JPH02275601A - Manufacture of thin-film thermistor - Google Patents

Manufacture of thin-film thermistor

Info

Publication number
JPH02275601A
JPH02275601A JP9712389A JP9712389A JPH02275601A JP H02275601 A JPH02275601 A JP H02275601A JP 9712389 A JP9712389 A JP 9712389A JP 9712389 A JP9712389 A JP 9712389A JP H02275601 A JPH02275601 A JP H02275601A
Authority
JP
Japan
Prior art keywords
oxide
electrode film
thermistor
thin film
fired electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9712389A
Other languages
Japanese (ja)
Other versions
JP2507036B2 (en
Inventor
Takeshi Nagai
彪 長井
Masahiko Ito
雅彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9712389A priority Critical patent/JP2507036B2/en
Publication of JPH02275601A publication Critical patent/JPH02275601A/en
Application granted granted Critical
Publication of JP2507036B2 publication Critical patent/JP2507036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To reduce condensation of Au-Pt electrode film and to improve thermal stability at the contact part between an SiC thin film and the Au-Pt electrode film by using the Au-Pt electrode film where the mixture of a Ca oxide and a Ti oxide is added slightly. CONSTITUTION:A pair of Au-Pt calcination electrode film 22 of a specified shape and an SiC sputter resistance thin film 23 are formed on an insulation substrate 21 and a small amount of a mixed oxide of a Ca oxide and a Ti oxide is added into this Au-Pt calcination electrode film 22 slightly. When the Au-Pt calcination electrode film 22 including a small amount of oxide is used, it becomes difficult for condensation even at a high temperature of 500 deg.C to proceed. Thus, it becomes possible to obtain a practical SiC thin film thermistor 1 which can operate for a long time even at a high temperature of 500 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は耐熱性の高い薄膜サーミスタに関するもので、
この薄膜サーミスタは熱セルフクリーニング機能付き電
気オーブン、ガスオーブンなどの温度センサとして利用
される。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a thin film thermistor with high heat resistance.
This thin film thermistor is used as a temperature sensor for electric ovens, gas ovens, etc. with a thermal self-cleaning function.

従来の技術 SiC″FllI’Aサーミスタは、例えば、長井、他
ナショナルテクニカルレポート(National T
echnical Report) Vol、29.(
1983) P、145に示されるように、第1図のよ
うな構造になっていた。すなわち、実用5iCl膜サー
ミスタlはサーミスタ素子2、リード線3および硝子被
覆Fi4で構成される。サーミスタ素子2は、あらかじ
め櫛形状焼成電極W122の形成された絶縁性基板21
の一方の表面に、スパッタ5iCi膜23を形成して構
成される。代表的絶縁性基板21としてアルミナ基板2
1が用いられる。アルミナ基板21は、通常、表面粗さ
2〜3μm、純度約95%のものが用いられる。代表的
焼成電極膜22としてAu−Pt焼成電極膜22が用い
られる。サーミスタ素子2の耐熱性はこの焼成電極11
!22に大きく依存するので、後に詳しく述べる。Si
C薄膜23は通常の平行平板型高周波スパンタリング装
置を用いて形成される。サーミスタ素子2が形成された
後、リード線3が接続され、さらに湿度、埃などから素
子を保護するために硝子被覆層4が形成され、実用Si
C薄膜サーミスタ1として完成する。
Conventional technology SiC''FllI'A thermistors are described, for example, in the National Technical Report by Nagai et al.
technical report) Vol, 29. (
1983) P, 145, the structure was as shown in Figure 1. That is, a practical 5iCl film thermistor I is composed of a thermistor element 2, a lead wire 3, and a glass coating Fi4. The thermistor element 2 includes an insulating substrate 21 on which a comb-shaped fired electrode W122 is formed in advance.
A sputtered 5iCi film 23 is formed on one surface of the 5iCi film 23. Alumina substrate 2 as a representative insulating substrate 21
1 is used. The alumina substrate 21 usually has a surface roughness of 2 to 3 μm and a purity of about 95%. As a typical fired electrode film 22, an Au-Pt fired electrode film 22 is used. The heat resistance of the thermistor element 2 is determined by this fired electrode 11.
! 22, so it will be described in detail later. Si
The C thin film 23 is formed using a normal parallel plate type high frequency sputtering device. After the thermistor element 2 is formed, a lead wire 3 is connected, and a glass coating layer 4 is formed to protect the element from humidity, dust, etc.
The C thin film thermistor 1 is completed.

発明が解決しようとする課題 しかし、このような従来の実用5iCi膜サーミスタは
、広い温度範囲を検出するのに適するという特徴を有す
るが、その最高使用温度が約400℃であり、例えば、
熱セルフクリーニング機能付オープンの温度センサとし
て使用できないという課題があった。すなはち、上記オ
ープンは、通常の調理温度範囲(40〜300℃)から
庫内壁に付着した食品汚れを焼き切るセルフクリーニン
グ温度範囲(450〜500℃)までの広い温度範囲に
わたり使用できる温度センサを必要とする。このため検
出温度範囲の広く、500℃の高温に耐える温度センサ
が求められていた。
Problems to be Solved by the Invention However, although such conventional practical 5iCi film thermistors have the characteristic of being suitable for detecting a wide temperature range, their maximum operating temperature is approximately 400°C.
The problem was that it could not be used as an open temperature sensor with a thermal self-cleaning function. In other words, the above-mentioned open uses a temperature sensor that can be used over a wide temperature range from the normal cooking temperature range (40 to 300 degrees Celsius) to the self-cleaning temperature range (450 to 500 degrees Celsius) that burns off food stains on the internal walls of the refrigerator. I need. Therefore, there has been a need for a temperature sensor that has a wide detection temperature range and can withstand high temperatures of 500°C.

