JPH02276106A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH02276106A
JPH02276106A JP9722789A JP9722789A JPH02276106A JP H02276106 A JPH02276106 A JP H02276106A JP 9722789 A JP9722789 A JP 9722789A JP 9722789 A JP9722789 A JP 9722789A JP H02276106 A JPH02276106 A JP H02276106A
Authority
JP
Japan
Prior art keywords
film
conductive layer
transparent conductive
resin
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9722789A
Other languages
Japanese (ja)
Inventor
Shiro Nakamura
史郎 中村
Kunihiro Nakano
中野 邦弘
Hirohisa Ito
浩久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP9722789A priority Critical patent/JPH02276106A/en
Publication of JPH02276106A publication Critical patent/JPH02276106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To offer a transparent conductive film with high adhesion of a base film to a conductive layer and excellent durability by providing the underlying layer of coat forming agent including thermoplastic polyester group resin between the base film and the conductive layer. CONSTITUTION:A specially recommended example of a synthetic resin film as a base film is polyethylene terephthalate film. For a conductive layer which is formed on the base film via an underlying layer, metal and/or metal oxide such as gold, silver, copper, palladium, indium oxide, tin oxide, zinc oxide, or etc., preferably indium oxide, tin oxide or these mixed oxide are adapted. For the main element of coat forming agent including polyester group resin for the underlying layer formed to improve adhesion of the conductive layer, polyethylene terephthalate that ethylene glycol is transformed in part by polyglycol is suitable.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基材フィルム上に導電層を形成した透明導電性
フィルムに関し、詳しくは導電層の基材フィルムへの密
着性が改善された透明導電性フィルムに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a transparent conductive film in which a conductive layer is formed on a base film, and more specifically, a transparent conductive film with improved adhesion of the conductive layer to the base film. Regarding conductive films.

[従来の技術] 従来、液晶セル、エレクトロルミネッセンス、エレクト
ロクロミックタッチパネル等の表示素子には、一般に、
ガラスに導電層を形成した、例えばネサガラスのような
透明導電材が使用されていたが、近年になって、基材と
して合成樹脂フィルムを用い、その上に°導電層を形成
した透明導電性フィルムの使用が増加している。基材と
して合成樹脂フィルムを用いたものは、可撓性が有り、
加工性も良好である上に軽量で、しかもガラスのように
割れることが無いという優れた長所を備える。基材に用
いられる合成樹脂フィルムとしては、用途に応じて種々
選定されるが、通常、透明性及び強度面から、ポリエチ
レンテレフタレートが利用されている。
[Prior Art] Conventionally, display elements such as liquid crystal cells, electroluminescence, and electrochromic touch panels generally include:
Transparent conductive materials such as Nesa Glass, which are made by forming a conductive layer on glass, have been used, but in recent years, transparent conductive films that use a synthetic resin film as a base material and have a conductive layer formed thereon have been used. The use of is increasing. Those using synthetic resin film as the base material are flexible,
In addition to being easy to work with, it is lightweight and does not break like glass. The synthetic resin film used for the base material may be selected from various types depending on the purpose, but polyethylene terephthalate is usually used from the viewpoint of transparency and strength.

[発明が解決しようとする課題] しかしながら、合成樹脂フィルムを基材とする透明導電
性フィルムでは、基材フィルムと導電層との密着性が十
分でなく、前記液晶セル等の表示素子製品に適用した場
合、製品の使用中に導電層の剥離が生じたり、ペン入力
等の操作により導電層にクラックが生じるため、製品の
耐久性が低いという欠点があった。
[Problems to be Solved by the Invention] However, in transparent conductive films based on synthetic resin films, the adhesion between the base film and the conductive layer is insufficient, making it difficult to apply them to display element products such as the aforementioned liquid crystal cells. In this case, the conductive layer may peel off during use of the product, or cracks may occur in the conductive layer due to operations such as pen input, resulting in low durability of the product.

本発明は上記従来の問題点を解決し、基材フィルムと導
電層との密着性が高く、耐久性に優れた透明導電性フィ
ルムを提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and provide a transparent conductive film with high adhesiveness between a base film and a conductive layer and excellent durability.

