JPH0227580B2 - - Google Patents

Info

Publication number
JPH0227580B2
JPH0227580B2 JP57178660A JP17866082A JPH0227580B2 JP H0227580 B2 JPH0227580 B2 JP H0227580B2 JP 57178660 A JP57178660 A JP 57178660A JP 17866082 A JP17866082 A JP 17866082A JP H0227580 B2 JPH0227580 B2 JP H0227580B2
Authority
JP
Japan
Prior art keywords
compressor
compressors
engine
heat pump
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57178660A
Other languages
Japanese (ja)
Other versions
JPS5969662A (en
Inventor
Tsugunori Hata
Katsuyuki Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP17866082A priority Critical patent/JPS5969662A/en
Publication of JPS5969662A publication Critical patent/JPS5969662A/en
Publication of JPH0227580B2 publication Critical patent/JPH0227580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Description

【発明の詳細な説明】 本発明は、給湯装置や冷暖房装置等の熱源装置
として用いられるエンジン駆動式ヒートポンプ
で、詳しくは、複数のエンジン駆動式冷媒圧縮機
の作動個数を変更可能に構成してあるエンジン駆
動式ヒートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an engine-driven heat pump used as a heat source device for water heaters, air-conditioning equipment, etc. Regarding an engine-driven heat pump.

かかるエンジン駆動式ヒートポンプでは、負荷
の変動に応じて圧縮機の作動個数を変更すること
により、負荷に対応して常に十分な加熱能力を発
揮させることができるが、このように能力変更が
できるように複数の圧縮機を並列状態に備えさせ
てあるヒートポンプにおいて、圧縮機の作動順位
を予め決めておいて必要作動個数1つの場合は順
位1の一つの圧縮機を作動させ、必要作動個数が
2つの場合には順位1と順位2の二つの圧縮機を
併行作動させるといつたような作動順位方式を採
用していた従来のものでは、次のような欠点があ
つた。
In such an engine-driven heat pump, by changing the number of operating compressors in accordance with changes in load, it is possible to always demonstrate sufficient heating capacity in response to the load. In a heat pump that is equipped with multiple compressors in parallel, the order of operation of the compressors is determined in advance, and if the number of compressors required to operate is one, the one compressor in the rank 1 is operated, and if the number of required operation is 2. The conventional system which adopted an operation order system in which the two compressors of rank 1 and rank 2 were operated in parallel in two cases had the following drawbacks.

つまり、能力変更に際して作動順位が1の圧縮
機は常時的に作動させられるといつた具合に、作
動順位の若い圧縮機ほど使用頻度が高いから、各
圧縮機の寿命(耐久性)に大きなばらつきがあ
り、並列的に複数の圧縮機を備え乍らも、各圧縮
機が寿命限界に達する時期の異なりから、一機毎
に交換する要が生じ、また、特定の圧縮機の作動
密度が高い故にその作動密度の高い圧縮機が本来
の寿命低下速度よりも早く寿命限界に達してしま
う欠点もあつた。
In other words, when changing capacity, a compressor with an operating order of 1 is always operated, and compressors with a lower operating order are used more frequently, so there is a large variation in the lifespan (durability) of each compressor. Although it is equipped with multiple compressors in parallel, each compressor reaches its life limit at different times, making it necessary to replace each compressor, and the operating density of a particular compressor is high. Therefore, the compressor, which has a high operating density, has the disadvantage that it reaches its life limit faster than the original rate of life decline.

又、各圧縮機の作動時間を積算し、その積算値
の比較結果に基づいてその積算値が最も小なる圧
縮機から優先的に作動させるべく構成したものも
存在するが、これによるときは、圧縮機がエンジ
ンで駆動されるものであつて、負荷に対する加熱
能力調節を圧縮機の回転数変更で行なうものであ
るため、たとえ、同一時間の作動であつても、高
速度回転時と低速度回転時とではその時間内での
回転数が異なり、そのため、前述した従来の場合
に比較して幾分、各圧縮機の寿命を平均化できる
ものの、十分でなく、やはり、頻繁に圧縮機交換
作業を要する欠点がある。
There are also systems in which the operating time of each compressor is accumulated and the compressor with the smallest accumulated value is operated preferentially based on the comparison result of the accumulated values. The compressor is driven by an engine, and the heating capacity for the load is adjusted by changing the compressor's rotation speed. The number of rotations during that time is different, so although it is possible to average out the life of each compressor somewhat compared to the conventional case described above, it is not enough and the compressor must be replaced frequently. There are drawbacks that require work.