そこで本発明の第一の目的は、500℃の高温下でも長
時間にわたり動作可能な実用SiC薄膜サーミスタを提
供することである。
Therefore, the first object of the present invention is to provide a practical SiC thin film thermistor that can operate for a long time even at a high temperature of 500°C.

本発明の第二の目的は、上記高耐熱性SiC薄膜サーミ
スタのサーミスタ特性を安定化する方法を提供すること
である。
A second object of the present invention is to provide a method for stabilizing the thermistor characteristics of the above-mentioned high heat-resistant SiC thin film thermistor.

ブf用 用ムムら一一←、サーミスタ素子を高温中で試験すると
、抵抗値は増大し、他方B定数は低下する。この原因は
、高温での試験中に、焼成電極膜が凝集し、SiC薄膜
と焼成電極膜の間に高い界面インピーダンス層が形成さ
れることにある。従来の電極■りは上記の凝集が進行し
易いので、高い界面インピーダンス層が容易に成長する
。このために従来のサーミスタは保護硝子被覆しても約
400℃以上で使用できなかった。本発明のサーミスタ
では酸化物を微量含むAu−Pt焼成電掘膜が用いられ
ているので、上記500℃の高温でも凝集が進行し難く
、このために500’Cの耐熱性が得られた。
When a thermistor element is tested at high temperatures, the resistance value increases, while the B constant decreases. The reason for this is that during the test at high temperature, the fired electrode film aggregates and a high interfacial impedance layer is formed between the SiC thin film and the fired electrode film. Since the above-mentioned aggregation tends to progress in the conventional electrode structure, a high interfacial impedance layer easily grows. For this reason, conventional thermistors cannot be used at temperatures above about 400° C. even if they are coated with protective glass. Since the thermistor of the present invention uses a fired Au--Pt electroplated film containing a small amount of oxide, agglomeration is difficult to proceed even at the above-mentioned high temperature of 500°C, and therefore a heat resistance of 500'C was obtained.

実施例 以下、本発明の一実施例を添付図面にもとすいて説明す
る。第1図は本発明の5iCR11Qサーミスタの構造
を示す斜視図で、この構造自体は従来のSiC薄膜サー
ミスタと同じである。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view showing the structure of a 5iCR11Q thermistor of the present invention, and this structure itself is the same as a conventional SiC thin film thermistor.

以下で、Au−Pt焼成電極膜22のサーミスタ素子2
の耐熱性に及ばず効果を詳述する。従来のAu−Pt焼
成電極膜22は次のようにして形成した。Au−PLペ
ーストを所定のパターンでアルミナ基板21に印刷した
。印刷されたアルミナ基板21を乾燥した後、空気中9
00〜1000℃の温度で焼成した。このようにして形
成された焼成後の従来のA’u−Pt焼成電極膜22は
Au、PL、および硝子(SiOi)で構成される。硝
子はAu、PLをアルミナ基板21に強固に接着するた
めに必要であり、Au、PLの総重量に対して約10w
 t%添加される。このような従来のAu−Pt焼成電
極膜22に微量の酸化物を添加することによりサーミス
タ素子2の耐熱性が向上することが見いだされた。以降
の記述では、本発明のサーミスタ素子2Aは、微量の酸
化物の添加されたAu−Pt焼成電極膜22Aを用いた
サーミスタ素子2として定義する。従来のサーミスタ素
子2Bは、従来のAu−pt焼成電極膜22Bを用いた
サーミスタ素子2Bとして定義する。
Below, the thermistor element 2 of the Au-Pt fired electrode film 22
The heat resistance is not as good as that of the previous one, but the effect will be explained in detail. The conventional Au-Pt fired electrode film 22 was formed as follows. Au-PL paste was printed on the alumina substrate 21 in a predetermined pattern. After drying the printed alumina substrate 21, 9
It was fired at a temperature of 00 to 1000°C. The conventional A'u-Pt fired electrode film 22 after firing thus formed is composed of Au, PL, and glass (SiOi). Glass is necessary to firmly adhere Au and PL to the alumina substrate 21, and has a weight of approximately 10w relative to the total weight of Au and PL.
t% is added. It has been found that the heat resistance of the thermistor element 2 can be improved by adding a small amount of oxide to such a conventional Au-Pt fired electrode film 22. In the following description, the thermistor element 2A of the present invention is defined as the thermistor element 2 using the Au-Pt fired electrode film 22A to which a trace amount of oxide is added. The conventional thermistor element 2B is defined as a thermistor element 2B using a conventional Au-pt fired electrode film 22B.

