JPH02276404A - Compressed-gas-insulated switchgear - Google Patents

Compressed-gas-insulated switchgear

Info

Publication number
JPH02276404A
JPH02276404A JP1096235A JP9623589A JPH02276404A JP H02276404 A JPH02276404 A JP H02276404A JP 1096235 A JP1096235 A JP 1096235A JP 9623589 A JP9623589 A JP 9623589A JP H02276404 A JPH02276404 A JP H02276404A
Authority
JP
Japan
Prior art keywords
ring
shaped structure
high frequency
insulating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1096235A
Other languages
Japanese (ja)
Inventor
Hiroshi Koyama
博 小山
Hirokuni Aoyanagi
青柳 浩邦
Hitoshi Okubo
仁 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1096235A priority Critical patent/JPH02276404A/en
Publication of JPH02276404A publication Critical patent/JPH02276404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PURPOSE:To miniaturize a compressed-gas-insulated switchgear by integrally forming a ring-shaped structure containing an insulating spacer magnetic substance and an insulating material. CONSTITUTION:Stepped high frequency surge voltage generated across disconnector electrodes reaches an insulating spacer 2, which is equipped with an insulating material 2b on the outside whose relative dielectric constant is 5 or 6. Consequently, in the steep rising part of the high frequency surge voltage it acts as an earth terminal and no high frequency component will be propagated to a ring-shaped structure 2a, so that no large voltage will be applied locally. This action is made striking by arranging the ring-shaped structure 2a at the position close to inductance component and capacitance component. By casting the ring-shaped structure 2a to such insulating material 2b, the spacer 2 can be acted as a short-circuit terminal and the high frequency surge voltage will be damped and effectively controlled without amplifying the voltage.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高周波サージ抑制に寄与する絶縁スペーサを有
するガス絶縁開閉装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas insulated switchgear having an insulating spacer that contributes to high frequency surge suppression.

(従来の技術) 一般に絶縁スペーサはガス絶縁開閉装置等の高電圧導体
を金属容器内に絶縁支持する支持物として使用されてい
る。
(Prior Art) Insulating spacers are generally used as supports for insulating and supporting high voltage conductors such as gas insulated switchgear in metal containers.

そして、ガス絶縁開閉装置おいては、その構成機器であ
る断路器や遮断器の操作により高周波サージが発生し伝
播することが知られている。
In gas-insulated switchgear, it is known that high-frequency surges are generated and propagated by operating disconnectors and circuit breakers that are components of the gas-insulated switchgear.

特に、断路器の操作時には波頭の立上がりが3乃至5n
Sでこれに続く数MH2の高周波サージのサージ電圧が
常時運転電圧の2倍以上となる。
In particular, when operating a disconnector, the rise of the wave crest is 3 to 5 nm.
At S, the surge voltage of the high frequency surge of several MH2 that follows this becomes more than twice the constant operating voltage.

この高周波サージにより、オイルブッシングの絶縁破壊
、地絡事故発生及び電波障害による制御回路破壊事故が
報告されている。
This high-frequency surge has been reported to cause dielectric breakdown of oil bushings, ground faults, and control circuit breakdowns due to radio interference.

さらに、高周波サージは絶縁スペーサによる不連続点で
反射することも知られている。
Furthermore, it is known that high frequency surges are reflected at discontinuities caused by insulating spacers.

そこで、例えば特開昭81−227325号公報等で知
られ第3図に示すようなサージ抑制対策が施されている
。同図は高周波サージ発生機器である断路器の近傍に対
策を施したものを示している。金属容器1は両端が絶縁
スペーサ2で封止され内部に絶縁ガス3が封入されてい
る。
Therefore, surge suppression measures as shown in FIG. 3 have been taken, for example, as known from Japanese Patent Application Laid-Open No. 81-227325. The figure shows countermeasures taken near the disconnector, which is a device that generates high-frequency surges. Both ends of the metal container 1 are sealed with insulating spacers 2, and an insulating gas 3 is filled inside.