[課題を解決するための手段] 請求項(1)の透明導電性フィルムは、合成樹脂フィル
ムからなる基材フィルム上に導電層を形成した透明導電
性フィルムにおいて、基材フィルムと導電層との間に、
熱可塑性ポリエステル系樹脂を含む塗膜形成剤の下地層
を設けたことを特徴とする 請求項(2)の透明導電性フィルムは、請求項(1)に
おいて、熱可塑性ポリエステル系樹脂が、ポリエチレン
テレフタレートのエチレングリコール成分の5〜50モ
ル%をポリエチレングリコールで置換してなる変性エー
テル型ポリエステル樹脂であることを特徴とする。
[Means for Solving the Problem] The transparent conductive film of claim (1) is a transparent conductive film in which a conductive layer is formed on a base film made of a synthetic resin film, in which the base film and the conductive layer are bonded together. Between,
The transparent conductive film of claim (2), characterized in that a base layer of a coating film forming agent containing a thermoplastic polyester resin is provided, is the transparent conductive film of claim (1), wherein the thermoplastic polyester resin is polyethylene terephthalate. It is characterized by being a modified ether type polyester resin in which 5 to 50 mol% of the ethylene glycol component of is substituted with polyethylene glycol.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは基材フィルムと導電層との密着性を改善し
、耐久性に優れた透明導電性フィルムを提供するべく鋭
意検討を重ねた結果、基材フィルムと導電層との間に、
熱可塑性ポリエステル系樹脂を含む塗膜形成剤の下地層
(以下、単に「下地層」と称す、)を設けることにより
、導電層と基材フィルムとの密着性が改善され、製品の
耐久性が大幅に向上することを見出し、本発明を完成さ
せた。
The present inventors have conducted intensive studies to improve the adhesion between the base film and the conductive layer and to provide a transparent conductive film with excellent durability.
By providing a base layer of a coating film forming agent containing a thermoplastic polyester resin (hereinafter simply referred to as the "base layer"), the adhesion between the conductive layer and the base film is improved, and the durability of the product is increased. They have found that this is a significant improvement and have completed the present invention.

本発明において、基材フィルムの合成樹脂フィルムの好
適例としては、通常、ポリエチレンテレフタレート、ポ
リスルホン、ポリカーボネート、ポリエーテルスルホン
、ポリブチレンテレフタレート等の公知の透明プラスチ
ックフィルムが挙げられ、なかでもポリエチレンテレフ
タレートフィルムが特に好ましい。このフィルムの厚み
は通常、30〜200μmが好適である。
In the present invention, preferred examples of the synthetic resin film for the base film include commonly known transparent plastic films such as polyethylene terephthalate, polysulfone, polycarbonate, polyethersulfone, and polybutylene terephthalate, among which polyethylene terephthalate film is preferred. Particularly preferred. The thickness of this film is usually preferably 30 to 200 μm.

基材フィルムに下地層を介して形成する導電層としては
、金属及び/又は金属酸化物、例えば、金、銀、銅、パ
ラジウム、酸化インジウム、酸化スズ、酸化亜鉛等、好
ましくは酸化インジウム(In20s)、酸化スズ(S
n02)又はこれらの混合酸化物(以下rITOJと称
す、)よりなる導電層が挙げられる。
The conductive layer formed on the base film via the base layer is made of metal and/or metal oxide, such as gold, silver, copper, palladium, indium oxide, tin oxide, zinc oxide, etc., preferably indium oxide (In20s). ), tin oxide (S
n02) or a mixed oxide thereof (hereinafter referred to as rITOJ).

この導電層の密着性改善のために形成される下地層の熱
可塑性ポリエステル系樹脂を含む塗膜形成剤の好適例と
しては、通常、コーティング剤又は接着剤として市販さ
れているものが挙げられる。これらポリエステル系樹脂
を含む塗膜形成剤の主成分は、ポリエチレンテレフタレ
ートのエチレングリコール成分の一部をポリグリコール
などにより変性したものが好適である。具体的には、ポ
リエチレンテレフタレートのエチレングリコール成分の
5〜50モル%をポリエチレングリコールにより置換し
た、下記構造式で示される変性エーテル型ポリエステル
樹脂が挙げられる。
Suitable examples of the coating film forming agent containing the thermoplastic polyester resin for the base layer formed to improve the adhesion of the conductive layer include those that are usually commercially available as coating agents or adhesives. The main component of the coating film forming agent containing these polyester resins is preferably one in which a part of the ethylene glycol component of polyethylene terephthalate is modified with polyglycol or the like. Specifically, a modified ether type polyester resin represented by the following structural formula, in which 5 to 50 mol % of the ethylene glycol component of polyethylene terephthalate is replaced with polyethylene glycol, can be mentioned.