第2図はサーミスタ素子2Aと2Bを空気中825℃で
アニールしたときのアニール時間経過に対するB定数変
化率(ΔB/B)を示す図である。本発明のサーミスタ
素子2Aでは、酸化物として(Ca酸化物+Ti酸化物
)の混合物をAuとPLの総重量に対して約0.1%添
加した。スパッタロフト間での耐熱性のバラツキを避け
るために、両サーミスタ素子2Aと28のSiC薄膜と
も同一のスパッタロフトで作成した。アニール前のB定
数は両サーミスタ素子2Aと2Bとも2400−245
0にであった。なお、B定数は式1n(R+/Rt)/
(1/T+−i/lt)に従って求められた値で、R1
はT、(50℃・323K)での直流抵抗値、RtはT
t(160”c・433K)での直流抵抗値である。同
図より本発明のサーミスタ素子2Aは従来のサーミスタ
素子2Bより安定であることが分かる。
FIG. 2 is a diagram showing the rate of change in B constant (ΔB/B) with respect to the elapse of annealing time when the thermistor elements 2A and 2B are annealed at 825° C. in air. In the thermistor element 2A of the present invention, a mixture of (Ca oxide + Ti oxide) was added as an oxide in an amount of about 0.1% based on the total weight of Au and PL. In order to avoid variations in heat resistance between sputter lofts, both thermistor elements 2A and the SiC thin film 28 were made with the same sputter loft. The B constant before annealing is 2400-245 for both thermistor elements 2A and 2B.
It was 0. Note that the B constant is expressed by the formula 1n(R+/Rt)/
(1/T+-i/lt), R1
is T, DC resistance value at (50℃・323K), Rt is T
This is the DC resistance value at t (160"c/433K). From the figure, it can be seen that the thermistor element 2A of the present invention is more stable than the conventional thermistor element 2B.

第3図にAu−Pt焼成電極膜22Aと228のXM 
A (X−ray Micro−Analysor)に
よる組成分析例を示す。本発明のAu−Pt焼成電極膜
22Aは、従来のAu−Pt焼成電極膜22Bに含まれ
るAuPLおよびSi(硝子の主成分)に加えてCaT
iを含んでいた。なお、Ca、Tiが酸化物の状態であ
るかどうかは第3図から不明である。しかし、上述した
ように本発明のAu−Pt焼成電極膜22も従来のAu
−Pt焼成電極膜22Bも高温の空気中で焼成して形成
されるので、Ca、Tiは酸化物の状態であることは明
らかである。
Figure 3 shows the XM of Au-Pt fired electrode films 22A and 228.
An example of composition analysis using A (X-ray Micro-Analyser) is shown. The Au-Pt fired electrode film 22A of the present invention contains CaT in addition to AuPL and Si (main components of glass) contained in the conventional Au-Pt fired electrode film 22B.
It contained an i. Note that it is unclear from FIG. 3 whether Ca and Ti are in an oxide state. However, as mentioned above, the Au-Pt fired electrode film 22 of the present invention is also
Since the -Pt fired electrode film 22B is also formed by firing in high temperature air, it is clear that Ca and Ti are in an oxide state.

本発明のAu−Pt焼成電極膜22Aがサーミスタ素子
2Aの耐熱性を向上する理由を明らかにするために、A
u−Pt焼成電極膜22Aと22Bの表面構造を825
℃で6時間の空気中アニール前後で分析した。第4図は
上記アニール前後での再焼成電極膜22Aと22BのS
EM像を示す。本発明のAu−Pt焼成電極膜22Aは
従来Au−Pt焼成電極膜22Bより明らかに凝集の少
ないことが分かる。
In order to clarify the reason why the Au-Pt fired electrode film 22A of the present invention improves the heat resistance of the thermistor element 2A,
The surface structure of the u-Pt fired electrode films 22A and 22B is 825
Analysis was performed before and after annealing in air for 6 hours at °C. Figure 4 shows the S of the refired electrode films 22A and 22B before and after the above annealing.
An EM image is shown. It can be seen that the Au--Pt fired electrode film 22A of the present invention has clearly less agglomeration than the conventional Au--Pt fired electrode film 22B.

