発明は全細胞ffi索を固定化する新しい方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a new method for immobilizing whole cell ffi cords.

従来の技術及び発明が解決しようとする問題点精製した
酵素の代りに全綱Ill醇素を酵素反応に利用したら酵
素のII製貸費用節約可能であり一般的に蛋白質状態に
精製した酵素と比較して安定性に優れるために産業的に
極めて有利である。W9sの産業的応用においてwl索
の固定化は極く重要な工程中のひとつである。従来の全
111Jl酵素を固定化する方法としてはカルシウムア
ルギネート、ポリアクリルアミド、アガロース、:jラ
ゲン等の担体を利用した方法が最も普遍的に利用されて
きた(ケー・モスバック、Wg素学の方法、第44巻。
Problems to be Solved by the Prior Art and the Invention If whole class Illusin is used in enzyme reactions instead of purified enzymes, it is possible to save on enzyme production costs and compared to enzymes that are generally purified into protein form. It is extremely advantageous industrially because of its excellent stability. Immobilization of the wl cord is one of the extremely important steps in the industrial application of W9s. As a conventional method for immobilizing all 111Jl enzymes, methods using carriers such as calcium alginate, polyacrylamide, agarose, and :J-Lagen have been most commonly used (K. Mossback, W. G.'s method, Volume 44.

アカデミツクプレス、ニューヨーク 1976年)。Academic Press, New York, 1976).

既存のこのような方法は、−旦発酵槽で細胞を培養した
後、細胞を回収する工程と、回収した全細胞酵素を担体
に固定化するふたつの2工程が要求される。しかし、本
発明は二重llI管膜生膜生物反応器用してこの二T程
を−r程に簡単化し、更に反応器内に高llIr!1に
全m胞酢素を充填し得るために反応器単位体積当り高い
生産性を得ることができる新゛シク進歩した方法に関す
るものである。
Existing methods require two steps: - culturing cells in a fermenter, then collecting the cells, and immobilizing the collected whole cell enzymes on a carrier. However, the present invention uses a double llI tube membrane bioreactor to simplify this 2T to -r, and furthermore, a high llIr! The present invention relates to a new and more advanced method that allows high productivity per unit volume of the reactor to be filled with acetic acid per unit volume of the reactor.

二重細管膜生物反応器は、好気性菌体培養のために既存
の細管反応器の構造を変形して製作したもので、ロバー
トソンとキムはポリプロピレン細管膜内部に3個のシリ
コンチューブを押し込みポリプロピレンm管膜外部には
液体栄養分を、シリコンチューブ内部には酸素を供給し
ぞの間に好気性バクテリアであるストレプトマイセスオ
レオフエイセンス菌を培養し、テトラザイクリン連続生
産に対する研究を行なった。(ロバートソンとキム、バ
イオテクノルーバイオエンヂニアリング27、1(11
2,1985)。その後本発明者等は、ロバートソンと
キムの反応器とは異なり、外側に酸素供給のためのシリ
コンチューブを、又内側に液体栄養分のための3個のポ
リプロピレンを押し込み、その間にノカルデアメデテラ
ネイを培養して最初に、リパマイシン日の長期的連続生
産に成功した(チヤツク等、ニーシーニス シンポジウ
ムシリーズ第 314.31.1986年)。
The double tubular membrane bioreactor was created by modifying the structure of an existing tubular reactor for aerobic bacterial culture, and Robertson and Kim pushed three silicone tubes inside the polypropylene tubular membrane. While supplying liquid nutrients to the outside of the polypropylene tube membrane and oxygen to the inside of the silicone tube, we cultivated Streptomyces oleopheicens, an aerobic bacterium, and conducted research on continuous production of tetrazycline. Ta. (Robertson and Kim, Biotechnol. Bioengineering 27, 1 (11
2, 1985). The inventors then inserted a silicon tube for oxygen supply on the outside and three polypropylene tubes for liquid nutrients on the inside, unlike Robertson and Kim's reactor, and inserted Nocaldea Medetera in between. For the first time, the long-term continuous production of lipamycin was successfully achieved by culturing N. neiss (Chuck et al., Symposium Series No. 314.31.1986).