このような熱可塑性ポリエステル系樹脂には、下地層の
耐熱性、耐湿性、耐薬品性、柔軟性などを向上させる目
的でエポキシ樹脂、ポリ塩化ビニリデン系樹脂等の適量
を配合しても良い。
An appropriate amount of epoxy resin, polyvinylidene chloride resin, etc. may be blended with such thermoplastic polyester resin for the purpose of improving the heat resistance, moisture resistance, chemical resistance, flexibility, etc. of the base layer.

この場合、エポキシ樹脂としては、例えば、ビスフェノ
ールA型、脂環型等の一般的な(エポキシ)樹脂又はそ
の混合物が好適に用いられる。エポキシ樹脂の配合量は
熱可塑性ポリエステル系樹脂に対して10〜901量%
とりわけ30〜70重量%とするのが好適である。エポ
キシ樹脂の配合量が多過ぎると、熱可塑性ポリエステル
系樹脂の持つ本来の基材との密着性、導電層とのi!i
!−理性が損なわれ、また熱可塑性ポリエステル系樹脂
の持つ本来の柔軟性が損なわれ、I!により導電層にク
ラックが生じ易くなる。
In this case, as the epoxy resin, for example, common (epoxy) resins such as bisphenol A type and alicyclic type, or mixtures thereof are suitably used. The amount of epoxy resin blended is 10 to 901% by weight based on the thermoplastic polyester resin.
In particular, the content is preferably 30 to 70% by weight. If the amount of epoxy resin is too large, the adhesiveness of the thermoplastic polyester resin to the base material and the i! i
! - Reasonability is impaired, and the original flexibility of thermoplastic polyester resin is impaired, and I! This makes it easier for cracks to occur in the conductive layer.

塩化ビニリデン系樹脂としては、通常、塩化ビニリデン
を主体とし、これと例えば、アクリロニトリル、塩化ビ
ニル、アクリル酸エステル、メタクリル酸エステル等の
共重合可能な成分とを共重合して得られる共重合ポリマ
ーが好適である。この共重合ポリマーにおける塩化ビニ
リデン成分の割合は、通常、60〜99モル%とりわけ
70〜95モル%が望ましい、塩化ビニリデン系樹脂の
配合量は、熱可塑性ポリエステル系樹脂に対して0.0
1〜20重量%とりわけ0.1〜10重量%とするのが
好適である。塩化ビニリデン系樹脂の配合量が多過ぎる
と、熱可塑性ポリエステル系樹脂の持つ本来の基材との
密着性、導電層との密着性が損なわれる。
Vinylidene chloride-based resins are usually copolymerized with vinylidene chloride as the main ingredient, and copolymerized with copolymerizable components such as acrylonitrile, vinyl chloride, acrylic esters, and methacrylic esters. suitable. The proportion of the vinylidene chloride component in this copolymer is usually preferably 60 to 99 mol%, especially 70 to 95 mol%.The blending amount of the vinylidene chloride resin is 0.0% to the thermoplastic polyester resin.
It is preferably 1 to 20% by weight, particularly 0.1 to 10% by weight. If the blending amount of the vinylidene chloride resin is too large, the inherent adhesion of the thermoplastic polyester resin to the base material and the adhesion to the conductive layer will be impaired.

次に、本発明の透明導電性フィルムの製造方法について
説明する。
Next, a method for manufacturing the transparent conductive film of the present invention will be explained.