また、第5図は825℃で3時間の空気中アニール前後
でのサーミスタ素子2Aと2BのCo1e−Coleプ
ロットを示す。アニール前、サーミスタ素子2Aと2B
とも殆ど同じ抵抗値とB定数を有していた。アニール後
、本発明のサーミスタ素子2Aは約70%の抵抗値増加
と約−1%のB定数低下を示した。しかし、アニール後
、従来のサーミスタ素子2Bは約5倍の抵抗値増加と約
−1e%以上のB定数低下を示した。Co1e−Cot
eプロットは、第5図に示すように、複素インピーダン
スの抵抗値とりアクタンスの関係として定義される。サ
ーミスタ素子2Aと2Bの複素インピーダンスが2−1
000kHzの周波数範囲で室温で測定された。アニー
ル前、サーミスタ素子2Aと2BのCo1e−Cole
プロットは互いにほぼ同しで、はぼ完全な半円弧を示し
た。アニール後、本発明のサーミスタ素子2AのCo1
e−Coleプロットは、アニール前の半円弧の半径に
比べ大きな半径であるが、はぼ完全な半円弧を示した。
Moreover, FIG. 5 shows Cole-Cole plots of thermistor elements 2A and 2B before and after annealing in air at 825° C. for 3 hours. Before annealing, thermistor elements 2A and 2B
Both had almost the same resistance value and B constant. After annealing, the thermistor element 2A of the present invention showed an increase in resistance of about 70% and a decrease in B constant of about -1%. However, after annealing, the conventional thermistor element 2B showed an approximately 5-fold increase in resistance value and a decrease in B constant of approximately -1e% or more. Co1e-Cot
As shown in FIG. 5, the e-plot is defined as the relationship between resistance and actance of complex impedance. The complex impedance of thermistor elements 2A and 2B is 2-1
Measurements were made at room temperature in the frequency range of 000 kHz. Co1e-Cole of thermistor elements 2A and 2B before annealing
The plots were nearly identical to each other and showed almost perfect semicircular arcs. After annealing, Co1 of the thermistor element 2A of the present invention
The e-Cole plot showed a nearly complete semicircular arc, although the radius was larger than the radius of the semicircular arc before annealing.

しかし、アニール後、従来のサーミスタ素子2BのCo
1e−Coleプロットは半円弧でなかった。約50k
tlz以上の高周波数領域では、そのC。
However, after annealing, the Co of the conventional thermistor element 2B
The 1e-Cole plot was not a semicircular arc. Approximately 50k
In the high frequency region above tlz, its C.

1e−Coleプロットは、本発明のサーミスタ素子2
Aのそれとほぼ類似の半円弧であった。他方、50 k
 Hz以下の低周波数領域では、リアクタンスは抵抗値
の増大と共に緩やかに減少し、10 k Hz以下で再
び増加した。このような挙動は、アニール後の従来サー
ミスタ素子2Bが第6図に示す回路で等価的に表される
ことを示す。この等価回路は、抵抗体とコンデンサが並
列接続した複合回路が2個直列接続した回路で構成され
る。この等価回路がrとCから成る1個の複合回路の場
合、Co1e−Coleプロットは完全な半円弧を示し
、ωcr=1のとき最大リアクタンスr / 2を示す
1e-Cole plot shows the thermistor element 2 of the present invention.
It was a semicircular arc almost similar to that of A. On the other hand, 50k
In the low frequency region below Hz, the reactance decreased slowly with increasing resistance and increased again below 10 kHz. Such behavior indicates that the conventional thermistor element 2B after annealing is equivalently represented by the circuit shown in FIG. This equivalent circuit is composed of two series-connected composite circuits in which a resistor and a capacitor are connected in parallel. If this equivalent circuit is one composite circuit consisting of r and C, the Cole-Cole plot shows a complete semicircular arc and a maximum reactance r/2 when ωcr=1.

ここでω=2πfで、[は周波数、Cは容量値、rは抵
抗値である。アニール前、測定されたC。
Here, ω=2πf, [ is the frequency, C is the capacitance value, and r is the resistance value. C measured before annealing.

Ie−Coleプロットは、rをS i C3膜の抵抗
値、Cを主としてアルミナ基Fi、21上に形成された
櫛型状Au−Pt焼成電極膜22Aまたは22Bの間の
容量値としたときの1個の複合回路のCo1e−Col
eプロットとよく一致した。
In the Ie-Cole plot, r is the resistance value of the SiC3 film, and C is the capacitance value between the comb-shaped Au-Pt fired electrode film 22A or 22B formed on the alumina-based Fi, 21. Co1e-Col of one composite circuit
It matched well with the e-plot.

等価回路が2個の複合回路の直列接続で構成された場合
、Co1e−Coleプロットはそれぞれの複合回路に
対応した2個の半円弧の合成曲線を示す。2個の複合回
路の一つはrとCの一つの並列接続から成る。他の複合
回路をr゛とCoの一つの並列接続で定義する。cr(
c’r″のとき、Co1e−Coleプロットは、高周
波数領域ではCとrに依存し、低周波数領域ではCoと
r”に依存する。従来のサーミスタ素子2BのCo1e
−Co1eプロツトにおいて10 k Hz以下でリア
クタンスが増加したことは、Coとr゛から成る複合回
路に起因し、このr′とCoの複合回路はアニール中に
形成されたと思われる。他方、アニール後の従来サーミ
スタ素子2Bの中で従来のAu−Pt焼成電極膜22B
とSiC薄膜23との間の接触部分をアルミナなどの絶
縁物で軽くこすると抵抗値が数十%減少した。この抵抗
値減少から、Coとr゛の複合回路が従来のAu−Pt
焼成電極膜22BとSiC薄膜23の界面インピーダン
スに対応することを示す。
When the equivalent circuit is constructed by connecting two composite circuits in series, the Cole-Cole plot shows a composite curve of two semicircular arcs corresponding to each composite circuit. One of the two composite circuits consists of one parallel connection of r and C. Another composite circuit is defined by one parallel connection of r′ and Co. cr(
c'r'', the Cole-Cole plot depends on C and r in the high frequency region and on Co and r'' in the low frequency region. Co1e of conventional thermistor element 2B
The increase in reactance below 10 kHz in the -Co1e plot is due to a composite circuit consisting of Co and r', and this composite circuit of r' and Co is thought to have been formed during annealing. On the other hand, in the conventional thermistor element 2B after annealing, the conventional Au-Pt fired electrode film 22B
When the contact area between the electrode and the SiC thin film 23 was lightly rubbed with an insulating material such as alumina, the resistance value was reduced by several tens of percent. This decrease in resistance shows that the composite circuit of Co and r゛ is different from the conventional Au-Pt
This shows that it corresponds to the interface impedance between the fired electrode film 22B and the SiC thin film 23.