また、金属容器1内には絶縁スペーサ2にて対向して絶
縁支持した1対の中空の固定電極4a、 4bが収納さ
れている。そして、固定電極4a、 4bの内側には夫
々接触子5a、 5bが固着されている。さらに、固定
電極4bの内側には接触子5bに接し接触子5aと接離
自在の可動電極6を収納している。この可動電極6の先
端にはアークコンタクト8が固着されている。そして、
可動電極6は操作機構10により操作ロッド9を介して
操作される。また、両固定電極4a、 4bは夫々絶縁
スペーサ2に支持された接続導体■2を介して高電圧導
体11と接続されている。
Further, a pair of hollow fixed electrodes 4a and 4b are housed in the metal container 1 and are insulated and supported facing each other by an insulating spacer 2. Contactors 5a and 5b are fixed inside the fixed electrodes 4a and 4b, respectively. Further, inside the fixed electrode 4b, a movable electrode 6 is housed, which is in contact with the contactor 5b and can freely come into contact with and separate from the contactor 5a. An arc contact 8 is fixed to the tip of the movable electrode 6. and,
The movable electrode 6 is operated by an operating mechanism 10 via an operating rod 9. Further, both fixed electrodes 4a and 4b are connected to a high voltage conductor 11 via connecting conductors 2 supported by insulating spacers 2, respectively.

さらに、両固定電極4a、 4bの周囲には磁性体から
なる円筒状構造体lea 、 16bが配設されている
Furthermore, cylindrical structures lea and 16b made of magnetic material are arranged around both fixed electrodes 4a and 4b.

そして、この円筒状構造体IGa 、 16bの有する
大きなインダクタンスにより高周波サージが吸収されそ
の伝播が防止されるものである。
The large inductance of the cylindrical structures IGa and 16b absorbs high frequency surges and prevents their propagation.

ところで、断路器の接点で発生するステップ状高周波サ
ージは伝播され最初に円筒状構造体16a。
By the way, the step-like high frequency surge generated at the contact point of the disconnector is propagated first to the cylindrical structure 16a.

16bを通過する。このとき、高い周波数成分について
は、この部分が開放端となりサージ電圧の2倍の電圧が
発生する。そして、高周波サージは急峻度を保持したま
ま円筒状構造体L6a 、 16bに侵入するので、こ
こでの1ターン電圧が大きなものとなる。また、このこ
とは周波数が高い程顕著となる。
16b. At this time, for high frequency components, this portion becomes an open end and a voltage twice the surge voltage is generated. Since the high frequency surge enters the cylindrical structures L6a and 16b while maintaining its steepness, the one-turn voltage here becomes large. Moreover, this becomes more noticeable as the frequency becomes higher.

また、円筒状構造体16a 、 16bは薄い磁性材フ
ィルムを絶縁して積層するのが一般的である。このため
、大きな高周波サージにより局所的に大きな電圧が印加
されることで絶縁破壊を起こす虞れがある。これを防止
するには、磁性材フィルム間の絶縁距離を充分に大きく
とり耐絶縁性能を向上させる必要がある。これに伴ない
円筒状構造体16a 、 18bが大形化しひいてはガ
ス絶縁開閉装置の大形化につながる。
Further, the cylindrical structures 16a and 16b are generally formed by laminating thin magnetic films in an insulating manner. Therefore, there is a possibility that dielectric breakdown may occur due to the local application of a large voltage due to a large high-frequency surge. To prevent this, it is necessary to increase the insulation distance between the magnetic films to a sufficiently large extent to improve insulation resistance. As a result, the cylindrical structures 16a and 18b become larger, which in turn leads to an increase in the size of the gas-insulated switchgear.

(発明が解決しようとする課題) このように、従来の高周波サージ抑制においては、磁性
材フィルムを絶縁積層して形成した円筒状構造体が使用
されていた。しかしながら、磁性体フィルムは近接配置
すると絶縁破壊を起こしサージ抑制効果がなくなるので
、磁性体フィルム間に充分な絶縁距離を確保する必要が
ある。よって、円筒状構造体ひいてはガス絶縁開閉装置
の小形化を図ることができなかった。
(Problems to be Solved by the Invention) As described above, in conventional high frequency surge suppression, a cylindrical structure formed by laminating insulating magnetic material films has been used. However, if the magnetic films are placed close to each other, dielectric breakdown occurs and the surge suppressing effect is lost, so it is necessary to ensure a sufficient insulation distance between the magnetic films. Therefore, it has not been possible to downsize the cylindrical structure and, by extension, the gas insulated switchgear.

本発明は上記点を考慮して成されたもので、高周波サー
ジ抑制効果を有する絶縁スペーサを提供してガス絶縁開
閉装置の小形化を図ることを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide an insulating spacer having a high-frequency surge suppressing effect and to downsize a gas-insulated switchgear.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明においては、絶縁スペ
ーサを磁性体を含むリング状構造物を絶縁材と一体形成
している。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, an insulating spacer is formed by integrally forming a ring-shaped structure containing a magnetic material with an insulating material.

(作 用) このように構成することにより、絶縁スペーサを短絡端
と作用させることができ、リング状構造物に特別な絶縁
を施すこともなく金属容器を大形化する必要のない小形
のガス絶縁開閉装置を提供し得る。
(Function) With this configuration, the insulating spacer can work with the short-circuit end, and the ring-shaped structure does not require special insulation and the metal container does not need to be enlarged. Insulated switchgear may be provided.