本発明の透明導電性フィルムを製造するには、まず、基
材フィルムに下地層を形成する。下地層を形成する方法
としては、例えば、熱可塑性ポリエステル系樹脂及び必
要に応じて適当量のエポキシ樹脂、塩化ビニリデン系樹
脂等を有機溶剤に溶解させ、得られる樹脂原液を基材フ
ィルムの表面に塗布し、次いで、加熱処理する方法を採
用できる。ここで用いる有機溶剤としては、樹脂が溶解
するものであれば特に限定されないが、沸点が低過ぎる
ものや、逆に高過ぎるものであると塗布の際に、むら、
垂れ、はじき等の欠陥を生じ易いので、これらの点を考
慮して適宜選択する。具体的には、メチルエチルケトン
、トルエン、エチレングリコールモノメチルエーテル、
エチレングリコールモノエチルエーテル、酢酸エチル、
酢酸−2−メトキシエチル、酢酸−2−エトキシエチル
、4−メトキシ−4−メチルペンタノン−2及びこれら
の混合物等が好ましい、このような有機溶剤の使用量は
、通常、樹脂濃度が1〜5重量%となるように適宜決定
される。
To manufacture the transparent conductive film of the present invention, first, a base layer is formed on a base film. As a method for forming the base layer, for example, a thermoplastic polyester resin and, if necessary, an appropriate amount of epoxy resin, vinylidene chloride resin, etc., are dissolved in an organic solvent, and the resulting resin stock solution is applied to the surface of the base film. A method of coating and then heat treatment can be adopted. The organic solvent used here is not particularly limited as long as it dissolves the resin, but if the boiling point is too low or too high, unevenness may occur during coating.
Since defects such as sagging and repelling are likely to occur, these points should be taken into consideration when selecting an appropriate material. Specifically, methyl ethyl ketone, toluene, ethylene glycol monomethyl ether,
Ethylene glycol monoethyl ether, ethyl acetate,
Preferably, 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 4-methoxy-4-methylpentanone-2, and mixtures thereof are used. The amount of such organic solvent used is usually such that the resin concentration is 1 to It is appropriately determined to be 5% by weight.

樹脂原液の塗布方法としては、例えば、バーコーター 
ドクターブレード等を使用して塗布する方法や、スピン
コーター、グラビアコーター正回転コーター リバース
コーター等を使用して塗布する方法など、各種の塗布方
法を採用できる。
For example, a bar coater can be used to apply the resin stock solution.
Various coating methods can be employed, such as coating using a doctor blade or the like, or coating using a spin coater, gravure coater, forward rotation coater, reverse coater, etc.

加熱処理方法としては、通常、120〜200℃の温度
で樹脂原液を塗布した基材フィルム全体を加熱する方法
が好適である。この加熱処理により、塗液が乾燥及び硬
化し、樹脂の下地層が形成される。
As the heat treatment method, a method of heating the entire base film coated with the resin stock solution at a temperature of 120 to 200°C is usually suitable. This heat treatment dries and hardens the coating liquid, forming a resin base layer.

本発明において、このようにして形成する下地層の厚さ
は、通常、0.01〜1μm程度とするのが好ましい。
In the present invention, the thickness of the base layer formed in this way is usually preferably about 0.01 to 1 μm.

次いで、この下地層上に前記金属及び/又は金属酸化物
よりなる導電層を形成する。導電層はスパッタリング法
を用いて形成するのが好適である。スパッタリング法は
、通常、カソード電極にターゲットを設置し、10−3
〜10−2T o r r程度に減圧したアルゴン等の
不活性ガス雰囲気中、100〜500v程度の電圧を印
加することにより実施される。この際、イオン化したア
ルゴン原子がターゲットに向って加速され、衝突するこ
とにより、ターゲットを構成する原子、分子等が叩き出
されて上記下地層上に積層される。
Next, a conductive layer made of the metal and/or metal oxide is formed on this base layer. The conductive layer is preferably formed using a sputtering method. In the sputtering method, a target is usually installed on the cathode electrode, and
It is carried out by applying a voltage of about 100 to 500 V in an atmosphere of an inert gas such as argon whose pressure is reduced to about 10 -2 Torr. At this time, the ionized argon atoms are accelerated toward the target and collide with each other, so that atoms, molecules, etc. constituting the target are knocked out and stacked on the base layer.

本発明において、用いるターゲツト材としては、特に酸
化インジウムと酸化スズの比率が9゜:10〜90:5
(重量%)のlToが好適である。
In the present invention, the target material used is particularly one in which the ratio of indium oxide to tin oxide is 9°:10 to 90:5.
(% by weight) lTo is preferred.