これらのことから、従来のAu−Pt焼成電掘11!2
2Bがアニール中に容易に凝集し易く、その結果、抵抗
値増加やB定数低下を招く界面インピーダンスが形成さ
れたと言える。他方、本発明のAu−Pt焼成電極膜2
2Aは酸化物の添加により、アニール中の凝集が微小に
低減されるので、界面インピーダンスが形成されない。
For these reasons, conventional Au-Pt fired electric digging 11!2
It can be said that 2B easily aggregates during annealing, and as a result, an interfacial impedance is formed that causes an increase in resistance value and a decrease in B constant. On the other hand, the Au-Pt fired electrode film 2 of the present invention
In 2A, aggregation during annealing is slightly reduced due to the addition of oxide, so no interfacial impedance is formed.

このことにより本発明のサーミスタ素子22Aの耐熱性
が向上した。
This improved the heat resistance of the thermistor element 22A of the present invention.

次に、実用動作温度を確認するために、寿命試験を、空
気中で400’C,500℃1600℃の各温度で実施
した。本発明のSiC薄膜サーミスタ素子2Aを用いた
実用3iCI膜サーミスタIAと従来のSiC薄膜サー
ミスタ素子2Bを用いた実用5icl膜サーミスタIB
をそれぞれ用いた。試験された実用サーミスタでは、p
t線をサーミスタ素子2に溶接し、また、約660’C
の転移点温度を有する硝子被覆層4を形成した。従来の
実用サーミスタIBは、400℃で1000時間試験後
、抵抗値変化率(Δr / r ) <±5%、B定数
変化率(ΔB/B)<±2%、500’Cで100〜2
00時間試験後、Δr/r>10%、ΔB/B<5%、
さらに500’Cで1000時間試験後、Δr/r>5
0%、ΔB/B<10%であった。しかし、本発明の実
用SiC薄膜サーミスタIAは500’Cで1000時
間試験後、(Δr/r)<+5%、B定数変化率(ΔB
/B)<±2%、また、600℃で100時間試験後も
同様の結果であった。これらの結果から本発明の実用サ
ーミスタIAは500℃で動作できることが確認された
Next, in order to confirm the practical operating temperature, a life test was conducted in air at temperatures of 400'C, 500C, and 1600C. Practical 3iCI film thermistor IA using the SiC thin film thermistor element 2A of the present invention and practical 5icl film thermistor IB using the conventional SiC thin film thermistor element 2B
were used respectively. For the practical thermistors tested, p
The T wire is welded to the thermistor element 2, and the temperature is about 660'C.
A glass coating layer 4 was formed having a transition point temperature of . Conventional practical thermistor IB has resistance value change rate (Δr/r) <±5%, B constant change rate (ΔB/B) <±2%, and 100~2% at 500'C after 1000 hours test at 400'C.
After 00 hours test, Δr/r>10%, ΔB/B<5%,
After further testing at 500'C for 1000 hours, Δr/r>5
0%, ΔB/B<10%. However, after testing the practical SiC thin film thermistor IA of the present invention at 500'C for 1000 hours, (Δr/r)<+5%, B constant change rate (ΔB
/B)<±2%, and similar results were obtained after testing at 600°C for 100 hours. From these results, it was confirmed that the practical thermistor IA of the present invention can operate at 500°C.

次に、(Ca酸化物+Ti酸化物)の混合物が種々の重
量濃度で添加された本発明のAu−Pt焼成電極膜22
Aを用いた本発明の実用サーミスタIAで500’C空
気中で試験を実施した。結果を第1表に示す。(Ca酸
化物+TI酸化物)の混合物の望ましい添加量は0.0
1〜0.1%の範囲であった。
Next, the Au-Pt fired electrode film 22 of the present invention was added with a mixture of (Ca oxide + Ti oxide) at various weight concentrations.
A test was carried out on the practical thermistor IA of the present invention using A at 500'C in air. The results are shown in Table 1. The desirable addition amount of the mixture of (Ca oxide + TI oxide) is 0.0
It was in the range of 1-0.1%.

第1表 酸化物添加効果 の混合物を一定量0.1 w t%添加す条件下で、種
々の重量比A u / P tで形成した本発明のAu
−pt焼成電極M22Aを用いた実用サーミスタIAも
また500℃空気中で試験を実施した。その結果を第2
表に示す。
Table 1 Au of the present invention formed at various weight ratios A u / P t under the condition of adding a constant amount of 0.1 wt % of the mixture of oxide addition effects
A practical thermistor IA using -pt fired electrode M22A was also tested in air at 500°C. The result is the second
Shown in the table.