(実施例) 以下本発明の一実施例を第1図を参照して説明する。尚
、第3図に示すガス絶縁開閉装置と同等部分については
同一符号を付し詳細な説明を省略する。
(Example) An example of the present invention will be described below with reference to FIG. Incidentally, parts equivalent to those of the gas insulated switchgear shown in FIG. 3 are given the same reference numerals and detailed explanations are omitted.

本実施例においては絶縁スペーサ2を磁性材を含むリン
グ状構造物2aを絶縁材2bと一体注形して形成してい
る。
In this embodiment, the insulating spacer 2 is formed by integrally casting a ring-shaped structure 2a containing a magnetic material with an insulating material 2b.

そして、リング状構造物2aは例えばアモルファス合金
の粉末を導電性プラスチックに混合形成した磁性材とす
る。
The ring-shaped structure 2a is made of, for example, a magnetic material formed by mixing amorphous alloy powder with conductive plastic.

また、絶縁材2bは比誘電率が5乃至6のエポキシ樹脂
等の絶縁物で製作する。
Further, the insulating material 2b is made of an insulating material such as epoxy resin having a dielectric constant of 5 to 6.

次に本実施例の構成における作曲効果を説明する。断路
器電極間で発生したステップ状高周波サージは絶縁スペ
ーサ2に到達する。この絶縁スペーサ2は外側に比誘電
率が5乃至6の絶縁材2bを有しているので、高周波サ
ージの急峻な立上り部分については絶縁スペーサ2が地
絡端として作用する。よって、高い周波数成分はリング
状構造物2aには伝播されない。
Next, the composition effect of the configuration of this embodiment will be explained. The step-like high frequency surge generated between the disconnector electrodes reaches the insulating spacer 2. Since this insulating spacer 2 has an insulating material 2b having a dielectric constant of 5 to 6 on the outside thereof, the insulating spacer 2 acts as a ground fault terminal for a steep rising portion of a high frequency surge. Therefore, high frequency components are not propagated to the ring-shaped structure 2a.

従って、リング状構造物2aに局部的に大きな電圧が印
加されることがない。この作用はリング状構造物2aを
インダクタンス成分とキャパシタンス成分とが近くなる
位置に設けることで顕著となる。
Therefore, a large voltage is not locally applied to the ring-shaped structure 2a. This effect becomes remarkable when the ring-shaped structure 2a is provided at a position where the inductance component and the capacitance component are close to each other.

このように、絶縁材2bにリング状構造物2aを注形す
ることにより、絶縁スペーサ2を短絡端として作用させ
ることができる。これにより、高周波サージは電圧が増
幅されることなく減衰し効果的に抑制される。しかも、
リング状構造物2aに高い周波数成分の電圧が印加され
ることがないので、絶縁破壊の虞れがなく特別な絶縁対
策を施す必要がない。
In this way, by casting the ring-shaped structure 2a on the insulating material 2b, the insulating spacer 2 can act as a short-circuit end. As a result, high-frequency surges are attenuated and effectively suppressed without amplifying the voltage. Moreover,
Since voltage with high frequency components is not applied to the ring-shaped structure 2a, there is no risk of dielectric breakdown and there is no need to take special insulation measures.

よって、金属容器1を大形化することなく効果的な高周
波サージ抑制が可能となる。
Therefore, it is possible to effectively suppress high frequency surges without increasing the size of the metal container 1.

尚、第2図に示す如く、リング状構造物2aを導電性プ
ラスチック2cで被覆してもよい。この場合、導電性プ
ラスチック2Cと絶縁材2bとの材質が同種のため両材
料間の注形が容易に行なえる。
Incidentally, as shown in FIG. 2, the ring-shaped structure 2a may be covered with a conductive plastic 2c. In this case, since the conductive plastic 2C and the insulating material 2b are made of the same material, casting between the two materials can be easily performed.