本発明は、かかる従来欠点を解消しようとする
点に目的を有する。
The present invention has an object to overcome such conventional drawbacks.

尚、特許請求の範囲の項に図面との対照を便利
にする為に符号を記すが、該記入により本発明は
添付図面の構造に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

上記の目的を達成するために、本発明は、前記
各圧縮機の回転数を個別に積算する装置と、この
積算装置による積算値の比較結果に基づいて積算
値が最も小さい圧縮機から優先的に作動させる作
動優先判断機構を設けたものである。
In order to achieve the above object, the present invention includes a device that individually integrates the rotation speed of each compressor, and a compressor that has the smallest integrated value based on a comparison result of the integrated values by this integrating device. It is equipped with an operation priority judgment mechanism that activates the system.

したがつて、本発明によれば次の効果が得られ
る。
Therefore, according to the present invention, the following effects can be obtained.

イ 圧縮機の寿命に密接的に関与する圧縮機回転
数の積算値に基づいて作動の優先順位を決定
し、積算値が最も小さい圧縮機から優先的に作
動させるので、積算時間に基づいて制御してい
た従来技術に比べ、各圧縮機の寿命を高精度に
平均化して特定の圧縮機だけに無理な負担が加
わるのを防止でき、長期間にわたり安定した運
転を行える効果がある。
B The priority of operation is determined based on the cumulative value of the compressor rotation speed, which is closely related to the life of the compressor, and the compressor with the lowest cumulative value is operated first, so control is based on the cumulative time. Compared to conventional technology, the lifespan of each compressor can be averaged with high precision, preventing undue stress from being applied to only a specific compressor, and enabling stable operation over a long period of time.

ロ 本発明のエンジン駆動式ヒートポンプによれ
ば、前記寿命の高精度の平均化によつて全ての
圧縮機が同時または略同時的に寿命限界に達す
ることになり、これら圧縮機の交換時期を集中
させて能率的な保守作業を行える効果がある。
(b) According to the engine-driven heat pump of the present invention, all the compressors reach their life limits at the same time or almost simultaneously due to the highly accurate averaging of the lifespans, and the replacement timing of these compressors is concentrated. This has the effect of making maintenance work more efficient.

以下、本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

給湯装置や冷暖房装置A(以下、これらを負荷
装置と総称する。)の熱源装置として用いられる
エンジン駆動式ヒートポンプであつて、これは、
各々がエンジン1A,1Bにより駆動される2つ
の冷媒圧縮機2A,2Bを並列接続されて成る冷
媒回路3に、圧縮冷媒と前記負荷装置Aの被加熱
流体循環回路4の被加熱流体とを熱交換させる凝
縮器5と、膨脹弁6と、空気熱交型蒸発器7とを
介装するとともに、被加熱流体の温度(つまり、
負荷)に基づいて圧縮機2A,2Bの作動個数及
び圧縮機2A,2Bの回転数を自動制御する機構
を設けて、構成されている。
This is an engine-driven heat pump that is used as a heat source device for hot water supply equipment and air conditioning equipment A (hereinafter collectively referred to as load equipment).
The compressed refrigerant and the heated fluid of the heated fluid circulation circuit 4 of the load device A are heated to a refrigerant circuit 3 formed by two refrigerant compressors 2A, 2B connected in parallel, each driven by an engine 1A, 1B. A condenser 5 to be replaced, an expansion valve 6, and an air heat exchange type evaporator 7 are interposed, and the temperature of the fluid to be heated (that is,
A mechanism is provided to automatically control the number of operating compressors 2A, 2B and the rotational speed of the compressors 2A, 2B based on the load.

前記自動制御機構は、被加熱流体の温度(負
荷)を検出するセンサー8と、このセンサー8の
検出温度に基づいて、検出温度が設定値となるよ
うに、圧縮機2A,2Bの作動個所並びに回転数
を制御する、つまり、各エンジン1A,1Bの調
速装置1a,1bを制御する制御器9と、各圧縮
機2A,2B、つまり、エンジン1A,1Bの回
転を積算する装置10A,10Bと、これら積算
装置10A,10Bの積算値に基づいてその積算
値が最も小なる圧縮機(エンジン)から優先的に
作動させる作動優先判断機構11とを設けて、構
成されている。
The automatic control mechanism includes a sensor 8 that detects the temperature (load) of the fluid to be heated, and based on the temperature detected by this sensor 8, controls the operating points of the compressors 2A and 2B and the A controller 9 that controls the rotation speed, that is, controls the speed governors 1a and 1b of each engine 1A and 1B, and a device 10A and 10B that integrates the rotation of each compressor 2A and 2B, that is, the engine 1A and 1B. and an operation priority determination mechanism 11 that preferentially operates the compressor (engine) with the smallest integrated value based on the integrated values of these integrating devices 10A and 10B.

ヒートポンプの加熱能力Pは、第2図に示すよ
うに、1つの圧縮機2A又は2Bの回転数の最小
値Naと最大値Nbとの間での変化に比例して、第
1値P1と第2値P2との間で変化し、2つの圧縮
機2A,2Bの回転数の最小値Naと最大値Nbと
の間での変化に比例して、第3値P3と第4値P4
との間で変化する。
As shown in Fig. 2, the heating capacity P of the heat pump varies between the first value P1 and the rotation speed of one compressor 2A or 2B in proportion to the change between the minimum value Na and the maximum value Nb . The third value P3 and the fourth value change in proportion to the change between the minimum value Na and the maximum value Nb of the rotation speed of the two compressors 2A and 2B. P4
It changes between.

上記実施例構成によれば、被加熱流体の温度が
低い運転初期においては、両圧縮機2A,2Bが
ともに作動するのであつて、負荷が小さくなつて
圧縮機作動個数が1つで済むようになつたときに
は、回転数積算値の大なる側の圧縮機2A又は2
Bが作動停止し、回転数積算値の小なる側の圧縮
機2B又は2Aのみが作動し、両圧縮機2A,2
Bの寿命が及び両エンジン1A,1Bの寿名が平
均化される。
According to the configuration of the above embodiment, both compressors 2A and 2B operate at the beginning of operation when the temperature of the fluid to be heated is low, so that the load is small and only one compressor is required to operate. When it gets tired, the compressor 2A or 2 with the larger integrated rotational speed value
B stops operating, only the compressor 2B or 2A with the smaller cumulative rotational speed operates, and both compressors 2A, 2
The lifespan of engine B is averaged, and the lifespans of both engines 1A and 1B are averaged.

尚、制御器9には、1つの圧縮機2A又は2B
の作動時、その作動途中においてその圧縮機2A
又は2Bの回転数積算値が他方の圧縮機2B又は
2Aの回転数積算値よりも大になつても、運転が
停止される。或いは、両圧縮機2A,2Bがとも
に作動されるまで、その1つの圧縮機2A又は2
Bの作動を継続するための機械又は、1つの圧縮
機2A又は2Bの回転数積算値が他方の圧縮機2
B又は2Aの回転数積算値よりも大になつてから
1つの圧縮機2A又は2Bが設定回転数回転をし
たとき、作動させる圧縮機を切替える機能等を備
えている。
Note that the controller 9 includes one compressor 2A or 2B.
When the compressor 2A is in operation, during the operation, the compressor 2A
Alternatively, even if the integrated rotational speed value of compressor 2B becomes larger than the integrated rotational speed value of the other compressor 2B or 2A, the operation is stopped. Alternatively, one compressor 2A or 2B may be turned on until both compressors 2A, 2B are operated.
B or the cumulative rotation speed of one compressor 2A or 2B is
It is provided with a function of switching the compressor to be operated when one compressor 2A or 2B rotates at a set rotation speed after the rotation speed has become higher than the integrated value of rotation speed of B or 2A.

第3図は別の実施例を示し、これは、1つのエ
ンジン1Aに2つの圧縮機2A,2Bをクラツチ
12A,12Bを介して連動させて、クラツチ1
2A,12Bの入り切りにより圧縮機2A,2B
の作動個数を変更するべく構成したものである。
他の構造は実施例と同じであるから、同一番号を
付すことによつて、その構造説明は省略する。
FIG. 3 shows another embodiment, in which two compressors 2A, 2B are connected to one engine 1A via clutches 12A, 12B, and the clutch 1
Compressor 2A, 2B by turning on/off 2A, 12B
It is configured to change the number of actuated units.
Since the other structures are the same as those in the embodiment, the same reference numerals are given and the explanation of the structures will be omitted.

尚、実施例では、2つの圧縮機2A,2Bを備
えたヒートポンプを示したが、本発明は、3つ以
上の圧縮機2A,2B,2C・・を備えたヒート
ポンプに適用できることはもちろんである。
In addition, in the embodiment, a heat pump equipped with two compressors 2A, 2B was shown, but it goes without saying that the present invention can be applied to a heat pump equipped with three or more compressors 2A, 2B, 2C, etc. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は実施例を示し、第1図は配管
系統図、第2図は圧縮機の回転数と加熱能力との
関係を示すグラフであり、第3図は別の実施例を
示す配管系統図である。 2A,2B……冷媒圧縮機、10A,10B…
…積算装置、11……作動優先判断機構。
Figures 1 and 2 show examples, Figure 1 is a piping system diagram, Figure 2 is a graph showing the relationship between the rotation speed of the compressor and heating capacity, and Figure 3 is another example. It is a piping system diagram showing. 2A, 2B... Refrigerant compressor, 10A, 10B...
...integration device, 11...operation priority judgment mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 複数のエンジン駆動式冷媒圧縮機2A,2B
の作動個数を熱負荷の変動に応じて変更可能に構
成してあるエンジン駆動式ヒートポンプにおい
て、前記各圧縮機2A,2Bの回転数を個別に積
算する装置10A,10Bと、この積算装置10
A,10Bによる積算値の比較結果に基づいて積
算値が最も小さい圧縮機2A又は2Bから優先的
に作動させる作動優先判断機構11を設けたこと
を特徴とするエンジン駆動式ヒートポンプ。
1 Multiple engine-driven refrigerant compressors 2A, 2B
In an engine-driven heat pump configured to be able to change the number of operating compressors according to fluctuations in heat load, the engine-driven heat pump includes devices 10A and 10B that individually integrate the rotational speed of each of the compressors 2A and 2B, and this integrating device 10.
An engine-driven heat pump characterized in that an operation priority determination mechanism 11 is provided that preferentially operates the compressor 2A or 2B with the smallest integrated value based on the comparison result of the integrated values by A and 10B.
JP17866082A 1982-10-12 1982-10-12 Engine driving type heat pump Granted JPS5969662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17866082A JPS5969662A (en) 1982-10-12 1982-10-12 Engine driving type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17866082A JPS5969662A (en) 1982-10-12 1982-10-12 Engine driving type heat pump

Publications (2)

Publication Number Publication Date
JPS5969662A JPS5969662A (en) 1984-04-19
JPH0227580B2 true JPH0227580B2 (en) 1990-06-18

Family

ID=16052337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17866082A Granted JPS5969662A (en) 1982-10-12 1982-10-12 Engine driving type heat pump

Country Status (1)

Country Link
JP (1) JPS5969662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005811A1 (en) * 2002-07-04 2004-01-15 Daikin Industries,Ltd. Refrigeration equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774171B2 (en) * 2001-08-20 2011-09-14 社団法人エルピーガス協会 Air conditioner
JP2016223745A (en) * 2015-06-03 2016-12-28 三菱電機株式会社 Hot water storage type water heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152350U (en) * 1974-10-21 1976-04-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005811A1 (en) * 2002-07-04 2004-01-15 Daikin Industries,Ltd. Refrigeration equipment
US7028502B2 (en) 2002-07-04 2006-04-18 Daikin Industries, Ltd. Refrigeration equipment

Also Published As

Publication number Publication date
JPS5969662A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
US4766734A (en) Heat pump system with hot water defrost
US4498310A (en) Heat pump system
US4439995A (en) Air conditioning heat pump system having an initial frost monitoring control means
US3159981A (en) Heat pump including frost control means
JPS6162744A (en) Air-conditioning controller
JPH0227580B2 (en)
US2282878A (en) Air conditioning system
US2257915A (en) Air conditioning system
GB2102929A (en) Heat pump unit
CN100552310C (en) The air-conditioning unit of many cold and heat sources
KR920008426A (en) Air conditioner
JPH03217746A (en) Multiroom type air-conditioner
JPS6039726Y2 (en) air conditioner
JPS624615B2 (en)
JPH0245795B2 (en) TASHITSUGATAKUKICHOWAKI
JPS6222391B2 (en)
JPS6027322Y2 (en) air conditioner
CA1206557A (en) Air conditioning heat pump system having an initial frost monitoring control means
EP0893663A1 (en) A method of controlling the defrosting cycles in a heat heat-pump system
JPS59165876A (en) Refrigerating device
JPS587253Y2 (en) air conditioner
JPH0129477Y2 (en)
JPS581344B2 (en) Air conditioning/heating water heater
JPH11148732A (en) Air conditioner
JPS5838946Y2 (en) Refrigeration equipment