第2表(Au:Pt)重量比の効果 また、酸化物として(Ca酸化物Ti酸化物)AuやP
Lの単体金属から成る焼成電極膜22Aを用いた実用サ
ーミスタIAは耐熱性に劣っていた。しかし、Au−P
tの金属混合物から成る焼成電極II!22Aを用いた
それIAは耐熱性に優れていた。上記金属混合物の焼成
電極膜22Aを用いた本発明の実用サーミスタIAが耐
熱性に優れる詳細な理由は明らかでない。しかし、その
優れた耐熱性は、Auとptの2元合金において、2相
(at、az)が安定に存在することと深くかかわって
いると思われる。この2相(at、ax)は、Con5
titution binary alloy、叶、 
Max Hansen、 McGrawhill Bo
ok Company、 pp226−229.195
8の中で、約600℃以上の温度範囲で存在するで報告
されている。2相は各相が熱的にそれぞれ別個に凝集す
ることを妨げる。本発明のAu−Pt焼成電極膜22は
酸化物が添加されているので、この熱的凝集は一層困難
である。他方、単体金属は単一の相のみであるので、熱
的凝集は極めて容易であり、たとえ酸化物が添加されて
も、単体金属の熱的凝集を効果的に低減できない。これ
らのことから、好ましいA u / P を比は2相が
存在する範囲である。
Table 2 Effect of weight ratio (Au:Pt) Also, as oxides (Ca oxide, Ti oxide) Au and P
The practical thermistor IA using the fired electrode film 22A made of a single metal of L had poor heat resistance. However, Au-P
Baked electrode II consisting of a metal mixture of t! IA using 22A had excellent heat resistance. The detailed reason why the practical thermistor IA of the present invention using the fired electrode film 22A of the metal mixture has excellent heat resistance is not clear. However, its excellent heat resistance is thought to be deeply related to the stable existence of two phases (at, az) in the binary alloy of Au and pt. These two phases (at, ax) are Con5
posture binary alloy, Kano,
Max Hansen, McGrawill Bo
OK Company, pp226-229.195
8, it has been reported to exist in a temperature range of about 600°C or higher. The two phases prevent each phase from thermally coalescing separately. Since the Au-Pt fired electrode film 22 of the present invention contains an oxide added thereto, this thermal aggregation is even more difficult. On the other hand, since an elemental metal has only a single phase, thermal aggregation is extremely easy, and even if an oxide is added, thermal aggregation of an elemental metal cannot be effectively reduced. From these considerations, the preferred A u /P ratio is within a range where two phases exist.

本発明の実用サーミスタIAが製造される過程で、本発
明のサーミスタ素子2Aはステンレス製ピンセットで取
り扱われる。例えば、Pt細線3が溶接されるとき、サ
ーミスタ素子2の表面がピンセットで希に傷付けられる
ことがあった。このように製造時に金属製ピンセットで
傷付けられた本発明のサーミスタ素子2Aを用いた本発
明の実用サーミスタIAは、500℃空気中で100−
300時間試験後、ΔB/B<±2%であるが、Δr 
/ r=−5%〜−20%を示した。このような抵抗値
減少は、ピンセットで傷付けられたときに表面に付着し
た金属原子がSiC薄膜23の中に熱的に拡散すること
に起因すると考えられる。
In the process of manufacturing the practical thermistor IA of the present invention, the thermistor element 2A of the present invention is handled with stainless steel tweezers. For example, when the Pt thin wire 3 is welded, the surface of the thermistor element 2 is occasionally scratched with tweezers. The practical thermistor IA of the present invention, which uses the thermistor element 2A of the present invention that has been scratched with metal tweezers during manufacturing, has a temperature of 100°C in air at 500°C.
After 300 hours test, ΔB/B<±2%, but Δr
/r=-5% to -20%. Such a decrease in resistance value is considered to be caused by thermal diffusion of metal atoms attached to the surface of the SiC thin film 23 when scratched with tweezers.

しかし、この抵抗値減少は、一定の値に飽和したので、
製造後のボストアニールにより安定化されることが見い
だされた。ある傷付いた実用サーミスタIAは500℃
空気中で約230時間試験後、Δr / r x〜−1
0%を示した。しかし、その同じ実用サーミスタIAは
、その後500℃空気中で約700時間追加した後、Δ
r / r〜−8%であった。
However, this decrease in resistance value saturated at a certain value, so
It has been found that post-manufacturing boss annealing can stabilize the material. A damaged practical thermistor IA has a temperature of 500℃.
After testing for about 230 hours in air, Δr/r x ~-1
It showed 0%. However, that same practical thermistor IA then showed Δ
r/r~-8%.

また、他の傷付いた複数個の実用サーミスタIAは60
0℃空気中で3〜10時間試験後、Δr/「==5%〜
−10%を示した。しかし、その同じ複数個の実用サー
ミスタIAは、その後500℃空気中で約800時間試
験後、Δr / r <±2%であった。
In addition, several other damaged practical thermistors IA are 60
After testing in 0℃ air for 3-10 hours, Δr/'==5% ~
-10% was shown. However, that same number of practical thermistors IA had Δr/r <±2% after being subsequently tested in air at 500° C. for about 800 hours.