また、反応系内の圧力は、アルゴンガスを用いた場合、
通常、10″″a〜10−”T o r r程度である
が、同時に酸素ガスを10−”−10−’T o r 
r程度の圧力で導入するのが好ましい。
In addition, when using argon gas, the pressure in the reaction system is as follows:
Normally, it is about 10''a to 10-'T or r, but at the same time oxygen gas is
It is preferable to introduce at a pressure of about r.

本発明において、導電層の厚さは50〜2000Aの範
囲が好ましいが、この厚さは導電層の抵抗値と相関があ
ることから、目的に応じて適宜選択される。
In the present invention, the thickness of the conductive layer is preferably in the range of 50 to 2000 A, but since this thickness is correlated with the resistance value of the conductive layer, it is appropriately selected depending on the purpose.

なお、本発明においては、このような下地層及び導電層
は、基材フィルムの片面に形成しても良く、また両面に
形成しても良い。
In addition, in this invention, such a base layer and a conductive layer may be formed on one side of a base film, or may be formed on both sides.

[作用] 熱可塑性ポリエステル系樹脂を含む塗膜形成材の下地層
は、基材フィルム及び導電層の双方に非常に高い密着性
を有する。しかも、本発明に係る下地層は、フィルムの
透明性を損なうこともない。
[Function] The base layer of the coating film forming material containing the thermoplastic polyester resin has very high adhesion to both the base film and the conductive layer. Moreover, the base layer according to the present invention does not impair the transparency of the film.

このため、このような下地層を形成することにより、導
電層の密着性が改善され、耐久性に優れた透明導電性フ
ィルムが得られる。
Therefore, by forming such a base layer, the adhesion of the conductive layer is improved, and a transparent conductive film with excellent durability can be obtained.

特に、請求項(2)の熱可塑性ポリエステル系樹脂を採
用することにより、著しく優れた密着性の改善効果が得
られる。
In particular, by employing the thermoplastic polyester resin according to claim (2), a remarkable effect of improving adhesion can be obtained.

[実施例] 以下に実施例及び比較例を挙げて、本発明を具体的に説
明するが、本発明はその要旨を超えない限り、以下の実
施例により限定されるものではない。
[Examples] The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1 2軸延伸ポリエチレンテレフタレートフイルム(厚さ1
75μm)の片面に、市販の熱可塑性ポリエステル系樹
脂接着剤(富士写真フィルム■製「スタフィックス」、
樹脂濃度30重量%)10gをメチルエチルケトンと酢
酸−2−メトキシエチルの混合溶剤(1:1重量比)9
0gで溶解した樹脂原液をバーコーターで塗布した後、
熱風乾燥機にて140℃で3分間加熱処理することによ
り樹脂を硬化させ、厚さ0.1μmの下地層を形成した
。この下地層上に、直流マグネトロンスパッタリング装
置を用い、圧力的3X10−’Torr、電圧約320
vで酸化インジウム(95Ii量%)及び酸化スズ(5
重量%)からなる厚さ約250AのITO導電層を形成
させ、透明導電性フィルムを製造した。
Example 1 Biaxially stretched polyethylene terephthalate film (thickness 1
A commercially available thermoplastic polyester resin adhesive ("Stafix" manufactured by Fuji Photo Film ■) was applied to one side of the 75 μm)
(Resin concentration 30% by weight) 10g was mixed with a mixed solvent of methyl ethyl ketone and 2-methoxyethyl acetate (1:1 weight ratio)9
After applying the resin stock solution dissolved at 0g with a bar coater,
The resin was cured by heat treatment at 140° C. for 3 minutes in a hot air dryer to form a base layer with a thickness of 0.1 μm. On this base layer, a DC magnetron sputtering device was used to apply a pressure of 3X10-'Torr and a voltage of about 320
Indium oxide (95 Ii mass%) and tin oxide (5
A transparent conductive film was produced by forming an ITO conductive layer with a thickness of about 250 Å consisting of 1% by weight).

このフィルムの特性は、第1表に示す通りである。The properties of this film are shown in Table 1.

また、このフィルムについて、下記方法により打点試験
前後の表面電気抵抗の均一性(リニアリティ)を測定す
ることにより、耐久性を評価した。結果を第1表に示す
Furthermore, the durability of this film was evaluated by measuring the uniformity (linearity) of the surface electrical resistance before and after the dot test using the method described below. The results are shown in Table 1.