また、上述した実施例では断路器における高周波サージ
について説明したが、接点部がなくても起り得る雷サー
ジについても同様な構成を適用して同様な効果を得るこ
とができる。
In addition, although the above-mentioned embodiment describes a high-frequency surge in a disconnector, a similar configuration can be applied to a lightning surge that can occur even without a contact portion, and the same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、絶縁スペーサを
磁性体を含むリング状構造物を絶縁材と一体形成したの
で、絶縁スペーサを短絡端として作用させることができ
、リング状構造物に特別な絶縁を施すことなく金属容器
を大形化する必要のない小形のガス絶縁開閉装置を提供
することができる。
As explained above, in the present invention, since the insulating spacer and the ring-shaped structure containing a magnetic material are integrally formed with the insulating material, the insulating spacer can act as a short-circuit end, and the ring-shaped structure has special insulation. Therefore, it is possible to provide a small gas insulated switchgear that does not need to be enlarged and does not need to have a large metal container.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すガス絶縁開閉装置の断
面図、第2図は本発明の他の実施例を示すガス絶縁開閉
装置の断面図、第3図は従来のガス絶縁開閉装置を示す
断面図である。 1・・・金属容器、     2・・・絶縁スペーサ、
2a・・・リング状構造物、 2b・・・絶縁材、2c
・・・導電性プラスチック、 3・・・絶縁ガス、    4a、 4b・・・固定電
極、5a、 5b・・・接触子、   6・・・可動電
極、8・・・アークコンタクト、 9・・・操作ロッド、   lO・・・操作機構、11
・・・高電圧導体、   12・・・接続導体、lea
 、 16b・・・円筒状構造体。 第2図
Fig. 1 is a sectional view of a gas insulated switchgear showing one embodiment of the present invention, Fig. 2 is a sectional view of a gas insulated switchgear showing another embodiment of the invention, and Fig. 3 is a sectional view of a conventional gas insulated switchgear. FIG. 2 is a sectional view showing the device. 1... Metal container, 2... Insulating spacer,
2a...Ring-shaped structure, 2b...Insulating material, 2c
... Conductive plastic, 3... Insulating gas, 4a, 4b... Fixed electrode, 5a, 5b... Contactor, 6... Movable electrode, 8... Arc contact, 9... Operating rod, lO... operating mechanism, 11
...High voltage conductor, 12...Connection conductor, lea
, 16b... Cylindrical structure. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 絶縁ガスを封入した金属容器内に高電圧導体を絶縁スペ
ーサにて絶縁支持して収納したガス絶縁開閉装置におい
て、前記絶縁スペーサは磁性材を含むリング状構造物を
絶縁材と一体形成してなるガス絶縁開閉装置。
In a gas-insulated switchgear in which a high-voltage conductor is insulated and supported by an insulating spacer and housed in a metal container filled with an insulating gas, the insulating spacer is formed by integrally forming a ring-shaped structure containing a magnetic material with the insulating material. Gas insulated switchgear.
JP1096235A 1989-04-18 1989-04-18 Compressed-gas-insulated switchgear Pending JPH02276404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096235A JPH02276404A (en) 1989-04-18 1989-04-18 Compressed-gas-insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096235A JPH02276404A (en) 1989-04-18 1989-04-18 Compressed-gas-insulated switchgear

Publications (1)

Publication Number Publication Date
JPH02276404A true JPH02276404A (en) 1990-11-13

Family

ID=14159568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096235A Pending JPH02276404A (en) 1989-04-18 1989-04-18 Compressed-gas-insulated switchgear

Country Status (1)

Country Link
JP (1) JPH02276404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488695A2 (en) * 1990-11-30 1992-06-03 Hitachi, Ltd. Surge suppression in electric apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488695A2 (en) * 1990-11-30 1992-06-03 Hitachi, Ltd. Surge suppression in electric apparatus

Similar Documents

Publication Publication Date Title
EP1858044A2 (en) Switchgear
JPH02276404A (en) Compressed-gas-insulated switchgear
JPH0719505B2 (en) Disconnector
JP2023028398A (en) gas insulated switchgear
JPH0382305A (en) Gas-insulated switchgear
RU2159971C2 (en) Gas-filled disconnecting switch
JPH0218824A (en) Gas insulated disconnecting switch
JPH077623B2 (en) Gas insulated disconnector
JPH0274108A (en) High voltage machinery and apparatus
JPH02101908A (en) Compressed gas insulation switchgear
JPH0265019A (en) Gas insulating switching device
JPH0479090B2 (en)
JPH0224927A (en) Disconnecting switch
JP3099919B2 (en) Gas insulated switchgear
JP3074755B2 (en) Gas insulated electrical equipment
JPH038231A (en) Circuit breaker
JPH0819135A (en) Gas insulated switch
JPH0715078Y2 (en) Disconnector
JPH01308114A (en) Gas insulated electric apparatus
JPH03225717A (en) Disconnecting switch
JPH02247926A (en) Gas insulation electric equipment
JPH04190612A (en) Gas insulated electrical machinery and apparatus
JPH01304627A (en) Gas insulation electric equipment
JPH0233818A (en) Gas insulated switchgear
JPH11126544A (en) Gas-blast circuit-breaker for electric power