これらのことから、ボストアニールが傷付いた実用サー
ミスタIAの抵抗値減少を安定化できることを示す。
These results indicate that boss annealing can stabilize the decrease in resistance of a damaged practical thermistor IA.

製造工程中で傷付いたサーミスタ素子2Aを完全に取り
除くことは実際上困難である。このことは、総ての製造
された実用サーミスタIAが望ましくはボストアニール
されることを示す。ボストアニールは、空気中でも、真
空中でも、あるいは不活性ガス中でもよいが、作業の容
易性や特種な装置必要としないことなどを考えると空気
中熱処理が好ましい。また、そのボストアニール条件は
上記実施例から(500〜600)’Cで(3〜300
)時間が好ましい。
It is actually difficult to completely remove the thermistor element 2A that has been damaged during the manufacturing process. This indicates that all fabricated practical thermistors IA are preferably bottom annealed. Bost annealing may be performed in air, vacuum, or inert gas, but in-air heat treatment is preferable in view of ease of operation and the need for no special equipment. Further, the boss annealing conditions are (500 to 600)'C and (3 to 300
) time is preferred.

発明の効果 以上のように本発明の薄膜サーミスタによれば、次に示
す効果が得られる。
Effects of the Invention As described above, the thin film thermistor of the present invention provides the following effects.

(1)  (Ca酸化物とTi酸化物)の混合物を微量
添加したAu−Pt電極膜を用いているので、Au−P
t電極膜の凝集が低減でき、このためにSiC薄膜とA
 u−P t ’@掻膜の接触部の熱的安定性が向上し
た。
(1) Since we use an Au-Pt electrode film to which a small amount of a mixture of (Ca oxide and Ti oxide) is added, the Au-Pt
The agglomeration of the t-electrode film can be reduced, and for this reason, the SiC thin film and A
Thermal stability of the contact area of u-P t '@ scapula was improved.

(2)  これにより、SiC薄膜サーミスタの耐熱性
を従来の400℃から500℃に向上できる。
(2) As a result, the heat resistance of the SiC thin film thermistor can be improved from the conventional 400°C to 500°C.

(3)ボストアニールの導入により、SiC薄tliサ
ーミスタの製造時に素子表面がピンセントで傷付けられ
ても、抵抗値を安定化できる。
(3) By introducing Bost annealing, the resistance value can be stabilized even if the element surface is scratched with a pin during the manufacture of SiC thin tli thermistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す薄膜サーミスタの斜視
図、第2図は同Au−Pt電極膜のB定数安定性を示す
特性図、第3図A、  Bは同Aupt電掻膜の組成を
示す分析例の図、第4図は同Au−Pt電極膜の表面構
造を示すSEM像、第5図は同Au−Pt電極膜の効果
を示すCo1e−Coleプロット図、第6図はサーミ
スタ素子の等価回路図である。 1・・・・・・実用SIC薄膜サーミスタ、2・・・・
・・サーミスタ素子、21・・・・・・絶縁性基板、2
2・・・・・・Au−Pt電極膜、23・・・・・・S
iC薄膜、3・・・・・・リード線、4・・・・・・硝
子被覆層。 代理人の氏名 弁理士 粟野重孝 はか1名第 ― アニール鍔間 (h) IIa  図 特粁X涜のエネルギ (ev) 特性X繞のエネルキ (ev) 傷 1力 J7り9ンス (kfl) 圀
Fig. 1 is a perspective view of a thin film thermistor showing one embodiment of the present invention, Fig. 2 is a characteristic diagram showing the B constant stability of the same Au-Pt electrode film, and Fig. 3 A and B are the same Aupt electrocuring film. Fig. 4 is a SEM image showing the surface structure of the Au-Pt electrode film, Fig. 5 is a Co1e-Cole plot showing the effect of the Au-Pt electrode film, and Fig. 6 is an analysis example showing the composition of the same. is an equivalent circuit diagram of a thermistor element. 1...Practical SIC thin film thermistor, 2...
...Thermistor element, 21...Insulating substrate, 2
2...Au-Pt electrode film, 23...S
iC thin film, 3... lead wire, 4... glass coating layer. Agent's name Patent attorney Shigetaka Awano Haka 1st person - Anil Tsuba (h) IIa Diagram special 粁X sacrilegious energy (ev) Characteristic