政鼓1韮 第1図に示す如く、サンプル1を10100mmX10
0に切り出し、導電層形成側面の両端辺に幅5mmの電
極IA、IBを銀ペーストを塗布して作成した。この電
極IA、IB間に直流電圧(5V)2を印加し、サンプ
ルの中心部縦6゜mmx横30mmの範囲(第1図中破
線で囲まれる範囲)3の電位を縦横2mm間隔で計49
6点について測定した。そして、サンプルの表面電気抵
抗が完全に均一とみなした場合の各点の理論電圧と、実
際の測定値とのずれをコンピュータに出力させ(第3図
参照)、これを打点試験前のりニアリティとした。
Sample 1 is 10100mm x 10mm as shown in Figure 1.
0, and electrodes IA and IB with a width of 5 mm were prepared by applying silver paste to both ends of the side surface on which the conductive layer was formed. A DC voltage (5 V) 2 is applied between the electrodes IA and IB, and a total of 49 potentials are applied at intervals of 2 mm in the vertical and horizontal directions in a range 3 of 6 mm in length and 30 mm in width at the center of the sample (the range surrounded by the broken line in Figure 1).
Measurements were made at 6 points. Then, the computer outputs the deviation between the theoretical voltage at each point and the actual measured value when the surface electrical resistance of the sample is assumed to be completely uniform (see Figure 3), and this is calculated as the gluability before the dot test. did.

次に、サンプル1を第2図に示す如く、ネサガラス4と
50μmの間隔dをおいて導電面1a。
Next, as shown in FIG. 2, the sample 1 was placed on the conductive surface 1a with a distance d of 50 μm from the Nesa glass 4.

4a同志を向い合わせて固定した。このような状態でサ
ンプルlの中心部をinmピッチで直線状に40点、ポ
リアセタール製のベン5(先端0.8径)で打点した。
Comrades 4a were fixed facing each other. In this state, 40 points were scored in a straight line at the center of the sample 1 at an inch pitch using a polyacetal ben 5 (tip diameter: 0.8).

打点は各ポイントPを10mJの力で10回ずつ打点す
ることにより行なった。この後;前記と同様にして各点
の理論電圧と実際の測定値とのずれをコンピュータに出
力させた(第4図参照)。これを打点試験後のりニアリ
ティとした。
The scoring was done by hitting each point P 10 times with a force of 10 mJ. After this, the deviation between the theoretical voltage at each point and the actual measured value was outputted to the computer in the same manner as above (see FIG. 4). This was defined as the degree of friction after the RBI test.

第1図に示す打点試験前のりニアリティにおいて、隣接
する線の間隔が一番大きい部分の距離をWo、打点試験
後のそれをWIとしてWI/w。
In the gauging nearness before the dot test shown in FIG. 1, the distance of the part where the distance between adjacent lines is the largest is Wo, and the distance after the dot test is WI, WI/w.

で耐久性を評価した。Durability was evaluated.

実施例2 樹脂原液として、実施例1で用いた熱可塑性ポリエステ
ル系樹脂接着剤10g、エポキシ樹脂(旭電化工業■製
rKTX−911−2J 、樹脂濃度100重量%)0
.6g、及びエポキシ用硬化剤(旭電化工業■製rCP
−77J、樹脂濃度100重量%)0.018gを、実
施例1で用いた混合溶剤100gで溶解した樹脂原液を
用いたこと以外は実施例1と同様にして透明導電性フィ
ルムを製造した。
Example 2 As a resin stock solution, 10 g of the thermoplastic polyester resin adhesive used in Example 1, epoxy resin (rKTX-911-2J manufactured by Asahi Denka Kogyo ■, resin concentration 100% by weight) 0
.. 6g, and epoxy curing agent (rCP manufactured by Asahi Denka Kogyo ■)
A transparent conductive film was produced in the same manner as in Example 1, except that a resin stock solution was used in which 0.018 g of -77J, resin concentration 100% by weight was dissolved in 100 g of the mixed solvent used in Example 1.

得られたフィルムの特性及び耐久性試験結果を第1表に
示す。
Table 1 shows the properties and durability test results of the obtained film.

実施例3 樹脂原液として、実施例1で用いた熱可塑性ポリエステ
ル系樹脂接着剤10g及び塩化ビニリデン系樹脂(旭電
化工業■製「サランレジンR202J、固型分100重
量%)0.3gを実施例1で用いた混合溶剤100gで
溶解した樹脂原液を用いたこと以外は実施例1と同様に
して透明導電性フィルムを製造した。
Example 3 As a resin stock solution, 10 g of the thermoplastic polyester resin adhesive used in Example 1 and 0.3 g of vinylidene chloride resin (Saran Resin R202J, solid content 100% by weight, manufactured by Asahi Denka Kogyo ■) were added to Example 1. A transparent conductive film was produced in the same manner as in Example 1, except that a resin stock solution dissolved in 100 g of the mixed solvent used in Example 1 was used.

得られたフィルムの特性及び耐久性試験結果を第1表に
示す。
Table 1 shows the properties and durability test results of the obtained film.

比較例1 下地層を形成しなかったこと以外は、実施例1と同様に
して透明導電性フィルムを製造した。
Comparative Example 1 A transparent conductive film was produced in the same manner as in Example 1, except that no base layer was formed.

得られたフィルムについて、実施例1と同様にして耐久
性試験を行なったところ、打点試験前後の表面電気抵抗
比(W+/Wo)は15で、耐久性は不良であった。
When the obtained film was subjected to a durability test in the same manner as in Example 1, the surface electrical resistance ratio (W+/Wo) before and after the dot test was 15, and the durability was poor.

比較例2 樹脂原液としてエポキシ樹脂(旭電化工業■製rCP−
77J、樹脂濃度100重量%)0.3gをトルエン9
0gに溶解した樹脂原液を用いて下地層を形成したこと
以外は、実施例1と同様にして透明導電性フィルムを製
造した。
Comparative Example 2 Epoxy resin (rCP- manufactured by Asahi Denka Kogyo ■) as resin stock solution
77J, resin concentration 100% by weight) 0.3g toluene 9
A transparent conductive film was produced in the same manner as in Example 1, except that the base layer was formed using a resin stock solution dissolved in 0 g.

得られたフィルムについて、実施例1と同様にして耐久
性試験を行なったところ、打点試験前後の表面電気抵抗
比(W+/Wo)は19で、耐久性は不良であった。
When the obtained film was subjected to a durability test in the same manner as in Example 1, the surface electrical resistance ratio (W+/Wo) before and after the dot test was 19, and the durability was poor.

第1表 第1表より本発明によれば、透明性、導電性を損なうこ
となく、導電層の密着性が改善され、著しく耐久性に優
れた透明導電性フィルムが提供されることが明らかであ
る。
From Table 1, it is clear that according to the present invention, the adhesion of the conductive layer is improved without impairing transparency and conductivity, and a transparent conductive film with extremely excellent durability is provided. be.

[発明の効果] 以上詳述した通り、本発明の透明導電性フィルムによれ
ば、透明性、導電性に優れ、しかも導電層と基材フィル
ムとの密着性も著しく高く、従って、導電層の剥離や破
損等の問題が殆どない、耐久性に優れた高特性透明導電
性フィルムが提供される。
[Effects of the Invention] As detailed above, the transparent conductive film of the present invention has excellent transparency and conductivity, and also has extremely high adhesion between the conductive layer and the base film. A highly durable, high-performance transparent conductive film with almost no problems such as peeling or breakage is provided.

なお、請求項(2)の熱可塑性ポリエステル系樹脂を採
用すると、上記密着性は一段と優れたものになる。
In addition, when the thermoplastic polyester resin of claim (2) is employed, the above-mentioned adhesiveness becomes even more excellent.

従って、本発明の透明導電性フィルムを用いることによ
り、各種表示素子製品等の寿命は大幅に延長される。
Therefore, by using the transparent conductive film of the present invention, the lifespan of various display element products etc. can be significantly extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐久性試験方法を説明する平面図、第2図は同
断面図、第3図及び第4図は各々試験前後の電圧のコン
ピュータ解析図である。 1・・・サンプル、 4・・・ネサガラス、 5・・・ペン。 第1図
FIG. 1 is a plan view illustrating the durability test method, FIG. 2 is a sectional view of the same, and FIGS. 3 and 4 are computer analysis diagrams of the voltage before and after the test, respectively. 1...Sample, 4...Nesa Glass, 5...Pen. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)合成樹脂フィルムからなる基材フィルム上に導電
層を形成した透明導電性フィルムにおいて、基材フィル
ムと導電層との間に、熱可塑性ポリエステル系樹脂を含
む塗膜形成剤の下地層を設けたことを特徴とする透明導
電性フィルム。
(1) In a transparent conductive film in which a conductive layer is formed on a base film made of a synthetic resin film, a base layer of a coating film forming agent containing a thermoplastic polyester resin is placed between the base film and the conductive layer. A transparent conductive film characterized by:
(2)熱可塑性ポリエステル系樹脂が、ポリエチレンテ
レフタレートのエチレングリコール成分の5〜50モル
%をポリエチレングリコールで置換してなる変性エーテ
ル型ポリエステル樹脂である特許請求の範囲第1項記載
の透明導電性フィルム。
(2) The transparent conductive film according to claim 1, wherein the thermoplastic polyester resin is a modified ether type polyester resin obtained by replacing 5 to 50 mol% of the ethylene glycol component of polyethylene terephthalate with polyethylene glycol. .
JP9722789A 1989-04-17 1989-04-17 Transparent conductive film Pending JPH02276106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9722789A JPH02276106A (en) 1989-04-17 1989-04-17 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9722789A JPH02276106A (en) 1989-04-17 1989-04-17 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH02276106A true JPH02276106A (en) 1990-11-13

Family

ID=14186745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9722789A Pending JPH02276106A (en) 1989-04-17 1989-04-17 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH02276106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629833B1 (en) 1998-05-15 2003-10-07 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
JP2006164745A (en) * 2004-12-07 2006-06-22 Kitagawa Ind Co Ltd Transparent conductive film and its manufacturing method
WO2010110224A1 (en) * 2009-03-27 2010-09-30 リンテック株式会社 Conductive zinc oxide multilayer body and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629833B1 (en) 1998-05-15 2003-10-07 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
JP2006164745A (en) * 2004-12-07 2006-06-22 Kitagawa Ind Co Ltd Transparent conductive film and its manufacturing method
JP4716721B2 (en) * 2004-12-07 2011-07-06 北川工業株式会社 Transparent conductive film and method for producing the same
WO2010110224A1 (en) * 2009-03-27 2010-09-30 リンテック株式会社 Conductive zinc oxide multilayer body and method for producing same
JP5373887B2 (en) * 2009-03-27 2013-12-18 リンテック株式会社 Zinc oxide conductive laminate and method for producing the same

Similar Documents

Publication Publication Date Title
JP5954638B2 (en) Adhesive composition for touch panel
US20200207058A1 (en) Pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, pressure-sensitive adhesive-layer-attached polarizing film, and image display device
JPH0266809A (en) Transparent conductive lamination body
JP2667686B2 (en) Transparent conductive laminate
EP3278977B1 (en) Transparent electroconductive film
KR20130003020A (en) Transparent conductive film and touch panel
CN108129993A (en) Acrylate structural adhesive suitable for zinc alloy bonding
KR20130134227A (en) Pressure sensitive adhesive composition
JP2002073282A (en) Transparent conductive film and touch panel electrode
WO2012018142A1 (en) Adhesive for crystalline metal oxide conducting film and adhesive sheet for crystalline metal oxide conducting film using the same
JPH02276106A (en) Transparent conductive film
JP3176812B2 (en) Transparent conductive film
JPH1165771A (en) Electrode substrate for touch panel and manufacture of the same
JPH1034798A (en) Transparent conductive film
JPH06349338A (en) Transparent conductive lamination
JP2829003B2 (en) Transparent conductive laminate
JP2005235678A (en) Transparent conductive laminate and touch panel
CN106847378A (en) A kind of flexible transparent conducting film and preparation method thereof
JPH04355425A (en) Transparent sheet-like heater
JPS627779A (en) Corrosion-resistant photosetting adhesive composition
JPH10339869A (en) Base film for display element
JPH02299106A (en) Transparent conducting film
JPH023485A (en) Method of bonding synthetic resin film
JP2001100188A (en) Liquid crystal display element
JPH02256114A (en) Preparation of composite product