問題点を解決するための手段 本発明は、上記の本発明者の発明による反応器を全細胞
酵素反応に利用する方法であ、二重細管反応器のシリコ
ンチューブ(1)とポリプロピレン細管(2)との間に
細胞を接種した後、シリコンチューブ外部には酵素を、
ポリプロピレン細管内部には液体栄養分を注入通過させ
て特定の酵素活性を有する細胞をPI潴度に培養すると
同時に反応器内に固定し、シリコンチューブ外部には温
度調節水を、又ポリプロピレン細管の内部には基質溶液
を通過させて連続的酵素反応を行わぜる全■I胞酵素を
細胞成長と同時に固定化する方法を提供J8゜ 実施例 以下本発明の訂細を図面により説明すれば次の如くであ
る。第1〈a)図は、細胞培養時における二重細管1個
の反応器の作業図であり、二重細管の構造は、外側のシ
リコンデーl−1(1)の内側に3個のポリプロピレン
細管(2)を内蔵した構成から成っており、細胞培養時
、空気(5a)はシリコンチューブ(1)を通過し、又
液体栄養分(3a)はポリプロピレン細管(2)を通過
して、その闇にあるl1la(6a)に伝達された後、
fj耗した栄養分(4a)を排出する。第1(b)図は
高濃度a胞培養後、酵素反応時の二重細管1個の反応器
操業図であり、第1(a)図での細胞培養により酵素活
性を有する細胞が高濃度で反応器内に固定化される。酵
素反応時、基質溶液(3b)は高濃度に充填された全細
胞酵素(6b)に伝達され反応後生酸物(4b)を排出
する。この際温度調箭水(5b)はシリコン外壁に流れ
るようになる。
Means for Solving the Problems The present invention is a method of utilizing the reactor according to the inventor's invention described above for a whole-cell enzyme reaction. ) After inoculating the cells between the silicone tube and the enzyme,
Liquid nutrients are injected into the inside of the polypropylene tube, and cells with a specific enzyme activity are cultured in a PI atmosphere, and at the same time, they are fixed in the reactor. Provides a method for immobilizing whole I cell enzymes at the same time as cell growth by passing a substrate solution through them to carry out continuous enzymatic reactions. It is. Figure 1(a) is a working diagram of a reactor with one double capillary during cell culture. It consists of a built-in thin tube (2), and during cell culture, air (5a) passes through the silicone tube (1), and liquid nutrients (3a) pass through the polypropylene tube (2) to remove the darkness. After being transmitted to l1la (6a) in
fj Excrete depleted nutrients (4a). Figure 1(b) is a diagram showing the operation of a reactor with one double tube during an enzyme reaction after culturing high-density a-cells. is immobilized in the reactor. During the enzyme reaction, the substrate solution (3b) is transferred to the highly concentrated whole cell enzyme (6b), and after the reaction, the bioacid (4b) is excreted. At this time, the temperature-controlled water (5b) flows onto the silicon outer wall.

第2図は、二重細管反応器の横断面図であり、その構造
は上記の二重細管がガラス管の内部に並列に配列された
構成となっており、このような二重細管反応器はシリコ
ンチューブ(1)をガラス管(7)内部に入れた後両端
をシリコンラバー(8)で固定し、シリコンラバ一端部
には空気及び温度調節水注入口(5)と、その排出口(
5′)を設ける。その侵それぞれシリコンチューブ(1
)の内部には3個のポリプロピレン細管(2)を入れて
その両端をシリコンラバー(8)で固定し、シリコンラ
バ一端部に細胞接種ボートイ6)を設置し、ガラス管(
7)をシリコン又はタイコンチューブ(9)で連結し、
ガラス管の両端に夫々栄養分及び基質溶液の注入口(3
)と、その排出口(3)とを設置して製作する。本発明
で反応器製作に使用したポリプロピレン細管は、ドイツ
のエンカ社製品であり、内径0.033IJI、外径0
.063備。
Figure 2 is a cross-sectional view of a double capillary reactor, and its structure is such that the double capillary tubes described above are arranged in parallel inside a glass tube. After putting the silicone tube (1) inside the glass tube (7), fix both ends with silicone rubber (8), and one end of the silicone rubber has an air and temperature-controlled water inlet (5) and its outlet (
5') is provided. Each silicone tube (1
), put three polypropylene thin tubes (2) into it, fix their ends with silicone rubber (8), install a cell inoculation boat 6) at one end of the silicone rubber, and insert the glass tube (
7) are connected with a silicone or tie-con tube (9),
Nutrient and substrate solution injection ports (3
) and its discharge port (3). The polypropylene capillary tube used in the reactor production in the present invention is a product of Enca, Germany, and has an inner diameter of 0.033IJI and an outer diameter of 0.
.. 063 preparation.

空隔の寸法0.4〜0.6μ曙のものを使用し、シリコ
ンチューブは、米国のダ・クコーニング社製品であり内
径0.147α、外径0.196備wのものを使用した
A silicone tube with an air gap size of 0.4 to 0.6 μm was used, and a silicone tube manufactured by Da Corning of the United States with an inner diameter of 0.147α and an outer diameter of 0.196 w was used.

内径0.8a11のガラス管に10WAの二III管を
挿入し、酸素と接触し得る長さは16(Jであった。
A 10WA II III tube was inserted into a glass tube with an inner diameter of 0.8a11, and the length that could come into contact with oxygen was 16 (J).

即ち、シリコン、ポリプロピレン以外の材料等も反応器
製作に使用可能であり、反応器構造も多様に製作可能で
ある。使用する細管の規格に従って内部に挿入される細
管の個数も多様に調節できる。
That is, materials other than silicon and polypropylene can be used to manufacture the reactor, and the reactor structure can be manufactured in various ways. The number of thin tubes to be inserted into the tube can be variously adjusted according to the specifications of the thin tubes used.

次に本発明方法の実験例であるが、本発明の範囲は本実
験例のみに限定されるものではない。
Next, an experimental example of the method of the present invention will be described, but the scope of the present invention is not limited only to this experimental example.

実験例1゜ 葡萄糖異性化!l素の活性を有するストレプトマイセス
グリシユース(Nc T C7178)をmr11a種
ボート(6)を通してシリコンチューブ(1)とポリプ
ロピレン細管(2)との間に接種した後、培養する。
Experimental example 1゜Glucose isomerization! Streptomyces glyceus (NcTC7178), which has the activity of 1, is inoculated between the silicone tube (1) and the polypropylene tubule (2) through the mr11a seed boat (6), and then cultured.

使用した培地はD−キジロス(1%)、酵母抽出液(1
%)、MQ80< (0,1%)、Co(,22(0,
01%)、KH2P○、(0,3%)であり、PH1t
NaOHで7に調節した。液体培地は栄養分注入口(3
)を通して注入し、消耗した栄養分は栄養分排出口(3
′ )を通して排出するが、この際の液体培地の流速は
2d/hとし、空気と温水を空気及び温度調節水注入口
(5)を通して注入しながらその排出C1(5’)に排
出するが、空気を100d/Winの速度で流入させ、
温度は30℃に維持しながら10日間培養し、細胞を反
応器内に固定化した。上記の如<maを固定化した反応
器に0.5MのllI′@糖基質溶糖基性溶液(3)を
通して2d/hの流速で供給した結果、果糖が連続生産
され、その生産性は22.5SF / l ohであっ
た。
The media used were D-Kijiros (1%) and yeast extract (1%).
%), MQ80< (0,1%), Co(,22(0,
01%), KH2P○, (0,3%), and PH1t
Adjusted to 7 with NaOH. The liquid medium is supplied through the nutrient inlet (3).
), and the consumed nutrients are injected through the nutrient outlet (3).
' ), the flow rate of the liquid medium at this time is 2 d/h, and while air and hot water are injected through the air and temperature-controlled water inlet (5), it is discharged to the outlet C1 (5'). Air is introduced at a speed of 100d/Win,
The cells were cultured for 10 days while maintaining the temperature at 30°C, and the cells were immobilized in the reactor. As a result of feeding fructose at a flow rate of 2 d/h through 0.5 M llI'@sugar substrate glycobase solution (3) to the reactor in which ma was immobilized as described above, fructose was continuously produced, and the productivity was It was 22.5 SF/l oh.

これりは回分式より12倍の高いものである。This is 12 times higher than the batch method.

実験IA2 土から分離したブレビバクテリウムでアクリルローニト
リルからアクリルアミドへの酵素変換実験を実験例1と
同様に行なった。培地は、@萄糖159/f1.M母抽
出液39/i、?ルト抽出液3g/之、に2 HPO4
13,49/2゜KH2PO46,5g /e、   
NaC21’J/Il。
Experiment IA2 An enzymatic conversion experiment of acrylonitrile to acrylamide was conducted in the same manner as in Experimental Example 1 using Brevibacterium isolated from soil. The medium was @sucrose159/f1. M mother extract 39/i,? Ruto extract 3g/2 HPO4
13,49/2゜KH2PO46,5g/e,
NaC21'J/Il.

MgSO20,2’j/eの組成の液体培地であり3日
間二重細管反応器で培養後酵素反応を行なった。
The liquid medium had a composition of MgSO20,2'j/e, and was cultured in a double capillary reactor for 3 days, followed by an enzyme reaction.

反応は、5%アクリルニトリルを4.5d/hで供給し
反応温度は4℃を維持した。この際、アクリルアマイド
の生産性は106g/4−hであった。
For the reaction, 5% acrylonitrile was supplied at a rate of 4.5 d/h, and the reaction temperature was maintained at 4°C. At this time, the productivity of acrylamide was 106 g/4-h.

【図面の簡単な説明】[Brief explanation of the drawing]

第1(a)図は細胞培養時二重細管1個の反応器操業図
、第1(b)図は高濃度細胞培播侵酵索反応時の二重量
管1個の反応器操業図、第2図は二重細管反応器構造の
横断面図である。 1・・・シリコンチューブ、2・・・ポリプロピレン細
管、3,5・・・注入口、3’ 、5’ ・・・排出口
、3a・・・液体栄養分、3b・・・基質溶液、4a・
・・生産物、5a・・・空気、5b・・・温度調節水、
6・・・細胞接種ボート、6a・・・細胞、6b・・・
全llll11酵素、7・・・ガンス管、8・・・シリ
コンラバー、9・・・タイコンチューブ。 特許出願人 コリア アドパンスト インステイテユート オブ サイエンス アンド テクノロジー 第1図 (CI) b (b)
Figure 1(a) is a diagram of the operation of a reactor with one double tube during cell culture, and Figure 1(b) is a diagram of the operation of a reactor with one double tube during fermentation reaction with high concentration cell culture. FIG. 2 is a cross-sectional view of a double capillary reactor structure. DESCRIPTION OF SYMBOLS 1... Silicone tube, 2... Polypropylene capillary, 3, 5... Inlet, 3', 5'... Outlet, 3a... Liquid nutrient, 3b... Substrate solution, 4a.
...Product, 5a...Air, 5b...Temperature-controlled water,
6... Cell inoculation boat, 6a... Cell, 6b...
All lllll11 enzymes, 7... Gans tube, 8... silicone rubber, 9... Ticon tube. Patent Applicant Korea Adventist Institute of Science and Technology Figure 1 (CI) b (b)

Claims (1)

【特許請求の範囲】[Claims] 二重細管反応器のシリコンチューブ(1)とポリプロピ
レン細管(2)との間に細胞を接種した後、シリコンチ
ューブ外部には酸素を、ポリプロピレン細管内部には液
体栄養分を注入通過させて特定の酵素活性を有する細胞
を高濃度に培養すると同時に反応器内に固定化し、シリ
コンチューブ外部には温度調節水を、又ポリプロピレン
細管の内部には基質溶液を通過させて連続的酵素反応を
行わせる全細胞酵素を細胞成長と同時に固定化する方法
After inoculating cells between the silicone tube (1) and polypropylene tube (2) of the double tube reactor, oxygen is injected into the outside of the silicone tube and liquid nutrients are injected into the inside of the polypropylene tube to release a specific enzyme. Active cells are cultured at a high concentration and immobilized in a reactor at the same time, and temperature-controlled water is passed through the outside of the silicone tube and a substrate solution is passed through the inside of the polypropylene tube to carry out continuous enzymatic reactions. A method to immobilize enzymes simultaneously with cell growth.
JP63136634A 1987-10-14 1988-06-02 Method for fixing all cell enzymes simultaneously with growth of cell Granted JPH01101878A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1987-11375 1987-10-14
KR1019840011375A KR890004018B1 (en) 1987-10-14 1987-10-14 Method for preparing of immobilized enzyme

Publications (2)

Publication Number Publication Date
JPH01101878A true JPH01101878A (en) 1989-04-19
JPH0547193B2 JPH0547193B2 (en) 1993-07-16

Family

ID=19265155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136634A Granted JPH01101878A (en) 1987-10-14 1988-06-02 Method for fixing all cell enzymes simultaneously with growth of cell

Country Status (2)

Country Link
JP (1) JPH01101878A (en)
KR (1) KR890004018B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276565A (en) * 1989-04-18 1990-11-13 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Apparatus for continuous enzymic reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276565A (en) * 1989-04-18 1990-11-13 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Apparatus for continuous enzymic reaction

Also Published As

Publication number Publication date
KR890006809A (en) 1989-06-16
JPH0547193B2 (en) 1993-07-16
KR890004018B1 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US4440853A (en) Microbiological methods using hollow fiber membrane reactor
Bruce Vick Roy et al. Lactic acid production by Lactobacillus delbreuckii in a hollow fiber fermenter
US4167450A (en) Method and apparatus for the production of secondary metabolites by the maintenance-state cultivation of microorganisms
BRPI0709013A2 (en) Method for the industrial production of biocatalysts with bioactive material in the form of immobilized enzymes, or microorganisms immobilized on polyvinyl alcohol gel, and their use, and devices for their production
JPH0535B2 (en)
CN101665813A (en) Microorganism fermentation production method of L-alanine
US3969190A (en) Apparatus and method for microbial fermentation in a zero gravity environment
CN105441371A (en) Genetically engineered bacteria and application thereof in production of coenzyme Q10
JPH01101878A (en) Method for fixing all cell enzymes simultaneously with growth of cell
Nampoothiri et al. Immobilization of Brevibacterium cells for the production of L-glutamic acid
CN110157603A (en) A kind of Immobilized Aspergillus niger produces the fermentation reactor and its method of citric acid
Hwang et al. Continuous production of acrylamide by Brevibacterium sp. immobilized in a dual hollow fiber bioreactor
Reardon et al. Effects of pH and added metabolites on bioconversions by immobilized non‐growing Clostridium acetobutylicum
JP2677602B2 (en) Method for producing L-sorbose by passage seed culture and apparatus used therefor
CN210261773U (en) Fermentation reactor for producing citric acid by immobilized aspergillus niger
Sode et al. Continuous asymmetric reduction of 4-oxoisophorone by thermophilic bacteria using a hollow fiber reactor
CN85104280A (en) A kind of method of utilizing microorganism continuous brewing water fruit vinegar
JPH01225487A (en) Method for utilizing cellulose in bioreactor carrier aiming at production of citric or gluconic acid with aspergillus niger
CA1210719A (en) Method of immobilizing enzymes
JPS6178374A (en) Continuous fermentation system using immobilized proliferated microorganism
Hwang et al. Biological conversion of rifamycin B by live Humicola sp. cells immobilized in a dual hollow fiber bioreactor
RU2053294C1 (en) Method of cultivation of bifidobacteria
Soetaert et al. Production of mannitol by Leuconostoc mesenteroides, immobilized on reticulated polyurethane foam
Pizzichini et al. Performance of a membrane reactor for cellobiose hydrolysis
RU2080388C1 (en) Method of microbiological synthesis of acetic acid