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁性基板と、前記絶縁性基板の上に形成された
一対の所定形状のAu−Pt焼成電極膜と、前記絶縁性
基板と前記一対のAu−Pt焼成電極膜の上に形成され
たSiCスパッタ抵抗薄膜とから成り、前記Au−Pt
焼成電極膜中にCa酸化物とTi酸化物の混合酸化物が
微量添加されていることを特徴とする薄膜サーミスタ。
(1) An insulating substrate, a pair of Au-Pt fired electrode films of a predetermined shape formed on the insulating substrate, and an Au-Pt fired electrode film formed on the insulating substrate and the pair of Au-Pt fired electrode films. The Au-Pt
A thin film thermistor characterized in that a small amount of a mixed oxide of Ca oxide and Ti oxide is added to the fired electrode film.
(2)前記混合酸化物がAuとPtの合計重量に対して
0.01〜0.1wt%添加されたことを特徴とする特
許請求の範囲(1)項記載の薄膜サーミスタ。
(2) The thin film thermistor according to claim (1), wherein the mixed oxide is added in an amount of 0.01 to 0.1 wt% based on the total weight of Au and Pt.
(3)絶縁性基板を準備する工程と、前記絶縁性基板の
上に、Ca酸化物とTi酸化物の混合酸化物が微量添加
されているAu−Pt焼成電極膜を、一対の所定形状に
焼成する工程と、前記絶縁性基板と前記一対のAu−P
t焼成電極膜の上にSiC抵抗膜をスパッタリング法に
より形成する工程と、前記Au−Pt焼成電極膜にリー
ド線を接続する工程と、前記Au−Pt焼成電極膜、前
記SiCスパッタ膜の形成された前記絶縁性基板表面を
低融点硝子被覆層で被覆する工程と、熱処理する工程と
から成ることを特徴とする薄膜サーミスタの製造方法。
(3) A step of preparing an insulating substrate, and forming an Au-Pt fired electrode film to which a small amount of a mixed oxide of Ca oxide and Ti oxide is added onto the insulating substrate into a pair of predetermined shapes. a step of firing the insulating substrate and the pair of Au-P;
A step of forming an SiC resistance film on the T-fired electrode film by sputtering, a step of connecting a lead wire to the Au-Pt fired electrode film, and a step of forming the Au-Pt fired electrode film and the SiC sputtered film. A method for manufacturing a thin film thermistor, comprising the steps of: coating the surface of the insulating substrate with a low melting point glass coating layer; and heat-treating the surface of the insulating substrate.
(4)前記熱処理工程が空気中熱処理であることを特徴
とする特許請求の範囲(3)項記載の薄膜サーミスタの
製造方法。
(4) The method for manufacturing a thin film thermistor according to claim (3), wherein the heat treatment step is an in-air heat treatment.
(5)前記熱処理工程が500〜600℃の温度で3〜
300時間なされることを特徴とする特許請求の範囲(
4)項記載の薄膜サーミスタの製造方法。
(5) The heat treatment step is performed at a temperature of 500 to 600°C.
Claims characterized in that it is made for 300 hours (
4) The method for manufacturing a thin film thermistor described in section 4).
JP9712389A 1989-04-17 1989-04-17 Thin film thermistor and manufacturing method thereof Expired - Fee Related JP2507036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9712389A JP2507036B2 (en) 1989-04-17 1989-04-17 Thin film thermistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9712389A JP2507036B2 (en) 1989-04-17 1989-04-17 Thin film thermistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02275601A true JPH02275601A (en) 1990-11-09
JP2507036B2 JP2507036B2 (en) 1996-06-12

Family

ID=14183793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9712389A Expired - Fee Related JP2507036B2 (en) 1989-04-17 1989-04-17 Thin film thermistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2507036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039376A (en) * 2014-08-08 2016-03-22 三菱マテリアル株式会社 Defect detection method for thermistor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039376A (en) * 2014-08-08 2016-03-22 三菱マテリアル株式会社 Defect detection method for thermistor element

Also Published As

Publication number Publication date
JP2507036B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
TW201401306A (en) Film-type thermistor sensor
JP4279399B2 (en) Thin film thermistor element and method for manufacturing thin film thermistor element
KR920007578B1 (en) Thermistor and making method thereof
US6368734B1 (en) NTC thermistors and NTC thermistor chips
JPH02275601A (en) Manufacture of thin-film thermistor
JP2008010604A (en) Resistor thin film material, resistor thin film, sputtering target for forming the same, and thin-film resistor and its manufacturing method
JP5136986B2 (en) Piezoelectric manufacturing method and piezoelectric element
Bayne Al‐doped Ni–Cr for temperature coefficient of resistance control in hybrid thin‐film resistors
Jiao et al. Stability of RuO2 thin film resistors
JP4136755B2 (en) PTC thermistor made of ternary alloy material
Cheng et al. The TCR of Ni24. 9Cr72. 5Si2. 6 thin films deposited by DC and RF magnetron sputtering
JP4279401B2 (en) Thin film thermistor element
RU2064700C1 (en) Thermistor manufacturing process
JPS62111402A (en) Thin film thermistor
JPS6295805A (en) Thermistor
JPH06275409A (en) Manufacture of thin-film resistive element
TW201502107A (en) Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
JPS6024561B2 (en) resistive film thin
JPH01253205A (en) Thin film thermistor
JPH01130503A (en) Thin-film thermistor
JPH07230902A (en) Semiconductor ceramic element
JP2000348904A (en) Thin film thermistor element and manufacture of thin film thermistor element
JPH04137465A (en) Separator for high temperature type fuel cell
JPS5923082B2 (en) Thermistor and its manufacturing method
JPH04170003A (en) Thin-film thermistor and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees